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Abstract

Site-directed scarless mutagenesis is an essential tool of modern pathogenesis research.

We describe an optimized two-step protocol for genome editing in Salmonella enterica sero-

var Typhimurium to enable multiple sequential mutagenesis steps in a single strain. The

system is based on the λ Red recombinase-catalyzed integration of a selectable antibiotics

resistance marker followed by replacement of this cassette. Markerless mutants are sel-

ected by expressing the meganuclease I-SceI which induces double-strand breaks in bacte-

ria still harboring the resistance locus. Our new dual-functional plasmid pWRG730 allows

for heat-inducible expression of the λ Red recombinase and tet-inducible production of I-

SceI. Methyl-accepting chemotaxis proteins (MCP) are transmembrane chemoreceptors for

a vast set of environmental signals including amino acids, sugars, ions and oxygen. Based

on the sensory input of MCPs, chemotaxis is a key component for Salmonella virulence. To

determine the contribution of individual MCPs we sequentially deleted seven MCP genes.

The individual mutations were validated by PCR and genetic integrity of the final seven

MCP mutant WRG279 was confirmed by whole genome sequencing. The successive MCP

mutants were functionally tested in a HeLa cell infection model which revealed increased

invasion rates for non-chemotactic mutants and strains lacking the MCP CheM (Tar). The

phenotype of WRG279 was reversed with plasmid-based expression of CheM. The comple-

mented WRG279 mutant showed also partially restored chemotaxis in swarming assays on

semi-solid agar. Our optimized scarless deletion protocol enables efficient and precise

manipulation of the Salmonella genome. As demonstrated with whole genome sequencing,

multiple subsequent mutagenesis steps can be realized without the introduction of un-

wanted mutations. The sequential deletion of seven MCP genes revealed a significant role

of CheM for the interaction of S. Typhimurium with host cells which might give new insights

into mechanisms of Salmonella host cell sensing.
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Introduction

The ability for precise manipulation of bacterial genomes is of utmost importance in modern

microbiological research. Although there is a long history of manipulating bacterial genomes,

the application of phage-derived recombinases constitute a breakthrough in bacterial genetics

[1, 2]. These “recombineering” strategies jointly exploit the ability of phage Rac RecE/T or of

phage λ Red recombinases to use DNA fragments of less than 40 bp as substrates for homolo-

gous recombination [3]. Direct integration of these homologous sequences within short oligo-

nucleotides is a great advantage which makes cloning of helper plasmids obsolete.

Over the years a vast number of different strategies and ever more refined protocols have

been developed with a clear trend towards “scarless” genome manipulations [4–9]. These tech-

niques are usually based on two steps starting with the integration of a selectable marker (e.g.

an antibiotic resistance gene) followed by seamless replacement of that particular marker. For

the second step efficient methods to select for loss of the marker are required. Here, accumula-

tion of toxic metabolites based on tetAR [6, 10], sucrose sensitivity utilizing the sacB gene [7,

9], rpsL-mediated streptomycin sensitivity in resistant hosts [11, 12], the CcdA/CcdB toxin-

antitoxin system [13] or I-SceI induced double-strand breaks (DSB) [4, 5, 14–17] were success-

fully used. The meganuclease I-SceI of S. cerevisiae has an unusually long recognition site of 18

bp which is statistically not present in bacterial genomes [18]. Mechanistically, the I-SceI site is

co-integrated into the genome with the antibiotic resistance cassette during the first recombi-

nation step. Expression of the I-SceI enzyme after the second step selects for successful recom-

binants. Thus the precise and independent regulated expression of λ Red recombinase and

I-SceI is a prerequisite for maximum efficiency and reliability of this method. Whereas the

above mentioned methods rely on double-stranded DNA (dsDNA) as substrate for recombi-

nation, the chromosomal integration of short single-stranded DNA (ssDNA) oligonucleotides

has also been demonstrated [3]. Recombineering of ssDNA requires only the function of λ
Beta/RecT ssDNA binding proteins and functions without selectable or counter-selectable

markers [19, 20]. However, methyl-directed mismatch repair reduces efficiency of the method

and thereby increasing the effort of screening for correct clones [21].

Recombineering techniques are not only limited by the efficiency of the applied systems but

also in general by the amenability of microorganisms to the Red/Rec recombinases. Alternative

approaches are explored not only to avoid this limitation but to make genome editing even

more efficient. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats

and its associated protein, Cas9) system promises many advantages and is tremendously suc-

cessful for editing eukaryotic genomes. Unfortunately, its application in bacteria is still limited.

Amongst other reasons this is mainly due to the lack of a non-homologous end joining mecha-

nism for DNA repair in most bacteria (reviewed in [22]). Nevertheless, successful CRISPR/

Cas9-mediated genome editing including the introduction of deletions, insertions, and point

mutations, was demonstrated when combined with λ Red recombinase functions [23]. The sys-

tem was especially promoted for introducing multiple genome modifications since it does not

rely on the cyclic integration and excision of a selectable marker [24]. However, the method

requires careful design of the specific sequences for the gene-targeting protospacer adjacent

motif (PAM) in order to prevent potential off-target activity. In addition, the PAM sequence

together with the single guide RNA has to be supplied on a plasmid which needs to be cloned

and, ideally, sequence-verified for each target gene to achieve high efficiency in bacteria [8, 23,

