@° PLOS | ONE

Check for
updates

G OPENACCESS

Citation: Wu J, Meng Q, Deng S, Huang H, Wu Y,
Badii A (2017) Generic, network schema agnostic
sparse tensor factorization for single-pass
clustering of heterogeneous information networks.
PLoS ONE 12(2): e0172323. doi:10.1371/journal.
pone.0172323

Editor: Zhong-Ke Gao, Tianjin University, CHINA
Received: October 14, 2016

Accepted: February 2, 2017

Published: February 28, 2017

Copyright: © 2017 Wu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in
any medium, provided the original author and
source are credited.

Data Availability Statement: The synthetic
datasets are generated by the codes of
synthetic datasets generation algorithm, which
are within the paper and its Supporting
Information files. DBLP-four-areas dataset is
collected by Yizhou Sun, and can be
downloaded from: http://web.cs.ucla.edu/
~yzsun/data; the dataset online is named
DBLP_four_area.zip, and the reference paper is:
10.1145/1557019.1557107. DBLP-full-areas
dataset can be downloaded from: http://dblp.
uni-trier.de/xml/. Douban Movie Network
dataset is collected by Chuan Shi, and can be

RESEARCH ARTICLE

Generic, network schema agnostic sparse
tensor factorization for single-pass clustering
of heterogeneous information networks

Jibing Wu'*, Qinggang Meng?, Su Deng', Hongbin Huang', Yahui Wu', Atta Badii®

1 Science and Technology on Information System Engineering Laboratory, National University of Defense
Technology, ChangSha, Hunan, China, 2 Department of Computer Science, Loughborough University,
Loughborough, United Kingdom, 3 Department of Computer Science, University of Reading, Whiteknights,
United Kingdom

* wujibing@nudt.edu.cn

Abstract

Heterogeneous information networks (e.g. bibliographic networks and social media net-
works) that consist of multiple interconnected objects are ubiquitous. Clustering analysis is
an effective method to understand the semantic information and interpretable structure of
the heterogeneous information networks, and it has attracted the attention of many
researchers in recent years. However, most studies assume that heterogeneous informa-
tion networks usually follow some simple schemas, such as bi-typed networks or star net-
work schema, and they can only cluster one type of object in the network each time. In this
paper, a novel clustering framework is proposed based on sparse tensor factorization for
heterogeneous information networks, which can cluster multiple types of objects simulta-
neously in a single pass without any network schema information. The types of objects and
the relations between them in the heterogeneous information networks are modeled as a
sparse tensor. The clustering issue is modeled as an optimization problem, which is similar
to the well-known Tucker decomposition. Then, an Alternating Least Squares (ALS) algo-
rithm and a feasible initialization method are proposed to solve the optimization problem.
Based on the tensor factorization, we simultaneously partition different types of objects into
different clusters. The experimental results on both synthetic and real-world datasets have
demonstrated that our proposed clustering framework, STFClus, can model heterogeneous
information networks efficiently and can outperform state-of-the-art clustering algorithms as
a generally applicable single-pass clustering method for heterogeneous network which is
network schema agnostic.

Introduction

Information networks are widely used to describe realistic applications in the cyber domain.
Vertices in information networks map the objects in real-world applications, and edges map
the relations between them. While the mining of information networks has been studied for
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many years, most current studies have focused on homogeneous information networks [1],
consisting of only one type of vertex and one type of edge between vertices. For example, the
well-known PageRank algorithm [2] models the Internet as a homogeneous information net-
work. Each webpage is mapped to a vertex and each hyperlink between webpages is mapped to
an edge.

However, in real-world applications, information networks are often heterogeneous, where
objects and the relations between them are of more than one type. We call this kind of infor-
mation network a heterogeneous information network [3]. For example, the bibliographic
network extracted from the DBLP database (http://dblp.uni-trier.de/db/) is a typical heteroge-
neous information network, which is shown in Fig 1A. The DBLP database is an open resource
that contains most of the bibliographic information on computer science. The network con-
tains four types of objects: author (A), paper (P), venue (i.e., conference or journal) (V), and
term (T). The concept of mining heterogeneous information network was first proposed by Y.
Sun and J. Han [1].

