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Abstract

Accurately predicting the trend of outpatient visits by mathematical modeling can help policy

makers manage hospitals effectively, reasonably organize schedules for human resources

and finances, and appropriately distribute hospital material resources. In this study, a hybrid

method based on empirical mode decomposition and back-propagation artificial neural net-

works optimized by particle swarm optimization is developed to forecast outpatient visits on

the basis of monthly numbers. The data outpatient visits are retrieved from January 2005 to

December 2013 and first obtained as the original time series. Second, the original time series

is decomposed into a finite and often small number of intrinsic mode functions by the empirical

mode decomposition technique. Third, a three-layer back-propagation artificial neural network

is constructed to forecast each intrinsic mode functions. To improve network performance

and avoid falling into a local minimum, particle swarm optimization is employed to optimize

the weights and thresholds of back-propagation artificial neural networks. Finally, the super-

position of forecasting results of the intrinsic mode functions is regarded as the ultimate fore-

casting value. Simulation indicates that the proposed method attains a better performance

index than the other four methods.

Introduction

Obtaining healthcare in China is currently challenging because the growth rate of healthcare

agencies is far lower than the rise in patient needs. Accurately forecasting the number of outpa-

tient visits will increase the efficiency of planning and the delivery of outpatient management.

This ability can also help healthcare administrators oversee hospitals effectively, reasonably

organize schedules for human resources and finances, and properly distribute hospital mate-

rial resources. Therefore, forecasting the number of outpatient visits has become an important

issue in public health and has motivated many researchers to establish mathematical models to

realize such predictions, especially in China. Ching proposed a fuzzy time series method based

on the weighted-transitional matrix, as well as the expectation method and grade-selection

approach, to forecast the number of outpatient visits[1]. Meanwhile, Esmaeil Hadavandia
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presented a hybrid artificial intelligence model for the development of a Mamdani-type fuzzy-

rule-based system to forecast outpatient visits[2]. Decomposition and multi-local predictor

fusion were proposed to predict outpatient consults for diarrhea[3].

The number of outpatient visits is a nonlinear and nonstationary time series. The forecast of

this information may not be perfectly accurate if the linear method is used in such time series.

Meanwhile, empirical mode decomposition(EMD) is an empirical, intuitive, direct, and self-

adaptive time–frequency data analysis method introduced by Huang et al.[4]. This approach is

fairly versatile in a broad range of applications on signal extraction from data generated in noisy

nonlinear and nonstationary processes. Compared with Fourier transformation and wavelet

transformation, it has many advantages such as good multi-resolution and wide applicability

[5]. EMD technique has been successfully applied in various areas, such as signal processing[6],

digital holography[7], image processing[8], detection techniques[9], and forecasting approach

[10, 11]. The original morbidity data of outpatient visits can be decomposed into several sub-

series by EMD. Compared with the original series, the sub-series exhibits a more apparent regu-

larity and can be forecasted to achieve easy prediction tasks and fine results.

Though the original morbidity data of outpatient visits has been decomposed into several sub-

series, the sub-series are still time series. There were many applications using the traditional sta-

tistical models like autoregressive model, moving average model and autoregressive moving aver-

age models for predicting time series in past studies. These models perform well when the data lie

within the range of past observations. But they perform poorly to predict extremes and also when

the data are lying just near to limits[12]. The application of artificial intelligence prediction mod-

els has been offered in recent years. One of the most widely used artificial intelligence methods in

prediction is artificial neural networks (ANNs) [13]. ANNs are complex and flexible nonlinear

systems inspired by biological neural networks (e.g., animal central nervous systems, particularly,

the brain) and are used to estimate or approximate functions, which can depend on numerous

inputs and are generally unknown[14,15]. ANN processes information by adjusting the internal

relations between large connected nodes and it has strong self-learning abilities and adaptive abil-

ities [16].The ANNs time series models can capture the historical information by nonlinear func-

tions [17]. A highly popular and widely used ANN algorithm is the back-propagation ANN

(BPANN) [18], which involves connection weights and thresholds adjusted by the backward

propagation of errors. One major application area of BPANN is in forecasting, owing to its char-

acteristics of extreme computational power, massive parallelism, and fault tolerance [19].