24]. Until further optimization of CRISPR/Cas9 system for bacteria, refined scarless recombi-

neering protocols are an efficient and cost-effective tool for genome editing. Based on our previ-

ously developed method [4] we optimized the system to enhance efficiency and enable fast and

reliable sequential modifications of the Salmonella Typhimurium (STM) genome.
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We wanted to demonstrate the functionality of the optimized protocol in STM deleting

seven genes encoding for methyl-accepting chemotaxis proteins (MCPs). MCPs are sensor

molecules which respond to a variety of environmental cues including amino acids, sugars,

ions and oxygen. Receptor signaling is initiated by reversible ligand binding at the periplas-

mic domains of dimeric MCPs [25]. Upon activation the receptor-bound kinase CheA

phosphorylates the response regulator CheY. Through binding to the flagellar motor com-

plex CheY influences the direction of flagellar rotation. As a result environmental signals

perceived by MCPs control chemotactic swimming (reviewed in [26]). Salmonella expresses

homologs to the E. coli MCPs Tsr, Tar, Trg and Aer. Tsr and Tar detect the amino acids ser-

ine and aspartate, respectively [27, 28]. Although the Salmonella Tar homolog CheM shows

only 79% sequence identity with Tar of E. coli it was also demonstrated to bind and respond

to aspartate [29, 30]. Trg is responsible for the sensing of the sugars glucose, galactose and

ribose [31]. Alterations of the redox potential can be detected by Aer [32]. In contrast to

the above mentioned MCPs the chemotaxis sensors Tap, Tip, McpA, McpB and McpC are

only found in Salmonella. Tap was shown to sense citrate and phenol [33] whereas McpB/C

mediate a repellent response towards L-cystine [34]. Currently no function for McpA [35],

lacking a transmembrane domain, and Tip which is devoid of the periplasmic sensor

domain is known.

We used a thoroughly defined set of MCP mutants to investigate the impact of individual

MCPs on the ability of Salmonella to invade HeLa cells. Our infection experiments revealed an

increased invasion rate for mutants lacking CheM indicating a detrimental effect of CheM-

mediated chemotaxis in this infection model.

Results and discussion

Design and construction of system components

In our previously published system [4] the arabinose-inducible expression of the λ Red recom-

binase was combined with the meganuclease I-SceI under control of the tetA promoter in plas-

mid pWRG99 [36]. Although the system allowed for efficient generation of scarless deletions

or single nucleotide exchanges, it required curing and re-transformation of pWRG99 between

each recombination step [4]. We speculated that leaky expression of the λ Red proteins from

the PBAD promoter in the absence of glucose [37] could have selected for inactive recombi-

nases. Therefore we reasoned that a differently regulated λ Red expression plasmid might cir-

cumvent this problem. The pSC101-based pSIM5 harbors the phage λ pL operon comprising

the genes exo, bet and gam under the control of the temperature-sensitive repressor CI857 that

enables heat-inducible expression of λ Red recombinase functions [38]. Moreover, the pSIM5

plasmid allows for simple curing by its temperature-sensitive repAts origin of replication. From

the functional perspective pSIM5 exhibited 10- to 60-fold higher recombination efficiency

compared to the arabinose-inducible λ Red expression plasmid pKD119, which is similar to

pKD46 except for the tetracycline resistance gene [38]. The combined λ Red/I-SceI expression

plasmid pWRG730 was constructed by integrating the tetracycline-inducible I-SceI expression

cassette of pWRG99 into the highly efficient pSIM5 vector (Fig 1A).

Together with pWRG730 new FRT-free template plasmids were constructed based on

pBluescript II SK+. Flp recombinase target (FRT) sites as present on the old template plasmid

pWRG100 negatively interfered with DSB-based counterselection [4]. To circumvent this

problem, the kanamycin resistance cassette of pKD4 [36] was integrated in two orientations

relative to the I-SceI cleavage site thereby producing pWRG717 (Fig 1B) and pWRG832 (not

shown). To provide an alternative selection marker, a spectinomycin resistance cassette origi-

nating from pDL1098 [39] was cloned in both orientations which resulted in pWRG829 and
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pWRG865 (data not shown). Although all four template vectors are suitable for the introduc-

tion of deletions, heterologous DNA or nucleotide exchanges, we routinely used the template

vectors with the resistance gene in reversed orientation compared to the I-SceI cleavage site

(pWRG717, pWRG829) (Fig 1B and not shown) to minimize polar effects in the first recombi-

nation step. The vectors with the resistance cassette in same orientation to the I-SceI cleavage

site enable the simple integration of the antibiotic resistance gene in an artificial operon struc-

ture to serve as a reporter gene as described for Vibrio cholerae [39].
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Fig 1. Overview of the method. (A) Schematic representation of the functional units of plasmid pWRG730. The operon containing λ
Red recombinase functions is under control of the heat-inducible phage-derived promoter pL. Expression of the I-SceI meganuclease

is controlled by a tetracycline-inducible promoter (Ptet). A chloramphenicol resistance cassette (cat) is used for selection purposes.

