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Abstract

Merosin deficient congenital muscular dystrophy (MDC1A) is a severe neuromuscular disor-

der with onset in infancy that is associated with severe morbidities (particularly wheelchair

dependence) and early mortality. It is caused by recessive mutations in the LAMA2 gene

that encodes a subunit of the extracellular matrix protein laminin 211. At present, there are

no treatments for this disabling disease. The zebrafish has emerged as a powerful model

system for the identification of novel therapies. However, drug discovery in the zebrafish is

largely dependent on the identification of phenotypes suitable for chemical screening. Our

goal in this study was to elucidate novel, early onset abnormalities in the candyfloss (caf)

zebrafish, a model of MDC1A. We uncovered and characterize abnormalities in spontane-

ous coiling, the earliest motor movement in the zebrafish, as a fully penetrant change spe-

cific to caf mutants that is ideal for future drug testing.

Introduction

Merosin deficient congenital muscular dystrophy (or MDC1A) is a severe muscle disease that

is estimated to affect between one to nine-thousand births worldwide, and is the most preva-

lent CMD in Western countries[1,2]. It is an autosomal recessive disorder caused by mutations

in LAMA2, the gene that codes for the laminin-α2 protein (formerly known as merosin)[3–6].

Laminins are heterotrimeric extracellular adhesion molecules composed of an α-chain, β-

chain, and γ-chain and are temporally and spatially expressed in the basement membranes sur-

rounding various cell types. In skeletal muscle, the laminin-211 isoform (composed of lami-

nins α-2, β-1 and γ-1) predominates[7] and is one of the critical proteins that participates in

anchoring the inner actin cytoskeleton to the extracellular matrix (ECM)[8]. Mutations in

LAMA2 result in either a complete absence or severe reduction of laminin-211, which threat-

ens the integrity of the skeletal muscle fiber, ultimately leading to muscle degeneration and cell

death.
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MDC1A is a clinically devastating disease characterized by severe hypotonia, muscle weak-

ness, elevated creatine phosphokinase levels, joint contractures, white matter abnormalities,

and delayed motor milestones, with symptoms presenting at or shortly after birth [9,10]. Less

than one quarter of patients achieve independent ambulation [11], and complications include

scoliosis, feeding difficulties, wheelchair dependence, and premature mortality: 30 percent of

patients die within their first decade of life, most commonly due to respiratory tract infection

[2,9]. As there are no curative or significant disease modifying therapies for MDC1A, there is a

critical need to identify potential treatments to improve the quality of life of patients with the

ultimate goal of curing the disease.

Danio rerio (zebrafish) has emerged as an excellent model for the study of human muscle

disease [12]. Due to the high fecundity of zebrafish and the rapid ex utero development and

optical transparency of developing embryos, the zebrafish lends itself to large-scale phenotypic

screens of chemical libraries and is thus an ideal model organism for therapy development

[13,14]. One of the keys to successful drug discovery in a model organism is identifying suit-

able phenotypes for compound testing. In the candyfloss (caf) [15] model, muscle fibers begin

detaching and degenerating at 36 hpf, but visualizing this phenotype requires confocal micros-

copy until approximately 2 dpf when muscle damage can be viewed under plane polarized

light as a reduction or absence of birefringence [16]. In this study, we sought to determine

whether we could identify a new phenotype that would allow for earlier detection of caf
mutants, prior to the onset of muscle fiber detachment. Because MDC1A is a muscle disease,

we looked at the earliest skeletal movement performed by developing embryos: spontaneous

coiling. Zebrafish embryos begin to coil spontaneously at 17 hpf and by 21 hpf, they begin to

coil in response to touch [17]. We found that as early as 23 hpf, caf mutants have a defect in

their coiling abilities after manual dechorionation, which we believe could be exploited as an

early phenotypic marker of mutants in large-scale drug screens. Moreover, a coiling defect was

not observed in the zebrafish model of Duchenne muscular dystrophy, sapje [18], suggesting

that this phenotype is not common to all zebrafish models of muscular dystrophies.