Network performance is affected by the initial weight and threshold of BPANN, and these

parameters participate in a close relationship with the network convergence, falling into the

local minimum and training time. To overcome the problem, different optimization algorithms

optimize the initial weight and threshold of BPANN, including genetic algorithm [20,21], ant

colony algorithm[22], simulated annealing algorithm[23] and particle swarm optimization

(PSO). PSO is a type of swarm intelligence optimization algorithm for global optimization and

has proven to be a competitor to GA when it comes to optimization problems[24].Compared

with other biological evolution algorithms, PSO occupies the bigger optimization ability using

simple relations [25]. It is widely used in optimization because of its need for less parameter sets

and its faster convergence rate and easy escape from the local optimum compared with other

algorithms[26–31]. At the same time, it can perform strong parallel search and global optimiza-

tion. PSO was thus selected to optimize the BPANN weights and thresholds in the present study

because of its simplicity and good performance in finding desirable solutions.

This study aims to assess the forecasting accuracy of BPANN models coupled with EMD

for outpatient visits. EMD is applied to decompose the original data of outpatient visits, and

then different BPANN models are constructed with each sub-series. The final forecasted value

is obtained by summing the forecasted value of each sub-series.

Forecasting outpatient visits
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Methods

Empirical mode decomposition

EMD is an adaptive and efficient method to analyze nonlinear and non-stationary signals.

Without any a priori knowledge, the original time series was decomposed into a sum of oscil-

latory functions called intrinsic mode functions (IMFs)[4,32,33]. The IMFs must meet the fol-

lowing conditions:

1. The number of extrema (maximum and minimum) and the number of zero-crossings must

be the same or differ at most by one in the whole data set.

2. At any point, the IMF is symmetric with respect to the local zero mean.

The IMF can be extracted from the original time series through a shifting process described

as follows:

Step 1. All the local extrema [maximum emax(t) and minimum emin(t)] points of the given time

series x(t) are calculated.

Step 2. All the local maxima points are connected as the upper envelop, and all the minima

points as the lower envelop, by a cubic spline line.

Step 3. The mean m(t) of the upper and lower envelops are calculated as

m ðtÞ ¼ ðemaxðtÞ þ eminðtÞÞ=2 ð1Þ

Step 4. The mean from the original time series is obtained, and the difference is defined as h(t):

h ðtÞ ¼ xðtÞ � m ðtÞ ð2Þ

Step 5. h(t) is checked and judged whether it meets the two conditions for an IMF in accor-

dance with the stopping criterion. If the criteria are satisfied, then h(t) is denoted as the first

IMF and written as g1(t) = h(t). Moreover, x(t) is replaced with the residue r(t) = x(t)-h(t). If

the conditions are not satisfied, x(t) is replaced with h(t) and steps 1 to 4 are repeated until

h(t) meets the two conditions for an IMF.

Step 6. Steps 1 to 5 are repeated. The shifting procedure is then terminated until the residue

becomes a constant, a monotonic function, or a function with only one maximum and one

minimum from which no more IMF can be extracted. gi(t)+rm(t)

Then, the original time series x(t) is expressed as the sum of the IMFs and a residue:

xðtÞ ¼
Xm

i¼1

giðtÞ þ rmðtÞ ð3Þ

where m is the number of IMFs and rm(t) is the final residue.