Due to its temperature-sensitive origin of replication (repAts) the plasmid can be easily cured at elevated growth temperatures. (B)

Representation of the two-step scarless deletion methodology. A kanamycin resistance cassette (aph) is amplified together with an

I-SceI cleavage site (grey triangle) from pWRG717 with two 60-mer primers each containing site-specific homology extensions at

their 5’-ends (striped squares). Chromosomal integration of this first targeting construct (TC) is achieved by λ Red recombinase

expression from pWRG730. The 2nd TC is also generated by PCR using chromosomal DNA as template and contains a direct fusion

of up- and downstream homology regions. After genomic integration of the 2nd TC using λRed recombinase, successful recombinants

are selected by I-SceI expression from pWRG730. A detailed description of the method can be found in the main text.

doi:10.1371/journal.pone.0172630.g001
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Sequential deletion of MCP genes

To evaluate the functionality of the system we decided to sequentially delete all genes encoding

for known MCPs in S. Typhimurium strain NCTC 12023. The MCP genes were deleted in the

following order: aer, tcp, tsr, trg, cheM (tar), mcpC (STM14_3893) and mcpB (STM14_3817)

[35]. Each scarless deletion involved two successive recombination steps: (i) integration of a

kanamycin resistance cassette amplified from pWRG717 and (ii) replacement of that resis-

tance cassette by a PCR fragment containing the fused flanking regions of the gene to be

deleted (Fig 1B) [4]. Similar strategies have been described before but with Red recombinase

and I-SceI functionality provided on different plasmids [5] or requiring multiple rounds of

culturing in selective medium for maximum efficiency [17]. In contrast to our first approach

[4] the new plasmid pWRG730 encoding the recombinase and I-SceI meganuclease could be

maintained within the bacteria during the whole sequential gene deletion process through

selection with chloramphenicol (Cm) and keeping the cells at 30˚C.

Primers ‘xy-scarless-for’ and ‘xy-scarless-rev’ were used for amplification of an I-SceI cleav-

age site together with a kanamycin resistance cassette from template vector pWRG717 to pro-

duce the 1st targeting construct (TC) for recombination. Whereas the 20 bases at the 3’ ends of

the primers were designed to bind to the template vectors, the 40 bases at each 5’ end are homol-

ogous to regions up- and downstream of ‘orfX’ and thus determine the genome integration site

(Fig 1B). Electrocompetent Salmonella with heat-induced λ Red recombinase were transformed

with the 1st TC and transformants were selected on kanamycin (Km) and Cm-containing LB

agar plates. Proper integration of the I-SceI/kanamycin cassette and replacement of each MCP

gene was verified in both directions by PCR. The TC for the second recombination step was

also generated by PCR. The construct represents a fusion of upstream and downstream homol-

ogous regions of the target deletion site. The homologous upstream sequence was amplified

from wild-type (WT) chromosomal DNA as template using a short upstream-binding ‘xy-

cleanDel-for’ primer and a 60-mer ‘xy-cleanDel-rev’ primer. The downstream homology region

comprises the 40 bases of the 5’ end of ‘xy-cleanDel-rev’ (Fig 1B). This PCR-based approach to

obtain a 2nd TC is much more flexible and cost-effective for introducing deletions or for site-

directed mutagenesis compared to phosphorylated oligonucleotides [4]. PCR using 60-mer

primers with 40 bases homology extensions would be also the means of choice for insertion of

heterologous DNA sequences. Alternatively, synthetic DNA with compatible terminal homol-

ogy regions can be used in the 2nd recombination step hence providing maximal flexibility. This

step was selected on anhydrotetracycline (AHT) containing LB agar plates which induced I-SceI

expression from pWRG730 allowing only the growth of successful recombinants devoid of the

I-SceI site (Fig 1B).

Verification of mutants

Successful scarless deletion of each MCP gene was verified after the 2nd recombination step by

PCR using primers which bind up- and downstream of the site of deletion, respectively. Using

these primer combinations, mutant alleles should result in shorter fragments compared to the

WT situation. The theoretical fragment lengths for mutant and WT of each MCP gene are

listed in Table 1. Starting from the single deletion strain WRG246 Δaer all scarless mutants

were checked whether their MCP alleles corresponded to the expected genotype. Agarose gels

that summarize the individual allele types for each of the MCP genes of the seven sequential

deletion strains are depicted in S1 Fig. No PCR fragments were observed for the ‘aer’ locus in

the Δ6 (WRG277) and Δ7 (WRG279) strains. Since the mcpC gene is located adjacent to aer,
deletion of mcpC removed the reverse primer binding site in these mutants. All other observed

fragments were of the expected size as listed in Table 1. Fig 2A shows a direct comparison of

Scarless mutagenesis method identified role of CheM for Salmonella infection
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the PCR products originating from WT genomic DNA or from WRG279 lacking all seven

MCP genes (Δ7) which confirmed the absence of the MCP genes in the Δ7 strain. Finally,

Sanger sequencing of the PCR fragments verified the expected nucleotide sequence of all MCP

deletion sites (data not shown).

Expression of highly efficient phage recombinases such as λ Red can cause unwanted

recombination events within the chromosome [40]. This is especially evident if “scars” e.g.

from recombinases such as Flp or Cre accumulate in the genome during multi-step mutagene-

sis protocols. It has been shown that a set of mutated recombination sites provides one possible

but laborious solution to circumvent this problem [41]. There is no need for such amendments

using a scarless protocol as presented in this study. Given the mutagenic activity of extended

high-level expression of λ Red recombinase [40], it is very important to strictly limit λ Red

expression when multiple successive mutation steps are carried out in the same bacterial back-

ground. With the pSIM5-based Red expression plasmid pWRG730 10–15 minutes of heat

induction is sufficient for efficient recombination [42].