Materials and methods

Zebrafish husbandry

Heterozygous (lama2+/-) candyfloss (caf) and sapje (sap) zebrafish were obtained from the Uni-

versity of Tübingen. Both strains are housed and bred in adherence to zebrafish husbandry

protocols approved by the Animal Care Committee at the Peter Gilgan Centre for Research

and Learning at the Hospital for Sick Children, including specific IACUC approval for

the experimentation described in this study (protocol number 29161). All procedures for

lama2cl501 fish line were approved from the Harvard University Institutional Animal Care and

Use Committee (2016N000304).

Coiling assay

Embryos from heterozygous matings were collected at 1 hpf and incubated at 28.5˚C in system

water with methylene blue. At 22 hpf, embryos from all clutches were pooled. At the desig-

nated time point (22 23, or 24 hpf), embryos were removed from incubation and their coils

were counted either for 15 seconds immediately after dechorionation with forceps or for 30

seconds while remaining in their chorions. Embryos were viewed using an Olympus SZX7

microscope. A full coil was determined to be where the embryo’s tail was able to completely

curve around its trunk and touch its head. A partial coil was determined to be when an embryo

made the movement to complete a coil, but was unable to. After the coils of an embryo

counted, it was placed into an individual well of a 24-well plate filled with system water with
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methylene blue (egg water) and was incubated at 28.5˚C until 3 dpf (cafs) or 5 dpf (sapje) upon

which the genotypes were confirmed with birefringence.

Birefringence

Birefringence was observed by light microscopy using a plane-polarizing filter on an Olympus

SZX7 microscope.

Statistical analysis

All statistical analyses (student T-test and two-way ANOVA) were completed with Prism 6.0.

Results

Defining spontaneous coiling parameters in caf zebrafish

This study began when we noticed that qualitatively, we were able to predict caf mutants based

on how often they coiled after manual dechorionation at 24 hours post fertilization (hpf). This

led us to design a protocol that would allow for quantitatively measuring the number of coils

performed by caf (lama2-/-)embryos and their wild type (WT) siblings in a short time period

(15 or 30 seconds). Heterozygous (lama2+/-) zebrafish were mated and embryos were pooled

at 22 hpf. At this time point, we were unable to visualize (using birefringence analysis) any

muscle fiber detachment and could not visually distinguish caf mutants apart from their WT

(lama2+/- and lama2+/+) siblings. At 22, 23, and 24 hpf, we counted the number of full coils

completed by each embryo within the 15 seconds immediately after manual dechorionation

with forceps, or in 30 second period with no dechorionation (i.e. embryos remaining in their

chorions). We doubled the time for counting coils when the embryos remained in their chori-

ons because we predicted (based on previous work) that the embryos complete fewer coils if

not mechanically stimulated [17]. We determined a full coil to be where the end of an embryo’s

trunk was able to curl around and touch its head (Fig 1A). After the coils of an embryo were

counted, the embryo was placed into an individual well of a 24-well plate and the embryos

developed until a time point where their genotype (caf or WT sibling) could be determined

with birefringence (Fig 2). Of note, there is complete correspondence between abnormal bire-

fringence and the caf genotype. Additionally, in a subset of embryos (n = 40), genotypes were

validated by genetic analysis.

Caf mutants complete significantly less coils than WT siblings after

manual dechorionation

In embryos derived from a heterozygous (lama2+/- x lama2+/-)mating pair confined in their

chorions, we found that there was no significant difference in the coiling abilities of WT sib-

lings and caf mutants at any time point (22, 23, and 24 hpf); all embryos would complete

approximately one coil within a 30-second time period (Fig 1B). While it is possible that cafs
and WTs would differ in coiling in their chorions if examined for longer time periods, we did

not further investigate this possibility because we were interested in identifying phenotypes

suitable for large-scale drug screening.