Back-propagation artificial neural networks

ANN approach can imitate any complex and non-linear relationship through non-linear units

(neurons) and has been widely used in the forecasting area. BPANN is the most extensively

used ANN model.[5,34,35]. The typical topology of BPANN involves three layers: input layer,

where the data are introduced to the network; hidden layer, where the data are processed; and

output layer, where the results of the given input are produced[15]. A number of interconnec-

ted neuron nodes are present in the layers. The output Hj of any neuron can be represented as

Forecasting outpatient visits
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Hj ¼ f ð
Xn

i¼1

oijxi � bjÞ ð4Þ

where n is the number of inputs, xi is the ith input, ωij is the connective weight between the jth
and ith neurons, bj is the threshold, f is a nonlinear activation function, and the sigmoid func-

tion f(t) = 1/(1+e-x) is widely employed as the activation function. Determining the optimum

weights and thresholds is usually performed by trial during the training stage as the output of

the network matches the desired pattern for a specific set of inputs.

The algorithm includes training and forecast, which are detailed in the following steps:

Step 1. Forward propagation of input signal. The input vector propagates to the output layer

after being computed by the hidden layer.

Step 2. Backward propagation of error signal. The error propagates backward through the orig-

inal neural network if the error value does not meet the given tolerance.

Step 3. Weight and threshold updates. The weights and thresholds are adjusted by the back-

ward propagation of errors until the error value meets the given tolerance. Then, the fixed

structure of the BPANN model is obtained.

Step 4. Forecast. The trained BPANN model is used for forecast.

Particle swarm optimization

PSO is a type of swarm intelligence optimization algorithm for global optimization proposed

by Eberhart and Kennedy in 1995 and inspired by the behavior of a swarm of birds [36].The

social behavior of birds is simulated in PSO. Each bird is represented by a particle, and a collec-

tion of particles is identified as a swarm. Each particle in the swarm represents a potential solu-

tion to the optimization problem. Particles are simultaneously updated by exchanging

information with one another. The basic PSO algorithm is governed by Eqs (5) and (6):

Vkþ1

i ¼ oVk
i þ c1r1ðP

k
i � Xk

i Þ þ c2r2ðP
k
g � Xk

i Þ ð5Þ

Xkþ1

i ¼ Xk
i þ Vkþ1

i ð6Þ

where Vi represents the velocity of the ith particle. Xi represents the position of the ith particle

and denotes a potential solution to the problem. Pi is the best solution obtained by particle i
until iteration k, and Pg is the best solution obtained by all particles until iteration k. ω2[0, 1] is

the inertia weight. r1 and r2 are independent random numbers uniformly distributed in the

range of [0, 1], whereas c1 and c2 are positive constants that are both acceleration factors,

named cognitive and social parameters respectively. k represents the current iteration of the

optimization process.

The speed and precision of convergence are greatly affected by the initial parameters in

PSO. Therefore, selecting the reasonable the initial parameters in the algorithm is important.

1. Selecting the inertia weight. Inertia weight is the most important parameter in the PSO,

and the use of an appropriate inertia weight can help achieve the balance between global search

and local optimization. The global search ability of the algorithm is enhanced when the inertia

weight is large. By contrast, the local search performance becomes effective and enables the

search for the global optimal solution when the inertia weight is relatively small. The linear

decreasing inertia weight strategy was proposed by Y. Shi in 1999[37]. The ability of global and
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local searches is balanced in this method, which accelerates the convergence rate of the algo-

rithm. The linear decreasing inertia weight is calculated as follows:

o ¼ ostart �
ostart � oend

tmax
� t ð7Þ

where ωstart and ωend are the initial and termination inertia weights respectively. The typical

inertia weight is adapted from 0.9 to 0.3. tmax is the maximum iteration, and t is the current

iteration. The linear decreasing inertia weight was used in this work.

2. Selecting the learning factors. The learning factors reflect the exchange information

between particles. These aspects are in the range of [1, 2.5] by subjective experience.

The adaptive time-varying strategy for adjusting the learning factor was proposed by A.