Despite all these precautions we could not completely exclude accumulation of mutations

in the strain WRG279. To address this, Illumina-based whole genome sequencing of our

NCTC 12023 WT laboratory strain and of the Δ7 MCP mutant WRG279 was carried out. The

obtained sequencing reads were mapped to the published genome sequence of STM ATCC

14028S which is isogenic with strain NCTC 12023. In contrast to NCTC 12023 WT, no se-

quencing reads of WRG279 were mapped to the deleted MCP genes (Fig 2B). Furthermore,

the coverage data of WRG279 confirmed the precise deletion sites as determined by the

homology regions of the 2nd TC (not shown). The ATCC 14028S genome data was also used

as a reference to identify single nucleotide polymorphisms (SNPs). From the total 23 SNPs

identified comparing ATCC 14028S with NCTC 12023 and WRG279 (data not shown) only

two were unique for WRG279 (Table 2). One SNP resulted in a silent substitution within

STM14_2710 and was detectable in all MCP mutants (Table 2). The other SNP was located

within the putative ribosome binding site (RBS) of the yceB gene (STM14_1333) and appeared

only in the last three mutants generated (Table 2). YceB is a predicted outer membrane lipo-

protein and found to be downregulated in a resistant Salmonella strain isolated after a single

challenge with nalidixic acid. Thus, this isolate exhibited additional resistance to tetracycline

and chloramphenicol [43]. In contrast the WRG279 mutant showed minimal inhibitory con-

centrations (MICs) for both antibiotics similar to the parental NCTC 12023 WT strain in

broth dilution assays (S2 Fig). However, modulation of YceB activity beyond antibiotic resis-

tance due to altered protein levels cannot be excluded. These results argue against the yceB
RBS mutation as an adaptation to the prolonged exposure to chloramphenicol, AHT, or both.

Furthermore, both identified mutations are at chromosomal loci distantly located from the

sites of recombination which makes their emergence unlikely to be directly linked to the

recombination procedures applied. These low impact mutations might rather reflect natural

Table 1. Expected fragment sizes of verification PCRs.

Locus Forward primer Reverse primer Fragment WT [bp] Fragment after deletion [bp]

aer Aer-Delcheck-for2 McpC-Delcheck-rev 2605 1370

tcp Tcp-Delcheck-for Tcp-Delcheck-rev 2150 509

tsr Tsr-Delcheck-for Tsr-Delcheck-rev 2203 544

trg Trg-Delcheck-for Trg-Delcheck-rev 2153 530

cheM (tar) CheM-Delcheck-for CheM-Delcheck-rev 2555 896

mcpC McpC-Delcheck-for McpC-Delcheck-rev 2330 768

mcpB McpB-Delcheck-for2 McpB-Delcheck-rev 2414 813

doi:10.1371/journal.pone.0172630.t001
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Fig 2. Genomic characterization of the WRG279 (Δ7 MCP) mutant. (A) Agarose gel showing PCR fragments generated using the primers as listed in

Table 1 with either wild type (W) or WRG279 (Δ7) chromosomal DNA as a template. Shorter PCR products of the expected sizes confirmed gene deletion for

the seven loci in WRG279. M = DNA marker, band sizes are shown in kbp (B) Next generation sequencing coverage data of strain WRG279 (black line) and

NCTC 12023 WT (dotted gray line) is shown for the targeted MCP genes (gray rectangles) including 300 nucleotides before and after each coding sequence.

For strain WRG279 no sequencing reads were obtained for the deleted genes and thus a lack of coverage was observed at the respective nucleotide

positions of the wild type sequence.

doi:10.1371/journal.pone.0172630.g002
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genomic plasticity from prolonged laboratory handling as shown recently for chronic Salmo-
nella infections [44, 45].

In summary our data highlight that the optimized system based on the dual-functional

pWRG730 in combination with the pWRG717-derived kanamycin resistance cassette allows

for fast and reliable manipulation of the Salmonella genome. This highly efficient tool is likely

applicable in other bacteria amenable for the Red recombinase system, for example E. coli [36],

Shigella spp. [46], Yersinia enterocolitica [47], Y. pestis [9], Pseudomonas aeruginosa [7] or Pan-
toea ananatis [48].

Functional characterization of the MCP deletion strains

Having confirmed the genetic integrity of the mutants we went on to functionally characterize

the strains. It has been demonstrated previously that bacterial motility is an important factor

for efficient invasion of host cells [49, 50]. Actively swimming bacteria encounter shear forces

which bring them within close proximity of the host cell surface. This “near surface swim-

ming” promotes Salmonella-cell interactions and cooperative invasion of membrane ruffles

[51]. By utilizing a cheY mutant which uncouples motility from chemotaxis [26] it was demon-

strated that directed swimming is not required for near surface swimming [51]. However, in
vivo results using streptomycin-pretreated mice underlined the importance of chemotaxis as a

major virulence function besides motility [52]. We set out to test whether the lack of multiple

MCPs influences Salmonella invasion in a HeLa-based infection model. Quantification of

intracellular bacteria was done after one hour and was normalized to STM WT (set to 1). Very

low amounts of intracellular bacteria were detected for an invC deletion mutant harboring a

non-functional SPI-1 encoded type three secretion system (T3SS-1) (Fig 3A, left panel). Our

data revealed an approximately 2-fold increased invasion rate for the cheY mutant suggesting

an inhibitory effect of chemotaxis on HeLa invasion (Fig 3A, left panel). This result is in line

with previous observations where “smooth” swimming mutants such as cheY or cheA exhibited

increased invasion capabilities in HEp-2 cells [49]. In contrast a “tumbling only” cheB mutant

was shown to have lower tissue culture invasion rates [49] presumably due to decreased near

surface swimming. Next we used the set of successive MCP deletion mutants to elucidate the

impact of specific chemotactic signaling on HeLa cell invasion. Surprisingly, we found a clear

phenotypical separation of two groups of mutants. The first group comprising mutants Δ1

(WRG246 Δaer) to Δ4 (WRG264 Δaer, Δtcp, Δtsr, Δtrg) exhibited invasion rates very similar to

WT whereas the remaining mutants, which lack five to seven MCP genes, showed an elevated

invasion comparable to a cheY mutant (Fig 3A, left panel).