It has been shown that zebrafish embryos vigorously coil in response to touch starting at 21

hpf [17,19]; therefore, we reasoned that stimulating the embryos with manual dechorionation

would increase the number of coils they complete, making it more feasible to identify mutants.

At 22 hpf, we found that there was no significant difference in the coiling abilities of WT sibs

and caf mutants upon manual dechorionation. However, we observed that caf mutants com-

plete significantly fewer coils than their WT siblings at 23 and 24 hpf (Fig 1C) (S1 and S2
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Videos). Furthermore, there is no significant difference in the coiling abilities of lama2+/- WT

embryos (i.e. heterozygotes) compared to lama2+/+ WTs, and caf mutants complete signifi-

cantly less coils than both groups (Fig 3). This novel coiling discrepancy of caf mutants pres-

ents us with an easily measurable phenotype that has previously never been reported, and thus

a protocol that can be easily optimized to act as a read-out in high-throughput drug screens.

The lama2cl501 line also displays a coiling defect

To validate our observation, we examined another zebrafish line that models merosin deficient

congenital muscular dystrophy. This line, lama2cl501, was identified from an ENU screen [20].

It carries a splice site mutation in lama2 and produces a phenotype indistinguishable from caf.

Fig 1. Caf mutants display a coiling phenotype as early as 23 hpf. A) One full coil completed by a 24 hpf wild type (lama2+/+ and lama2+/-; WT)

zebrafish embryo. B) Number of coils of WT siblings and caf (lama2-/-) mutants over 30 seconds when left in their chorions. There is no significant

difference in the coiling abilities of caf mutants and their WT siblings at 22 hpf (WT sibs: 1.071 ± 0.3391, n = 14; cafs: 1.000 ± 0.7071, n = 4; p>0.9999), 23

hpf (WT sibs: 0.9286 ±0.3987, n = 14; cafs: 1.000 ± 1.000, n = 2; p>0.9999) or 24 hpf (WT sibs: 1.133 ± 0.2906, n = 15; cafs: 1.222 ± 0.3643, n = 9;

p>0.9999). C) Number of coils of WT siblings and caf mutants in the 15 seconds immediately after manual dechorionation. At 22 hpf, there was no

significant difference in number of coils completed by WT siblings and caf mutants (WT sibs: 3.654 ± 0.7685, n = 26; cafs: 3.250 ± 1.031, n = 8; p>0.9999).

However, cafs completed significantly less coils than their WT sibs at 23 hpf (WT sibs: 7.444 ± 0.5587, n = 72; cafs: 3.476 ± 0.5921, n = 21; p = 0.0194) and

24 hpf (WT sibs: 10.71 ± 0.4436, n = 163; cafs: 2.936 ± 0.6646, n = 47; p<0.0001). Bars represent mean ± SEM.

doi:10.1371/journal.pone.0172648.g001
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Using similar methodology that described above, we measured coiling, both in the chorion

and upon dechorionating, at 22, 23, and 24 hpf. As with the caf mutants, lama2cl501 mutants

also displayed a significant defect in spontaneous coiling that was present at 23 hpf and 24 hpf

(S1 Table and S1 Fig). This independent observation supports our conclusion that the coiling

defect we observe is due to the lama2 mutation.

Fig 2. Muscle fiber detachment of caf mutants can be observed with birefringence. Under plane

polarized light, muscle from WT siblings (A) appears uniformly bright and white, consistent with normal

muscle organization. In contrast, Caf mutants (B-F_ can be identified as having stochastic patterns of muscle

degeneration and detachment with birefringence as early as 2 dpf. This is seen in the muscle compartment as

dim white areas (thinned or atrophied fibers) and black spots (presumed areas of muscle fiber detachment).