Clustering is an effective method for understanding the semantic information and inter-
pretable structure of a network. Clustering can also support relation prediction in information
networks. Unfortunately, clustering heterogeneous information networks is more difficult
than doing so for homogeneous information networks. We cannot directly measure the simi-
larity among the different types of objects and relations. In recent years, researchers have
made significant progress in clustering heterogeneous information networks, which largely
focuses on the following three main directions.

The first is to use a ranking based clustering algorithm [1], this developed the RankClus
algorithm that integrated clustering with ranking for clustering bi-typed networks, where only
two different types of objects exist in the network. Its extension, the NetClus [3] algorithm,
was developed for the star network schema, where the edges only appear between target
objects and attribute objects. Fig 1A shows a typical star network schema, where the paper (P)
is the target object and others are attribute objects. RankClus and NetClus have shown that
ranking and clustering can mutually enhance each other. The recent work FctClus [4] achieved
a higher computational speed and had a greater clustering accuracy when applied to heteroge-
neous information networks. However as with NetClus, the FctClus algorithm can only handle
the star network schema. The network schema is a meta template of a heterogeneous

(B) Douban Movie network with a general network schema

(A) DBLP network with a star network schema

Fig 1. Examples of network schemas for two different heterogeneous information networks. (A):
DBLP network with a star network schema. (B): Douban Movie network with a general network schema.

doi:10.1371/journal.pone.0172323.9001
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information network, which shows how many types of objects and links in the network. The
definition of network schema can be found in [5].

The second direction involves meta-path based clustering algorithms. A meta-path [5] isa
connected path defined on the network schema of a heterogeneous information network,
which represents a composite semantic relation between two objects. PathSim [5] (Meta-path
based top-k similarity search) measured the similarity between the same types of objects based
on meta-path in heterogeneous information networks. However, it has a limitation in that the
meta-path must be symmetric, i.e., PathSim couldn’t work on different types of objects. The
PathSelClus algorithm [6-8] integrated meta-path selection with user-guidance to cluster
objects in networks, where user provided seeds for each cluster acted as guidance.
VEPathCluster [9] (Vertex/Edge-centric meta-Path Clustering) combined meta-path vertex-
centric clustering with meta-path edge-centric clustering.

In addition, for some specific applications, researchers have integrated the topological
structure of networks with graph clustering methods. A multivariate weighted complex net-
work method [10] was applied in order to characterise the patterns in gas-liquid two-phase
flow. A visibility graph model [11, 12] was designed for clustering multi-scale networks, and
achieved a satisfactory clustering result when applied to detecting epileptic seizures from the
EEG dataset and typical patterns form an oil-water two-phase flow dataset. For clustering het-
erogeneous information networks with incomplete attributes, a probabilistic clustering
method [13] and a structural-based similarity measurement, namely NetSim [14], were
developed.

Most existing methods have achieved good clustering results for the heterogeneous infor-
mation networks with a specified simple network schema, but are ineffective in dealing with
heterogeneous information networks with a general network schema or lacking network
schema information. For example, in Fig 1B, Douban Movie network (a well-known movie
recommender system in China http://movie.douban.com/) follows a general network schema,
which contains six different types of objects: user, group, movie, actor, director and type, and
the different relations between them. For such a heterogeneous information network with a
general network schema, RankClus and NetClus are ineffective. In addition, the meta-path is
difficult to choose for users. Another limitation of most existing methods is that they can only
cluster one type of object at a time in the network. In other words, we must repeatedly apply
the existing method to obtain the clustering results for different types of objects.

Recently, the theory of tensor factorization provided a new perspective of clustering analy-
sis. A tensor is the general expression of a matrix, in which the elements are addressed by
more than two indices. Tensor factorization based clustering has been used in computer
graphics [15] and computer vision applications [16-21]. By bridging tensor factorization and
clustering, we can obtain a fascinating methodology for mining heterogeneous information
networks.