Table 2. Distribution of single nucleotide polymorphisms unique for WRG279.

Strain Position* 1,208,402 RBS of yceB (STM14_1333) Position* 2,345,688 synonymous mutation within STM14_2710

NCTC 12023 WT A G

WRG246 A A

WRG255 A A

WRG260 A A

WRG264 A A

WRG269 G A

WRG277 G A

WRG279 G A

* reference: ATCC 14028S genome.

doi:10.1371/journal.pone.0172630.t002
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Deletion of the cheM gene is the common feature of mutants Δ5 (WRG269) to Δ7 (WRG279).

The observed phenotypes suggested that only CheM (Tar) is responsible for chemotactic signal-

ing in the HeLa infection model supported by previous results obtained with HEp-2 cells [49].

To investigate this effect in more detail we complemented the Δ7 MCP strain WRG279 with the

low-copy number plasmid pCheM (pWRG847) harboring the cheM gene under control of its

natural promoter. While WRG279 transformed with the empty vector pWSK29 exhibited an ele-

vated invasion similar to the cheY mutant, invasion of WRG279 [pCheM] was significantly

decreased compared to WT (Fig 3A, right panel). We thus hypothesize that the six to eight plas-

mid copies per cell [53] led to an increased expression level of cheM which in turn fostered

Fig 3. Functional characterization of the WRG279 mutant. (A) HeLa cells were infected with different

STM strains and relative invasion rates compared to STM WT were calculated after one hour of infection. An

invC mutant lacking a functional T3SS-1 was used as a negative control for invasion and a motile but non-

chemotactic cheY mutant was included to evaluate the impact of directed motility. The Δ1 to Δ7 strains

represent sequential MCP deletions as follows: Δ1 = WRG246Δaer; Δ2 = WRG255Δaer,Δtcp; Δ3 = WRG260

Δaer,Δtcp, Δtsr; Δ4 = WRG264 Δaer,Δtcp, Δtsr, Δtrg; Δ5 = WRG269 Δaer,Δtcp, Δtsr, Δtrg, ΔcheM;Δ6 =

WRG277 Δaer,Δtcp, Δtsr, Δtrg, ΔcheM,ΔmcpC; Δ7 = WRG279Δaer,Δtcp, Δtsr, Δtrg, ΔcheM,ΔmcpC,

ΔmcpB. The right panel shows the invasion rates of the Δ7 strain complemented with pCheM (pWRG847) or

transformed with the empty vector pWSK29 (vector). Statistical significance was calculated using a one

sample t test against the hypothetical value 1.0 and was defined as ** for p < 0.01 and *** for p < 0.001. (B)

Swarming phenotypes of different Salmonella strains as indicated on LB soft agar plates. Depicted is one

representative out of three similar experiments. The diagram in the lower right panel shows the diameter of

the swarming rings of S. Typhimurium WT and the Δ7 MCP mutant complemented with a CheM expression

plasmid or a vector control as described in (B). Data of three independent biological replicates including means

and standard deviations are shown. Statistical significance was calculated using a two-tailed paired Student’s t

test and was defined as *** for p < 0.001.

doi:10.1371/journal.pone.0172630.g003
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CheM-dependent chemotactic signaling with higher tumbling rates. CheM can directly sense

aspartate [29]. Aspartate is not a component of the DMEM medium but small amounts of differ-

ent amino acids are present in the FCS used during infection. The cell- and receptor density-

dependent signaling preference of Tar-Tsr receptor complexes for either aspartate or serine

could explain the apparent lack of chemotactic response from Tsr in our assays [54]. In the HeLa

infection model aspartate or other so far uncharacterized CheM ligands might be liberated from

the host cells thereby triggering a chemotactic response of Salmonella.

In a further set of experiments we wanted to characterize the MCP mutant strains in

swarming assays on soft agar plates. As expected we observed a decrease in swarming diameter

with more MCP genes deleted which reflects their increasing incapacity to perceive chemotac-

tic signals (S3 Fig). Interestingly, the mutant WRG269 expressing only the MCPs McpB and

McpC did show residual chemotactic movement whereas the successive WRG277, with mcpC
deleted, was incapable of directed motility (S3 Fig). Like for WRG277, no chemotactic swarm-

ing could be observed for mutants lacking cheY or for the non-motile fliImutant (Fig 3B). The

Δ7 mutant WRG279 harboring the empty vector pWSK29 was phenotypically indistinguish-

able from the cheY mutant. Because both mutants are still motile they exhibited a slightly

“blurred” inoculation site, which is most likely the result of “tumbly” swimming (Fig 3B).

Introduction of the CheM complementation plasmid pCheM in WRG279 partially restored its

chemotactic capacity (Fig 3B, lower right panel). Intriguingly, a single swarming ring could be

detected for the CheM-complemented Δ7 MCP mutant which diameter roughly corresponded

to the inner (CheM/Tar) ring observed for STM WT (Fig 3B). For STM WT two concentric

rings were observed in some experiments which expanded over time to the agar plate periph-

ery (Fig 3B). It has been demonstrated for E. coli that the outer ring corresponds to cells sens-

ing serine through Tsr and the inner ring is composed of bacteria which sense aspartate by Tar

[27, 28].