Of note, genotype for all depicted animals was confirmed by Sanger sequencing. Bars represent mean ± SEM.

doi:10.1371/journal.pone.0172648.g002
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The coiling defect of caf mutants is due likely due to muscular

abnormalities

The coiling of zebrafish embryos in response to touch requires input from both nervous and

muscular systems in order to bring about functional motor behavior [19]. As it has been well

established that there are white matter abnormalities in MDC1A patients, the coiling discrep-

ancy could be due to defects in both neurological and/or muscular systems. We reasoned that

if the coiling defect observed in caf mutants was due to ultrastructural abnormalities in skeletal

muscle alone, the cafs would at least initiate a coil as many times as their WT sibling counter-

parts. To investigate this, we counted the number of full and partial coils made by caf mutants

compared that to the number of full and partial coils completed by WT siblings. We counted

any attempt to coil that did not result in a complete coil as a partial coil. We found that there

was no significant difference in the number of total coils (full and partial) attempted by caf
mutants compared to WT siblings, indicating that impaired neuronal input is unlikely to be

the cause of the abnormal coiling phenotype (Fig 4). This is perhaps unsurprising, as innerva-

tion in caf zebrafish was previously reported to be normal [15]. As such, we believe that the

coiling phenotype of caf mutants is due to primary defects in muscle fibers that have yet to be

elucidated.

Abnormal filamentous actin distribution supports an early muscle defect

in caf embryos

Our observation of disrupted full coils in 24 hpf dechorionated caf embryos suggests that

mutant skeletal muscle may be abnormal at this early stage of muscle development. To investi-

gate this further, we utilized phalloidin staining as a means of detecting changes in myofiber

organization. Phalloidin highlights filamentous actin and has been used by others as a means

of documenting abnormalities in dystrophic muscle of various zebrafish models. Wild type

embryos at 24 hpf showed the expected pattern of phalloidin staining (n = 5). Caf embryos, in

Fig 3. Heterozygous lama2+/- embryos have no coiling deficiency. Heterozygous (lama2+/-) embryos do

not display any coiling deficiency compared to their lama2+/+ WT siblings at 24 hpf after manual dechorionation

(WT: 13.20 ± 2.037, n = 10; Het: 11.80 ± 1.654, n = 15; p = 0.5984). Bars represent mean ± SEM.

doi:10.1371/journal.pone.0172648.g003
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contrast, displayed altered expression, with intense staining detected at a location consistent

with the myotendinous junction (n = 5) (Fig 5). While the full significance of this observation

merits further investigation, these data further support an early skeletal muscle phenotype in

caf mutants.

Coiling deficiency is not common to all zebrafish models of muscular

dystrophy

Because of the significant difference in the coiling abilities of caf mutants compared to their

WT siblings, we went on to determine whether this phenotype is unique to caf mutants by

Fig 4. Caf mutants attempt to coil as often as their WT siblings. There is no significant difference

between the number of full coils and the number of full and partial coils completed by WT sibs, indicating that

nearly all of the coiling attempts completed by WT sibs result in a full coil (WT Sibs (full coils): 11.86 ± 0.7253,

n = 44; WT Sibs (full and partial coils): 12.02 ±0.6962, n = 44; p = 0.9975). As expected, cafs perform

significantly less full coils (1.917 ± 0.7633, n = 12) compared to the number of full coils completed by WT sibs

(p<0.0001) and the number of full and partial coils completed by WT sibs (p<0.0001). However, when the

number of partial coiling attempts by caf mutants is combined with their full coils (9.083 ± 1.158, n = 12), their

coiling attempts are restored to WT levels when compared to WT full coils (p = 0.2084) and WT full and partial

coils (p = 0.1633). Bars represent mean ± SEM.

doi:10.1371/journal.pone.0172648.g004

New phenotype of zebrafish model of MDC1A

PLOS ONE | DOI:10.1371/journal.pone.0172648 February 27, 2017 7 / 12



examining whether the zebrafish model of Duchenne muscular dystrophy, sapje, had similar

defects. Because the spontaneous coiling of caf mutants in their chorions was not predictive of

their genotype, we only examined the number of coils completed by sapje mutants after man-

ual dechorionation. At both 23 and 24 hpf, we found that sapje mutants had a similar number

of full coils as compared to wild type (Fig 6), indicating that not all zebrafish models of muscu-

lar dystrophies a coiling phenotype and suggesting that this phenotype may be unique to caf
mutants.