Ratnawecra in 2004[38]. The adjustment formula is as follows:

c1 ¼ c1start þ
c1end � c1start

tmax
� t ð8Þ

c2 ¼ c2start þ
c2end � c2start

tmax
� t ð9Þ

The typical number of the learning factor is that the c1 reduces from 2.5 to 0.5, whereas the c2

increases from 0.5 to 2.5. Results show that the performance is enhanced by the adaptive time-

varying strategy than by the fixed learning factor. Thus, the adaptive time-varying method was

used in this study.

The thresholds and weights of BPANN are encoded as a particle. The dimension D of parti-

cle swarm is as follows:

D ¼ nh þ n0 þ ni � nh þ nh � n0 ð10Þ

where ni, nh, and n0 are the input, hidden, and output nodes, respectively.

The mean square error (MSE) between the prediction and raw data is considered as the fit-

ness function used to evaluate the quality of particles.

The velocity and position of these particles with higher fitness are updated until the best

particles are produced.

The flow chart of the proposed method in the paper is shown in Fig 1.

The proposed algorithm can be separated into six steps. (1) Raw time series decomposition

(Fig 1). The number of outpatient visits is released from the hospital information section by

month and considered as the original time series. Then, EMD is used to decompose the raw

time series into a finite and often small number of IMFs plus a residue. Each IMF can repre-

sent the local characteristic time scale by itself. (2) Data normalization. By directly calling the

two functions premnmx and postmnmx in MATLAB software, each IMF is normalized by the

Min-Max normalization algorithm. (3) Thresholds and weights of BPANN optimization. The

weights and thresholds of BPANN are mapped to and encoded as the particles. The optimal

particles are found through updates of their positions and velocities. (4) BPANN training. The

optimal weights and thresholds are employed as the initial weights and thresholds and adopted

into the BPANN. The training data are also considered into the network. The prediction net-

work can be obtained through training. (5) Trained BPANN testing. Each prediction result of

the IMFs can be obtained by using the trained BPANN. (6) Superposition of the IMF forecast

results. Finally, the superposition of forecasting results of the IMFs is regarded as the ultimate

forecasting value.

Forecasting outpatient visits
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Fig 1. Flow chart of the proposed algorithm.

doi:10.1371/journal.pone.0172539.g001
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Results and discussion

Data sources

A case will be simulated in this section. The number of outpatient visits from a hospitals in

Nanning City, China was documented (S1 Dataset).

Ethical review

The study protocol and utilization of outpatient visit data were reviewed from a hospitals in

Nanning City, China, and no ethical issue was identified. Therefore, no ethical approval was

required.

The number of outpatient visits from January 2005 to December 2013 are obtained as the

original time series and shown in Fig 2.

The decomposition results obtained through the EMD technique are shown in Fig 3. Seven

IMFs and a residue component are observed. The IMFs present the characteristics of outpa-

tient visit fluctuations on different time scales from high frequency to low frequency. IMF1

involves an obvious periodic variability and exhibits the maximum amplitude, highest fre-

quency, and shortest wavelength. The following IMF components decrease in amplitude and

frequency and increase in wavelength. The last residue is a mode that slowly varies around the

long-term average; this mode shows the overall trend of outpatient visits.

There is no mature reference method to choose appropriate network structure and neuron

for building a BPANN. The optimal three input layer neurons were experimentally selected

and have average square error less than 0.01. The output layer only contains one neuron

Fig 2. Number of outpatient visits by month from 2005 to 2013.

doi:10.1371/journal.pone.0172539.g002
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representing the forecast value. Some empirical formulas are used to choose hidden layer node

number. Such as n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n3

p
þm, where n1, n2, n3 and m represent the input node, hidden

node, output node and a positive integer and m2[1,10]. After computing, the prediction is

found to be most accurate when m = 10 instead of other values. Therefore, a three-layer pro-

posed model with 3 input nodes, 14 hidden nodes, and 1 output node (3–14–1) is obtained

(Fig 4). The selection for parameters of BPNN is based on the literature [39]. And the parame-

ters of BPANN are listed in Table 1.