Our results and those of others [49] suggest that functional chemotaxis alone is disadvanta-

geous for Salmonella invasion of HeLa and HEp-2 cells in vitro. However, the in vivo environ-

ment might be far more complex with chemotaxis being an important virulence factor [52,

55]. The optimized mutagenesis protocol described in the present study enabled us to effi-

ciently generate a set of mutants lacking up to seven MCP genes. Further functional characteri-

zation of this set of MCP mutants in vitro identified CheM/Tar as the only MCP responding to

chemotactic signals in a HeLa-based infection model. Future in vivo testing of these and other

mutants, successfully generated by the developed procedure, might help to decipher the envi-

ronmental signals Salmonella responds to during natural infection.

Materials and methods

Bacterial strains and plasmids

All strains used are listed in Table 3. Bacteria were routinely grown in LB media supplemented

with 50 μg/mL carbenicillin (Cb) (Carl Roth, Mannheim, Germany), 25 μg/mL kanamycin

(Km) (Carl Roth), 10 μg/mL chloramphenicol (Cm) (Carl Roth), 50 μg/mL spectinomycin

(Sp) (Carl Roth) or 100 ng/mL anhydrotetracycline (AHT) (# 37919 Sigma-Aldrich, Schnell-

dorf, Germany) if required. Table 4 gives an overview of all the plasmids used in this study.

PCR and cloning

All primers used for cloning are listed in S1 Table. For construction of the I-SceI aph template

plasmid pWRG717, an I-SceI cleavage site was fused to the kanamycin resistance cassette of

pKD4 by PCR using primers XhoI-aph-for2 and Aph-I-SceI-KnpI-rev2. The PCR fragment was

cloned via XhoI/KpnI in pBluescript II SK+ (Agilent Technologies, Waldbronn, Germany). For
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construction of all other plasmids including the spectinomycin template plasmid pWRG829,

assembly cloning of PCR fragments was used [59]. Primers pWSK29-Gbs-for and pKD4-Gbs-

rev were used with pWRG717 as template to obtain a PCR fragment containing the vector

and the I-SceI cleavage site. A spectinomycin resistance cassette was amplified with primers

pSK-aad9-Gbs-for and pKD-aad9-Gbs-rev from plasmid pDL1098 [39] and subsequently

Table 4. Plasmids used in this study.

Plasmid Relevant characteristic(s) Source or

Reference

pDL1098 Temperature-sensitive mTn10 delivery vector, Cmr, Spr [39]

pKD4 aph resistance cassette flanked by FRT sites, λ Pir dependent replication,

Kmr, Apr
[36]

pSIM5 temperature-sensitive replication (30˚C) and Red recombinase expression

(42˚C), Cmr
[38]

pWRG99 pKD46 [36] derivative, temperature-sensitive replication (30˚C),

arabinose-inducible expression of Red recombinase, Tet-inducible

expression of I-SceI, Apr

[4]

pWRG717 pBluescript II SK+ derivative, aph resistance cassette and I-SceI cleavage

site, Kmr, Apr
This study

pWRG730 pSIM5 [38] derivative, temperature-sensitive replication (30˚C) and Red

recombinase expression (42˚C), Tet-inducible expression of I-SceI, Cmr
This study

pWRG829 pBluescript II SK+ derivative, aad9 resistance cassette and I-SceI

cleavage site, Spr, Apr
This study

pWRG832 pWRG717 derivative, aph resistance cassette reversed, Kmr, Apr This study

pWRG841 PcheM::cheM in pCRII-TOPO, Kmr, Apr This study

pWRG847 pCheM; PcheM::cheM in pWSK29, Apr This study

pWRG865 pWRG829 derivative, aad9 resistance cassette reversed, Spr, Apr This study

pWSK29 Low-copy-number vector, Apr [53]

doi:10.1371/journal.pone.0172630.t004

Table 3. Strains used in this study.

Strain Relevant characteristic(s) Source or

Reference

MvP818 NCTC 12023 ΔinvC FRT [56]

MvP1212 NCTC 12023 ΔcheY FRT [57]

MvP1213 NCTC 12023 ΔfliI FRT [58]

NCTC

12023

Wild type, Nals, isogenic to ATCC 14028 NCTC, Colindale,

UK

WRG244 NCTC 12023 Δaer::I-SceI aph, Kmr This study

WRG246 NCTC 12023 Δaer This study

WRG247 NCTC 12023 Δaer Δtcp::I-SceI aph, Kmr This study

WRG255 NCTC 12023 Δaer Δtcp This study

WRG259 NCTC 12023 Δaer Δtcp Δtsr::I-SceI aph, Kmr This study

WRG260 NCTC 12023 Δaer Δtcp Δtsr This study

WRG263 NCTC 12023 Δaer Δtcp Δtsr Δtrg::I-SceI aph, Kmr This study

WRG264 NCTC 12023 Δaer Δtcp Δtsr Δtrg This study

WRG266 NCTC 12023 Δaer Δtcp Δtsr Δtrg ΔcheM::I-SceI aph, Kmr This study

WRG269 NCTC 12023 Δaer Δtcp Δtsr Δtrg ΔcheM This study

WRG276 NCTC 12023 Δaer Δtcp Δtsr Δtrg ΔcheM ΔmcpC::I-SceI aph, Kmr This study

WRG277 NCTC 12023 Δaer Δtcp Δtsr Δtrg ΔcheM ΔmcpC This study

WRG278 NCTC 12023 Δaer Δtcp Δtsr Δtrg ΔcheM ΔmcpC ΔmcpB::I-SceI aph,

Kmr
This study

WRG279 NCTC 12023 Δaer Δtcp Δtsr Δtrg ΔcheM ΔmcpC ΔmcpB This study

doi:10.1371/journal.pone.0172630.t003
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combined with the first PCR product to obtain pWRG829. In template plasmids pWRG832 and

pWRG865 the antibiotic resistance cassettes are in reversed orientation compared to pWRG717

and pWRG829, respectively. Here, pBluescript II SK+ was amplified with primers pWSK29-