Discussion

In this study, we have further characterized the zebrafish model of MDC1A, candyfloss (caf),
by identifying a novel coiling phenotype. Prior to this study, the first reported pathology of caf
mutants was slow muscle fiber degeneration at 36 hpf [15]. Here, we have observed a defect in

the ability of caf mutants to complete full coils, which is mediated primarily by slow muscle

fibers [19], as early as 23 hpf, long before the onset of muscle detachment and degeneration.

This observation suggests that although the fibers differentiate appropriately and appear nor-

mal prior to 36 hpf [15], there may be abnormalities in the muscle that are impairing the ability

of the caf mutants to properly coil, an assertion supported by our demonstration of abnormal

distribution of filamentous actin in 24 hpf myofibers. Furthermore, we did not observe this

phenotype in a zebrafish model of Duchenne muscular dystrophy, sapje, indicating that this

Fig 5. Abnormal phalloidin staining in skeletal muscle from caf mutant embryos. Wild type (WT) and

caf mutants were staining with phalloidin to illuminate filamentous actin and then visualized whole mount by

confocal microscopy. (A) WTs show the expected pattern of staining at 24 hpf (n = 5). (B) In muscle from caf

mutants, there is an accumulation of intense staining in the region of the myotendinous junction (arrow)

(n = 5). Scale bar = 10 um.

doi:10.1371/journal.pone.0172648.g005

New phenotype of zebrafish model of MDC1A

PLOS ONE | DOI:10.1371/journal.pone.0172648 February 27, 2017 8 / 12



phenotype is not common to all zebrafish models of muscular dystrophy and may be unique

to caf mutants.

In MDC1A patients, disease symptoms present either at or shortly after birth, and it is spec-

ulated that these patients are never truly pre-symptomatic. In contrast, the onset of Duchenne

muscular dystrophy is later, where boys begin developing symptoms between 1.5–2.5 years of

age. The reason as to why MDC1A is a congenital muscle disease is incompletely understood.

Mehuron et al identified early perinatal pathology in a mouse model of MDC1A, and corre-

lated this with increases in apoptosis during myogenesis [21]. Our findings of a coiling defect

in caf mutants are consistent with the congenital symptoms seen in both patients and mice

with MDC1A, and they open an avenue for further exploration of the mechanisms underlying

the early-onset phenotype.

Importantly, the phenotype we have identified, because of the ease in its identification and the

ability to automate the analysis using recording systems such as the Viewpoint Zebrabox, can be

exploited for large-scale drug screens. This phenotype holds advantages over birefringence, the

tool most commonly used for drug development in dystrophic models. One advantage is that the

early coiling phenotype occurs prior to muscle detachment, and thus may represent a treatment

window period. It is reasonable to speculate that, at least in zebrafish, fully detached muscle will

be difficult to “fix” with chemical modification, and thus limit the opportunity for finding drug

targets using this model. Additionally, using the coiling phenotype as a measure of therapeutic

effectiveness rather than the dystrophic phenotype, which is fully penetrant at 3 dpf [15], is a

more cost-effective approach, as less chemicals would be required over time.

Fig 6. Coiling deficiency is not observed in the zebrafish model of Duchenne muscular dystrophy.