In order to optimize the weights and thresholds of the BPANN mode, PSO is employed.

Four important parameters of the PSO algorithm should be set: inertia weight, learning factors,

the maximum number of iterations, and the dimensions of particle swarm. The linear decreas-

ing inertia weight was used in this work just as previously introduced. As originally developed,

the inertia weight often decreases linearly from about 0.9 to 0.4 during a run [40,41]. Here we

set it from about 0.9 to 0.3. And the adaptive time-varying method was used in this study for

the performance is enhanced by the adaptive time-varying strategy than by the fixed learning

factor. The thresholds and weights of BPANN are encoded as a particle, 71 of dimensions will

be attained based on the Eq (10). The number of iterative learning was 200. The parameters of

PSO are listed in Table 2.

The raw time series obtained from January 2005 to November 2012 are adopted as training

samples, and those obtained from December 2012 to December 2013 are employed as testing

samples.

Fig 3. Decomposition of outpatient visits.

doi:10.1371/journal.pone.0172539.g003

Forecasting outpatient visits

PLOS ONE | DOI:10.1371/journal.pone.0172539 February 21, 2017 8 / 17



The weights and thresholds of BPANN are optimized by PSO by training each component.

The variation of the best fitness with iteration is illustrated in Fig 5.

The result prediction and the raw data of each component are shown in Fig 6.

The ultimate forecasting value and the observed data are illustrated in Fig 7.

To compare the result prediction with other methods, a simulation is performed by PSO-B-

PANN directly, GA-BPANN directly, wavelet decomposition PSO-BPANN(WD-PSO-B-

PANN), wavelet decomposition GA-BPANN(WD-GA-ANN), and the proposed methods

(abbreviated as EMD-PSO-BPANN). These methods hold the same simulation conditions.

Four main criteria are used for evaluation of level prediction and directional forecasting

including the coefficient of correlation (R), root mean squared error (RMSE), mean average

percentage error (MAPE), and sum of squared error (SSE). The definitions are shown as

follows.

R criterion is given by

R ¼
Rx̂x

stdðxÞstdðx̂Þ
ð11Þ

Fig 4. BPANN model.

doi:10.1371/journal.pone.0172539.g004

Table 1. Parameters of BPANN.

Parameter Value Parameter Value Parameter Value

Input node 3 activation function of output layer purelin Net.tralinParam.show 25

Hidden node 14 training function trainrp Net.tralinParam.goal 0.01

Output node 1 learning function learngdm Net.tralinParam.lr 0.15

Activation function of the hidden layer tansig Net.tralinParam.epochs 1000 Net.tralinParam.min_grad 1e-6

doi:10.1371/journal.pone.0172539.t001

Forecasting outpatient visits
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RMSE criterion is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

Xn

i¼1

ðx̂ i � xiÞ
2

v
u
u
t ð12Þ

MAPE criterion is calculated through

MAPE %ð Þ ¼
1

n

Xn

i¼1

jx̂ i � xij
�100 ð13Þ

Table 2. Parameters of PSO.

Parameter Value Parameter Value Parameter Value

Population 40 minimum fitness 1e-30 iteration 200

Dimension 71 maximum velocity 1 minimum velocity −1

Inertia weight linear decrease maximum weight 0.9 minimum weight 0.3

Learning factor adaptive time-varying strategy learning factor C1 0.5−2.5 learning factor C2 0.5−2.5

doi:10.1371/journal.pone.0172539.t002

Fig 5. Variation of the best fitness with iteration.

doi:10.1371/journal.pone.0172539.g005
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The SSE criterion is given by

SSE ¼
Xn

i¼1

ðx̂ i � xiÞ
2

ð14Þ

where x̂ i is the forecasted data and xi is the actual data. �xi denotes the actual data’s mean. n is

the number data points considered.