Gbs-for and -rev. The resistance cassettes were amplified from pWRG717 and pWRG829 with

primer pairs Aph-I-SceI-pSK-Gbs-for/Aph-pSK-Gbs-rev2 and Aad9-I-SceI-pSK-Gbs-for/

Aad9-pSK-Gbs-rev, respectively. A two-fragment assembly of each of the resistance cassettes

with the vector PCR fragment led to the final plasmids. The heat-inducible Red recombinase

expression plasmid pSIM5 [38] was linearized by PCR using primers pSIM-Gbs-for and pSIM-

Gbs-rev. The tetracycline-inducible I-SceI expression cassette was amplified with primers

pSIM-TetR-Gbs-for2 and pSIM-I-SceI-Gbs-rev using pWRG99 [4] as template. The two PCR

fragments were combined by assembly cloning resulting in plasmid pWRG730. The region con-

taining the cheM promoter and coding sequence was amplified from chromosomal DNA using

primers CheM-Delcheck-for and CheM-pWSK-Gbs-rev. The PCR fragment was blunt-cloned

in pCR II-TOPO (Thermo Fisher Scientific, Karlsruhe, Germany) resulting in plasmid pWRG841

which was subsequently digested with KpnI and XbaI. The cheM-containing fragment was gel-

purified and cloned in the similarly-digested pWSK29 to obtain pWRG847 (pCheM).

Generation of mutants

All primers used to amplify the kanamycin resistance cassette from pWRG717 and to obtain a

TC from Salmonella genomic DNA are listed in S1 Table. The desalted primers were purchased

from Integrated DNA Technologies (Munich, Germany). For amplification of the first targeting

construct forward primers consisting of the 3’ sequence 5’-AGGGTTTTCCCAGTCACGAC-3’,
which binds to all pBluescript II SK+ -based template vectors, and a 5’ 40 bases sequence homol-

ogous to the genomic target site were used. The 60-mer reverse primers were similarly designed

with the following 3’-located sequence binding to the template vectors: 5’-TGCTTCCGGCTCGT
ATGTTG-3’.Overnight (O/N) cultures of Salmonella harboring pWRG730 were grown at

30˚C in LB supplemented with 10 μg/mL chloramphenicol. O/N cultures were re-inoculated

1:100 in fresh medium and grown aerated to an OD600 of 0.3 to 0.5. Red recombinase expression

was induced for 12.5 minutes in a shaking water bath at 42˚C [42]. After that bacteria were

immediately put on ice and electro-competent cells were prepared essentially as described before

[4]. Cells were transformed with 100–500 ng purified 1st TC using a Micropulser device (Bio-

Rad, Munich, Germany) at ‘EC2’ setting. Successful recombinants were selected on LB plates

containing chloramphenicol (plasmid pWRG730) and kanamycin (aph cassette from pWRG717

template) and kept at 30˚C to preserve pWRG730. Colony-PCRs with suitable primers were rou-

tinely used to check for correct insertion of the resistance cassette within the genome in both

directions. For subsequent removal of the resistance cassette competent cells were prepared from

confirmed mutants still harbouring pWRG730 as described above. After transformation a

10-fold dilution series of the cells up to 10−4 was prepared in LB and plated on LB agar contain-

ing chloramphenicol and AHT. Plates were kept O/N at 30˚C and large colonies were picked

and purified again on LB agar plates containing chloramphenicol and AHT. Successful deletion

of a MCP gene was confirmed with PCR using primers binding to the flanking regions of the

gene (see Table 1) and subsequent Sanger sequencing of the PCR products (data not shown).

After going through the desired number of deletion cycles, plasmid pWRG730 was cured from

the bacteria by O/N incubation at 42˚C.

Whole genome sequencing and mapping

Genomic DNA of strain NCTC 12023 wild type (WT) and the isogenic 7x MCP mutant

WRG279 was prepared from O/N cultures in LB medium using a GenElute Bacterial Genomic
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DNA kit (Sigma-Aldrich, Schnelldorf, Germany) according to manufacturer’s instructions.

One ng of genomic DNA of each strain was fragmented using the Nextera sample preparation

kit (Illumina, San Diego, CA, USA) and sequenced on a MiSeq (Illumina) machine running in

paired end mode with 300 bp read length. All raw sequence reads of BioProject PRJNA355390

(http://www.ncbi.nlm.nih.gov/bioproject/) are available through SRA (http://www.ncbi.nlm.

nih.gov/sra) accessions SRR5062192 (WT) and SRR5062193 (WRG279).