However, many heterogeneous information networks are very sparse, where most elements
in the tensor are zeros. For example, in the DBLP database (Aug. 2015 version), there are
3,067,295 papers and 1,603,605 authors, but only 8,128,282 author-paper relations. That is to
say, there are only 0.00017% nonzero elements in the huge sparse adjacent matrix of author
and paper.

Another challenge is the curse of dimensionality [22]. It has been proven [23] that the dis-
tances or similarities between pairs of elements in the high dimensional tensor are almost the
same for the vast majority of data distributions and distance functions. Therefore, most exist-
ing clustering methods cannot be used in the sparse and high dimensional heterogeneous
information networks directly.
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To solve the problem of clustering heterogeneous information networks with general net-
work schemas or even without network schema information, e.g., Douban Movie network in
Fig 1(b), and clustering all types of objects simultaneously in a single pass, we propose a sparse
tensor factorization based method, which is called STFClus (Sparse Tensor Factorization
based Clustering). We model a heterogeneous information network as a multi-way array, i.e.,
tensor. Each object type maps onto one mode of the tensor, and the relations between different
types of objects map onto the elements in tensor. The main contributions made by our paper
are as follows:

1. We propose a novel clustering framework based on sparse tensor factorization, namely
STFClus, which can cluster heterogeneous information networks with general network
schemas or even without network schema information. Another advantage is that STFClus
can cluster all types of objects simultaneously in a single pass.

2. The clustering issue based on tensor factorization is modeled as an optimization problem,
which is similar to the well-known Tucker decomposition [24, 25]. We propose an Alter-
nating Least Squares (ALS) [26] algorithm to solve the clustering problem.

3. In STEClus, only nonzero tensor elements together with corresponding tensor indices are
handled, and a non-distance function for similarity measurement between pairs of objects
is needed.

4. We discuss the bottleneck of implementation for STFClus, and propose a performance
improvement method that avoids the need to calculate large scale intermediate results. We
also propose a feasible initialization method to start STFClus.

5. STFClus is tested on both synthetic and real-world networks. Experimental results show
that STFClus outperforms the state-of-the-art baselines in terms of key performance indica-
tors such as accuracy and efficiency.

Methods
Preliminaries

First, we introduce some related concepts and tensor notation that will be used in this paper.
More details about tensor algebra can be found in [27-29].

A tensor is a multi-dimensional array. The order of a tensor is the number of dimensions,
also known as ways or modes. We will follow the convention used in [27] to denote scalars by
lowercase letters, e.g., a, b, ¢, vectors (one mode) by boldface lowercase letters, e.g., a, b, c,
matrices (two modes) by boldface capital letters, e.g., A, B, C, and tensors (three modes or
more) by boldface calligraphic letters, e.g., X, ), Z. The a,. denotes the rth row of matrix A,
and a,, denotes the rth column of matrix A. Elements of a matrix or a tensor are denoted by
lowercase letters with subscripts, i.e., the (iy, iy, - - -, ix)th element of an Nth order tensor A’ is
denoted by x; i, ..., in-

Some common definitions for tensors are set out below, as used in [28].

Definition 1 (Matricization) [28]. Matricization transforms an N-order tensor into a matrix
by arranging the elements in a particular order.

For example, the matricization of a tensor X' € R"*2*"*¥ along the nth mode is denoted as
X, € Riwlredodired) A special case of matricization is vectorization, which trans-

forms a tensor into a vector, i.e., all modes of the tensor become row modes. The vectorization

— N
ofa tensor X' € RV is denoted by X = X, € RIL- %,
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Definition 2 (Hadamard product) [28]. The Hadamard product for two tensors with the
same dimensions is also known as the element-wise product. For X', ) € RV their
Hadamard product is denoted by X' * ) € R"*2* !N and its elements are given by
(X x y)iliz---iN = Xiigeing Vigigeri

Definition 3 (Kronecker product) [28]. The Kronecker product for two matrices A € R™/
and B € R**" is denoted by A ® B, which is a matrix of size (I]) x (KL) and defined by