Sapje mutants, the zebrafish model of Duchenne muscular dystrophy, do not present with a coiling phenotype

at 23 hpf (WT sibs: 6.823 ± 0.4642, n = 62; cafs: 5.000 ± 0.9244, n = 11; p = 0.1088) or 24 hpf (WT sibs:

7.347 ± 0.4950, n = 72; cafs: 8.063 ± 1.066, n = 16; p = 0.9997). Bars represent mean ± SEM.

doi:10.1371/journal.pone.0172648.g006
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In conclusion, we have identified a novel coiling phenotype of caf mutants suitable for use in

high-throughput drug screens that may serve as a measure of therapeutic effectiveness by har-

nessing the power of automated movement-tracking systems such as the Zebrabox platform

(Viewpoint) or Noldus. This strengthens the characterization of the caf zebrafish model of

MDC1A and lays the foundation for further experiments that aim to understand the mecha-

nisms that result in stochastic muscle fiber degeneration in MDC1A and other congenital mus-

cular dystrophies.

Supporting information

S1 Table. Coiling in the lama2cl501 zebrafish model of MDC1A. 1. Number of coils in the

chorion, wild type versus lama2cl501mutants. There was no statistical difference in coiling

behavior between the two groups when embryos remained in their chorions. 2. Number of

coils for dechorionated embryos, wild type versus lama2cl501 mutants. There was a statistically

significant decrease in coiling by lama2cl501 mutants in embryos dechorionated at 24 hours

post fertilization but not at time points before this.

(DOCX)

S1 Fig. lama2cl501 mutants have reduced coiling upon dechorionation. Still images from

time lapse videos of wild type clutchmates (control) and lama2cl501 (lama2) mutants at 24

hours post fertilization. Videos were taken just after dechorionation. Lama2 mutants demon-

strate only partial coiling and do not complete a normal/full coiling in the 2 second period

shown. In contrast, the control embryo completes 2 full coils.

(DOCX)

S1 Video. Spontaneous coiling of a dechorionated wild type embryo at 24 hours post fertil-

ization.

(MOV)

S2 Video. Spontaneous coiling of a dechorionated caf embryo at 24 hours post fertilization.

(MOV)

Acknowledgments

We thank Ann Davidson for technical assistance with this project. This work was funded in

part by a grant from CureCMD, as well as through funds from the Centre for Brain and Mental

Health at Hospital for Sick Children. VAG is supported by K01 AR062601 from the National

Institute of Arthritis and Musculoskeletal and Skin Diseases of National Institute of Health.

Author Contributions

Conceptualization: SJS JJD.

Data curation: SJS JCW VAG JJD.

Formal analysis: SJS JCW VAG JJD.

Funding acquisition: VAG JJD.

Investigation: SJS JCW VAG JJD.

Methodology: SJS JCW VAG JJD.

Project administration: JJD.

New phenotype of zebrafish model of MDC1A

PLOS ONE | DOI:10.1371/journal.pone.0172648 February 27, 2017 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172648.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172648.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172648.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172648.s004


Resources: VAG JJD.

Software: SJS JCW VAG JJD.

Supervision: VAG JJD.

Validation: SJS JCW.

Visualization: SJS JCW VAG JJD.

Writing – original draft: SJS JJD.

Writing – review & editing: SJS JCW VAG JJD.

References
1. He Z. Merosin-deficient congenital muscular dystrophy type 1A: A case report. Exp. Ther. Med. 1233–

1236 (2013). doi: 10.3892/etm.2013.1271 PMID: 24223650

2. Durbeej M. Laminin-α2 Chain-Deficient Congenital Muscular Dystrophy. Curr. Top. Membr. 76, 31–60

(2015). doi: 10.1016/bs.ctm.2015.05.002 PMID: 26610911

3. Helbling-Leclerc a et al. Mutations in the laminin alpha 2-chain gene (LAMA2) cause merosin-deficient

congenital muscular dystrophy. Nat. Genet. 11, 216–218 (1995). doi: 10.1038/ng1095-216 PMID:

7550355
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