The result predictions by the five methods are shown in Fig 8.

The comparison of evaluation indexes are listed in Table 3. We noted that the RMSE can

provide a good measure of model performance for high flows[42] and was selected as the per-

formance criterion of level prediction. MAPE is a relative criterion which is sensitive to the

forecasting errors that occur in the low(er) magnitudes of each dataset. SSE is a measure of the

discrepancy between the data and an estimation model. A small SSE indicates a tight fit of the

model to the data. These three performance indexes are smaller, and the prediction result is

more accurate. R has been widely used for model evaluation and was selected as the degree of

collinearity criterion of level prediction [41]. The correlation coefficient is larger, and the cor-

relation between the predicted and the observed data is improved. It can been seen from

Tabel.8, the proposed method holds advantages over the other four methods in all the evalua-

tion indexes except the indexes of R, thus proving the effectiveness of the prediction by the

proposed approach.

Fig 6. Result prediction and raw data of each component from December 2012 to December 2013.

doi:10.1371/journal.pone.0172539.g006
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The relationship between the seasonal fluctuation index of outpatient visits and the five

models prediction results is described in the followings [43].

The seasonal fluctuation index of the same month in eleven years from 2005 to 2013 can be

calculated as:

SFI1 ¼
j�xsame � �xallj

�xall
ð15Þ

where �xsame is the average outpatient visits of the same month and �xall is the average outpatient

visits of all of the months from 2005 to 2013. Obviously, SFI1 indicates seasonal characteristics

of the outpatient visits.

The seasonal fluctuation index of the every month from December 2012 to December 2013

is calculated as:

SFI2 ¼
jxi � �xj

�x
; i ¼ 1; . . .; 13 ð16Þ

Where xi is the outpatient visits in each month and �x is the average outpatient visits of all of

the months from December 2012 to December 2013.

Fig 7. Prediction value and the observed data.

doi:10.1371/journal.pone.0172539.g007
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The relative error of prediction is used to measure and defined as:

REi ¼
jx̂ i � xij

xi
; i ¼ 1; 2 . . .; n ð17Þ

where x̂ i is the predicted value and xi the observed values.

The relative error of the five prediction results and the seasonal fluctuation index of outpa-

tient visits are shown in Fig 9.

It can be seen from Fig 8 that: 1) the curve of SFI1 indicates the outpatient visits has obvious

seasonal characteristics. The outpatient visits which happens annually in January and February

is relatively high with a rapid decline in July. Other months are relatively stable; 2) the greater

the seasonal fluctuation index of the every month from December 2012 to December 2013, the

Fig 8. Comparison predictions with five methods from December 2012 to December 2013.

doi:10.1371/journal.pone.0172539.g008

Table 3. Comparison of evaluation indexes (best performers are in bold font).

Methods Index Performance

R RMSE MAPE SSE

WD-PSO-BPANN 0.9759 8.1564e+3 0.13 8.6485e+8

EMD-PSO-BPANN 0.9910 3.1653e+3 0.0241 1.3024e+8

EMD-GA-BPANN 0.9442 12.661e+3 0.34 208.38e+8

PSO–BPANN 0.9925 3.7786e+3 0.11 1.8561e+8

GA–BPANN -0.0687 36.824e+3 1.13 176.28e+8

doi:10.1371/journal.pone.0172539.t003

Forecasting outpatient visits
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greater the relative error of the five methods. and 3) the absolute error of the WD-PSO-BPNN

and EMD-GA-BPANN are larger than that of the other three methods when the outpatient

visits data is stable, such as from September to October; the absolute error of the EMD-PSO-B-

PANN and PSO-BPANN are smaller than that of the other three methods in all the prediction

months.

Conclusion

A new forecasting method that combines EMD and BPANNs based on PSO is proposed to

forecast outpatient visits. Simulation results show that this method can improve forecasting

and thus help policy makers manage hospitals effectively.
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