[a,B a,B --- a;B]
a,B ayB -+ ay,B
A®B=
layB a,B - ;B |

Definition 4 (Inner product) [28]. The inner product for two tensors with the same dimen-
sion, X', Y € R is denoted by (X, ). The result of the inner product is the sum of all
elements in their Hadamard product, and defined as

L I In

<X’ y> - ZZ T Z(X * y)i1i2~»-iN

=1 ip=1 iy=1

Definition 5 (Frobenius norm) [28]. The Frobenius norm for a tensor X' € R jg

defined as || X ||, = /(X, X).

Definition 6 (Mode-n matrix product) [28]. The Mode-n matrix product of a tensor X' €

RN with a matrix U € R/ is denoted by X'x, U and is of size I x - -+ x I,,_; X J X
IYI
Ii1 X -+ x Iy Its elements are given by (X'x,U), = Z X, iy Ui -

iy iy ip g1 N =
The Mode-n matrix product of a tensor X' € R 2N with a matrix U € R”" is equiva-
lent to first matricization of X" along the nth mode, followed by the matrix multiplication of

X, with U, before finally folding the result back as a tensor.

Given an Nth order tensor X' € R"*?* !V the Tucker decomposition [24] of X yields a
core tensor G of specified size J; X J, X - - - X J,,, J,, < I,, and factor matrices
U" € R n=1,2,--- N, such that

QxlU“’ ><2u(2)><3 .. XNU(N) = [[g7 U(l)7 U(Q)7 .. 7U(N)]]

The Tucker decomposition approximates a tensor as a series of Mode-n matrix products of
a smaller core tensor with a factor matrix along each mode. In traditional Tucker decomposi-
tion, the factor matrices {U™}.' | are assumed to be orthogonal.

We now give the definition for an information network, which is based on work by Y. Sun
andJ. Han [3, 5].

Definition 7 (Information network) [3]. An information network is a weighted graph
defined on a set of objects belonging to T'types, denoted by V = {V,}" , a set of binary rela-
tions on V, denoted by E, and a weight mapping function, denoted by W : E — R*. The infor-
mation network is denoted by G = (V, E, W). Specially, when T > 2, the information network
is called as heterogeneous information network, otherwise, it is called as homogeneous
information network.
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We denote each object of type V, as {v! }* |, where N, is the number of objects in type V,,
ie,N,=|V,]andt=1,2,---, T. The total number of objects in the network is given by

N = 3/, N,. For an arbitrary edge ¢ = (vi",v}") € E, t, # t,, the simplest weight mapping
function W : E — R" can be defined as follows:
(tastp) (ta:tp)
ol = w(e) =1 (1)
In particular, we need to give some restrictions for heterogeneous information networks in

our work. Firstly, each edge eE}“’tb) = (v, v}’
i.e., t, # tp. Secondly, we assume that the heterogeneous information network G = (V, E, W)

ffj""th) = e}ff"t"). It is noteworthy that many edges in real-world applications

appear on objects of the same type. An example is the friendship relation type between users in

) € E only appears on different types of objects,

is undirected, i.e,, e

a Douban Movie network, as shown in Fig 1(b). In this case, we can take a copy of this type of
object, and let the edge appear only between the two types of objects. In the Douban Movie
network, we can take a copy of users and denote it as user_copy. Then, we can let the friend-
ship relations appear only between user and user_copy. The revised network schema of the
Douban Movie network is shown in Fig 2. In the following sections, the heterogeneous infor-
mation network G = (V, E, W) will comply with these restrictions, unless there are special
instructions.

drgspuory

Fig 2. The revised network schema of a Douban Movie network. We take a copy of users, denoted as
user_copy, and let the friendship relations appear only between user and user_copy.

doi:10.1371/journal.pone.0172323.9002
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Sparse tensor factorization based clustering

Tensor construction and sparse representation. The relationships in heterogeneous
information networks show a semantic link in real-world applications, which is defined as
follows:

Definition 8 (Relationship in Heterogeneous Information Network). Given a heterogeneous
information network G = (V, E, W), a relationship R is a connected sub-graph of G, denoted

byR = (V',E, W), where V' = {o, 500,500 1,0<m <N,t=1,2,---, T,E CEisa
binary relation on V', and W' = W.
For example, a semantic relation in a real-world bibliographic network (in Fig 1A, contain-

ing four types of objects {A, P, V, T}), “an Author v; writes a Paper v}’ published in the Venue

\4 LI T : : — A PV T
vy, and containing the Term v!”, can be represented by a relationship R = ({v}', v7,v" v},

iV Yns
{(0]), (v, 0,00, (vF,07) }, W). we can use the subscript of each object in R to mark the corre-
sponding relationship. In this example, the relationship can be marked by R; ; ,n, 1.
Let X be a Tth order tensor of size N; x N, x - - - x N, each mode of X representing one
type of object in the network G. An arbitrary element, x,, ,,...,, > 0, for n,=1,2, - -+, N, is the

weight of the corresponding relationship R,, . ..., ,, that exists, i.e.,

o, if EIRM‘"‘_),__,”T;
_ e j€E (2)
x'll [CRRC
0 otherwise.

where [X] is an operation on the weights of all edges in R,, 5, ..., »r- In the simplest example,
can be defined as X] | @, ; = 1. The heterogeneous information network G = (V, E, W) can

€ €E
then be represented in tensor form as X'. The method of determining whether the relationship
Ry, n, ... n,actually exists is related to graph theory and will not be discussed here. Fig 3 gives
an example of tensor construction.

Fig 3. An example of tensor construction from a given heterogeneous information network. On the left
is the original network with three types of objects (yellow circle, blue square and red triangle), and on the right
cube is the constructed 3-order tensor. The number within each object is the object identifier. Each element
(black dot in the right cube) in the tensor represents a relationship in the network (black dashed circle in the
left).

doi:10.1371/journal.pone.0172323.9003
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To deal with the sparse tensor X, we use the coordinate format as proposed in [30]. Assum-
ing there are ] non-zero elements in X, then a vector z € R’ and a matrix M € R”" can repre-
sent the value and the corresponding coordinates of each non-zero element in & respectively.
Here the jth non-zero value is given by z; and its subscript is given by the jth row of M, i.e., m;.
Let x,, ,,...n, be the jth non-zero element in &X', we have m;, = [m; , m;, - -, m; | = [ny, ny, - - -,
nr] and z;= X, , ..., In other words, m; = n, represents the fact that the tth coordinate of the
jth non-zero element in &’ is n,, and that the value of the jth non-zero element in X’ is z;. This
sparse representation of tensors is the same as the format implemented in the MATLAB Ten-
sor Toolbox [31].

Problem formulation. Given a heterogeneous information network G = (V, E, W), the
tensor representation X is usually large and sparse. We can use the sparse representation for
X, i.e., the J non-zero weight elements vector z € R’ and the corresponding coordinates
matrix M € R”*". Each row of M can be treated as a relationship in the network, and the corre-
sponding element in z is the weight of the relationship.

So all the rows of the coordinates matrix M = [m/,m/, - - ,m;]T, my, = [m;, m;, -,
m; ], forj=1,2,---, ], represent the input relationships in the network, which we want to parti-
tion into K sub-tensors (clusters) {C,,C,, - - -,Cy}. The vector z = [z, 2,, - - -, zj] is the weight

vector for the input relationships. The centre of the cluster C, is denoted by ¢ = [cx, ¢k, - - *»
], fork=1,2,---, K Lety; € {1, 2, - - -, K} be the associated unknown cluster label. For exam-
ple y; = k represents m;. belonging to the kth cluster, and y; = k' represents the subscript m; of
my; (that is the jth object of type V, in G) belonging to the k'th cluster.