Consensus sequences for the two genomes were determined utilizing a custom in-house

analysis pipeline as described earlier [60]. Briefly, MiSeq reads were mapped to the published

genome sequence of S. Typhimurium strain ATCC 14028S (accession: CP001363) by a combi-

nation of BWA-SW version 0.7.13-r1126 [61] and SAMtools 0.1.19 [62]. VarScan 2.3 [63] was

utilized for consensus calling. After mapping sequencing coverage was extracted using SAM-

tools 1.3.1 and visualized with ‘ggplot2’ [64] from ‘R’ 3.3.0 [65]. SNPs were extracted from the

NCTC 12023 WT and WRG279 genomes obtained by reference-based mapping using a cus-

tom in-house Python script. Regions containing SNPs unique for WRG279 or sites of MCP

deletion were PCR-amplified and subjected to Sanger sequencing (GATC Biotech, Cologne,

Germany) using suitable primers listed in S1 Table. Sequence data is available through BioPro-

ject PRJNA355390.

Minimal inhibitory concentration assay

O/N cultures of test strains were diluted 1:100 in fresh LB and grown at 37˚C to an OD600

between 0.5 and 0.7. After adjusting the cultures to an OD600 of 0.0002 (approximately 2 × 105

bacteria/mL) in fresh 2-fold concentrated LB, 100 μl were added to each well of a 96-well plate

containing 100 μl of increasing concentrations of chloramphenicol or tetracycline in distilled

water. The plates were incubated at 37˚C in a humid chamber for 16 h and absorbance was

measured at 600 nm (Tecan Infinite M1000). The MICs were calculated using ‘R’ as described

before [66].

Cell culture and infection

HeLa cells (LGC Standards, Wesel, Germany) were grown in DMEM (Biowest, Germany) sup-

plemented with 10% FCS, sodium pyruvate and 2 mM GlutaMax (Thermo Fisher Scientific,

Karlsruhe, Germany) under humidified atmosphere with 5% CO2. Gentamicin protection

assays were essentially carried out as described previously [67]. Briefly, 5 × 104 HeLa per well

were seeded in 24-well plates (Cell-star, Greiner bio-one, Frickenhausen, Germany) 24 h prior

infection. Bacterial O/N cultures grown in LB supplemented with appropriate antibiotics were

reinoculated 1:31 in fresh medium and grown aerobically for another 3.5 h. An inoculum cor-

responding to a multiplicity of infection (MOI) of 10 was prepared in DMEM and used to

infect the HeLa cells for 25 min. After the cells were washed thrice with PBS, 500 μl of DMEM

containing 100 μg/mL gentamicin was applied to each well to kill remaining extracellular bac-

teria. After one hour of incubation the cell layers were washed again with PBS and then lysed

for 10 min with PBS containing 1% Elugent (Merck Millipore, Darmstadt, Germany) and

0,0625% Antifoam B (Sigma-Aldrich, Schnelldorf, Germany) to liberate the intracellular bacte-

ria. Serial dilutions of the inoculum and the lysates were plated on Mueller Hinton (MH) plates

to determine the colony-forming units. Based on the inoculum the percentage of invasive bac-

teria was calculated and subsequently normalized to WT.

Swarming assay

Swarming of different Salmonella strains was assessed on LB semi-solid agar plates (LB with 5

g/L NaCl, 0.5% agar). A small amount (0.2 μl) of bacterial O/N cultures was applied onto the
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center of LB soft agar plate and incubated for six hours at 37˚C. The diameters of the swarm

colonies were measured and the plates were photographed.

Supporting information

S1 Fig. PCR fragments after colony PCR of sequential MCP deletion strains. Primer combi-

nations as listed in Table 1 were used. One exception was the ‘aer’ locus where primer ‘Aer-

Delcheck-rev2’ instead of ‘McpC-Delcheck-rev’ was used producing a 1087 bp fragment. Due

to deletion of the reverse primer binding site during replacement of mcpC and mcpB, no prod-

uct was observed (�) for WRG277 (6) and WRG279 (7). 1 = WRG246 Δaer; 2 = WRG255 Δaer,
Δtcp; 3 = WRG260 Δaer, Δtcp, Δtsr; 4 = WRG264 Δaer, Δtcp, Δtsr, Δtrg; 5 = WRG269 Δaer,
Δtcp, Δtsr, Δtrg, ΔcheM; 6 = WRG277 Δaer, Δtcp, Δtsr, Δtrg, ΔcheM, ΔmcpC; 7 = WRG279 Δaer,
Δtcp, Δtsr, Δtrg, ΔcheM, ΔmcpC, ΔmcpB, M = DNA marker, band sizes indicated in kbp.

(TIF)

S2 Fig. Determination of the minimal inhibitory concentration (MIC). MICs for chloram-

phenicol (left) and tetracycline (right) were determined for either S. Typhimurium NCTC

12023 wild type (WT) or the isogenic mutant WRG279 lacking seven MCP genes in broth

dilution assays. Data of three independent biological replicates done in duplicates with means

and standard deviations are shown. n.s. = not significant as calculated using a two-tailed

unpaired Student’s t test.

(EPS)

S3 Fig. Swarming phenotypes of different MCP mutants. (A) Swarming phenotypes on LB

soft agar plates of different Salmonella MCP mutants as indicated. Depicted is one representa-

tive out of three similar experiments. (B) Diameters of the swarming rings with means and

standard deviations of the different Salmonella strains from (A) for three independent biologi-

cal replicates are shown. Statistical significance compared to WT was calculated using a two-

tailed paired Student’s t test and was defined as � for p< 0.05 and ��� for p< 0.001.

(TIF)

S1 Table. Oligonucleotides used in this study.

(XLSX)
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