Generally speaking, a relationship (or a sub-graph) in the heterogeneous information net-
work may belong to several clusters. Meanwhile, the objects in the relationship may also
belong to more than one cluster. We assume that there is already a way to measure the prob-
ability that the objects or relationships belong to a specific cluster. Let’s denote p;, = P(y;, =
k|m;) as the probability that the tth component of the point m;, belongs to the kth cluster,
and p; x = P(y; = k|my,) as the probability that the point m;, belongs to the kth cluster.

A basic clustering approach minimizes the sum of differences between individual relation-
ships in each cluster and the corresponding cluster centres. So the heterogeneous information
network clustering problem can be formalized by the vectorized version as follows:

2
J
min E = min E zj2
pix 4
F k=1

J
Pjk =1
K
. 3
%Y =1 3)
k=1

K 2

m; — E P;xCi

K
LIy, — % ) PixCk
k=1 k=1

F

s.t.

Vj, Vk, p;, € [0,1]

2
K
InEq (3),2) > Oand |m; — ij,kck >0, s0
pa

F
K ] K

_ o 2 _

m; E PjxC E minj z) m; E DjxC
k=1 F j=1 7 k=1

. K
m; — E PjxCx
ps}

2
F

2 2

Pjk

> . Since z > 0, the optimal

J
: E 2
min Zj
j=1

F

) is also the optimal solution for

solution p;; of min <zj2
’ Pjk

min
Pjk
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. 5
) - So we can ignore z; in Eq

argmin (z]?

Pk

K 2 K 2
m; — E PixCx =argmin | |jm; — E PixCr
k=1 F Pik k=1 F

(3). Also we can re-write Eq (3) by a new perspective of sparse form as follows:

J T K
mmZZ m;, — ijt,kckt

Piek S o) k=1

2

F

K
. 4
Vt,VL ij[!k =1 ( )
k=1

Vt, V), Vk, p; « € [0,1]

Actually, Eq (3) aims to cluster relationships in heterogeneous information networks, and
Eq (4) partitions different types of objects into K clusters.

Now we form T matrices, denoted by UY € R"*X, for t=1,2, - - -, T. The element
uftk) eUY fori=1,2,--,Nst=1,2,---, Tsk=1,2,---, K, can be defined as uft,z =P e if
i = j; otherwise, uf[k) = 0. Then, uft,g represents the probability that the ith object in type V,, i.e.,

v, belongs to the kth cluster. So the matrix U") € R™*X is the projection matrix for the corre-
T

—f
sponding mode of X. Then a new small size tensor G € RK x K x --- x K isused as the
mixture coefficient among different modes and clusters.
Let G be the core tensor and U®Y t=1,2, -, Tbe the factor matrices, we can use
[[g; U(l)7 U(2>, - ,U(T)]] to approximate X, i.e., X ~ [[g’ U(l)7 U(Z)7 e 7U(T)]]‘ Then, we can for-
malize the clustering problem in a way that is similar to the Tucker decomposition in [32].

min HX_ ﬂg;UU)qu)a"'vU(T)]] HIZT

¢, u) U@ .. u
K
1 _
Vt, E uy =1
k=1

s.t.
Ve, Vi, Vk, uf) € [0,1]

Vt, rank(U"Y) = K

InEq(5),i=1,2,--,Nst=1,2,---, Tsk=1,2,---, K, and K < min{N;, Ny, - - -, N7} is the
total number of clusters. The first constraint in Eq (5) guarantees that the sum of probabilities
for each object belonging to all clusters is 1. The second constraint in Eq (5) stipulates that
each probability should be in the range [0, 1]. The last constraint in Eq (5) ensures that each
factor matrix is of full column rank, i.e., for any mode, there is no empty cluster and any two
clusters are not the same.

In fact, Eq (5) can achieve the results of Eqs (3) and (4) simultaneously. That is, Eq (5) clus-
ters different types of objects and relationships in a heterogeneous information network simul-
taneously. The factor matrices U,U®, .. .,U™ are the cluster indication matrices for the T
types of objects respectively and the probability of relationship R,, . ... . belonging to the
kth cluster is given by gk‘k_____kufllﬁkuz)’k e “g),w where g, , € Gand ufft)k cuv.

Algorithm for STFClus. The Alternating Least Squares (ALS) method is a common
approach for solving the Tucker decomposition problem. It updates one factor matrix itera-
tively at each round, while keeping the other factor matrices unchanged. The proposed
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algorithm for STFClus is also an ALS method that consists of two stages: the factor matrices
updating and the core tensor updating. After the core tensor and all factor matrices are initial-
ized, all variables in Eq (5) are fixed in the factor matrices updating stage, except for the mode-
t factor matrix U Then an approach similar to NMF is applied to search for the optimal U*”
that minimizes the objective function. In the core tensor updating stage, using the optimal fac-
tor matrices obtained by the factor matrices updating stage, the core tensor is updated. Finally,
the factor matrices updating and core tensor updating stages are iteratively implemented until
the approximation error in the objective function is unchanged. The details of the tensor alge-
bra and properties used in the algorithm can be found in [29].

In the factor matrices updating stage, each mode-t factor matrix U" is obtained, while the
core tensor and other factor matrices are fixed. The objective function in Eq (5) can be rewrit-
ten by matricization of X along the tth mode as follows:

min|| X, — UG 0", U e U0 (6)
where X( ) c RN[X(NIXWXNt,l XNpp1X--XNp)
; .
If we assume that the optimal solution U" satisfies all the constraints in Eq (5), then Eq (6)
can be written as the following linear equation:

X _ U(f) I]:g’ ]J(l)7 . ,U(Fl), [j(“rl)7 e U(T)]] "

(t)
(7)
_ U(f)g(t)(U(T) Q- UM UV g...q UU))T
We denote S as the tensor [G; U ... U UV ... UD]. Then,
S € RN NN N [and the matricization of S along the tth mode is

Sy=0y(U"® - eUeU e . ou) (®)

where S, € RIWpxxNe N pexNr) N gy Eq (7) is similar to the NMF problem in [33, 34],

ie.,

X, =0, )

Thus, we can use the NMF update rule in [34] to update U™ as follows:

.
XS

U — Uo «
Do of
UvS,8

(10)

where the symbol % denotes the element-wise division of two matrices with the same size.

Note that the factor matrices derived by Eq (10) do not satisfy the first and second constraints
in Eq (5). To satisfy these two constraints, we can normalize each row of the factor matrices.
®
u;
A o e (1)

PO

In the core tensor updating stage, we keep all the factor matrices unchanged and rewrite the
objective function in Eq (5) by vectorization of X as follows:

2

min|| ¥ — [G; UV, U%,..., U"] (= mjnH?? — (U@ eUu")g (12)
g

F
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We assume that all the factor matrices satisfy the constraints in Eq (5). Then the core tensor
G in Eq (12) can be obtained by solving the following linear equation:

X=@U"® - @uh)g (13)
We set:
Q:U(T)®~~~®U(l) (14)
where Q € RN Then, we can transform Eq (13) to a NMF model, i.e.,
X =Qg (15)

Thus, the NMF update rule in [34] can be used to update G as follows:

é‘—é*é{f@ (16)
where
Q¥ = xQ)
= XU - @ @WMH’ (17)
- [a; U, (U™
and
QQ¢ = (UT---oU") (UYg-. UV
- (UMUN g ... 0 U UG (18)

— [g7 (U(l))TU(l), . (U(T))TU(T)]]

The properties of Kronecker products and vectorization operators can be found in [35].
Then, Eq (16) is equal to:

é — é* [Xa (U(l))T7"'a(
[[g; (LT(l))T[J(l)7 R (U(T))TU(T)]]
(

[[X; (U(l))T’ e
* |[g7 ([;[(U)TU'(U7 e (U(T))TU(T)]]

= ¢

According to Eq (19), we can get the update rule of the core tensor G as follows:

[ (U), (U0)]
IG; (U<1>)TU<1>, . (U<T>)TU<T>}]

g—Gx

Feasibility and convergence analysis. First, we discuss the feasibility of STFClus.

Theorem 1: The STFClus optimization problem is equivalent to the optimization problem
in Eq (4).

Before giving the proof of Theorem 1, we first review the clustering problem as defined in
Eq (4). Eq (4) is a sparse form, which partitions each object into different clusters. The p; j is
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the cluster indicator, which gives the probability of an object belonging to the corresponding
cluster. In the matrix form, clustering tth type of objects can be formalized as:

min|| M — PC ||

where P is the cluster indication matrix for the tth type of objects, and C is the cluster centres.
Proof. Since Eq (6) is transformed from Eq (5) for updating U, Eq (5) can be rewritten as:

. 2
min|| Xy - U(’)S(t) ||F

ul)

where U is the cluster indication matrix for the tth type of objects, and S (1) i the cluster
centres.

X, is the matricization of X along the ¢th mode, and M is the sparse representation of X,
andletP=U", C = S(t), so Eq (5) will have the same form as Eq (4).

Then, we give the convergence analysis of STFClus. Since Lee and Seung have proven the
convergence of NMF in [34], we cite theorem 1 in [34] as Theorem 2 in this paper.

Theorem 2 [34]: The function || X', — UYS, ||% is non-increasing under the update rule

U — Ul 5 07 i And the function || X', — U"

TS S] ? is invariant if and only if U%Yisata

(t) ”1-

local minima.
Proof. See the details in [34].
By extending Theorem 2 to high-dimensional space, we prove that STFClus is stable.

Lemma 1: The objective function ||X - [g; U<1), U, ... U] ||2 in Eq (5) is non-

And the function

increasing under the update rules U" «— U" s( sT
0
2
HX - [g;um u®, ..., u"] HF is invariant if and only if U is at a local minima.
Proof. We denote Uffe), 4 and UE;L as the solutions of the adjacent two iterations respectively,

-
(t S :
ie, U = Ul « T(;;)T According to Theorem 2, we have
iter™ (1)< (1)

2 2
I X = Ui Sy Il < I Xy = TSy [l

where the equality holds if and only if U = = U and U is at a local minima. By substitut-
ing Eq (8) into this inequation, we obtain:

HX - Uiter+1g (U(T) ® te ® U(t+l) ® U(til) ® e ® U(U)T

F

HX ~U0G,U"g - U eU e ..o UY)’ 2

iter
F

Then, fold the result back as a tensor:
lx— [guY,. Ul - U0 < X - TG uY, - U, um] I

where the equality holds if and only if UE[; = Ugm and U is at a local minima.
By reversing the roles of U and G, the update rule of the core tensor in Eq (20) can be sim-
ilarly proven.
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Implementation issues

Performance improvement. The bottleneck of the STFClus lies in the calculation of S ).
According to Eq (8), we need to compute the Kronecker products of T — 1 dense factor matri-
ces. The intermediate results of the Kronecker products are dense and may be of very large
size. The largest intermediate results of the Kronecker products would have
max, (K™ '[].,,. 1y N;) elements, i.e., the time and space complexities are high.

i#t

In fact, the Kronecker products need not be calculated here. According to Eq (8), we can
rewrite the X' ([)S(Tt) and S <f>S$) in Eq (10) as the following form.

.
X(f)s(t)

T
= X(t) (gm (U(T) ® - UM U Vg...® U(l))T)

Y
= X, ((UU‘))T ®-0 U @U@ .. (Uu))T) (gm) “

T

_ [[X; (U(l))T, . (U(H))T’ (U(’“))T, e (U(T))Tﬂ(t) <g([))

— g (U D N (o =0\ & (D) mT’ !
= G,(U"® - @uUg...oUY) ((U ) @0 (UH) @ UY) @9 (U )) (Q(,))

(22)
- g, ((Um)TUm ®---® (U) U @ (U)) UV g . @ (U<1>)TU<1>) (gm)T

_ O s =0\ Ty (e Ty L. N !
=[G (U") U, (UY) U (U) Ut (U) U (G

In this way, by Egs (21) and (22), we can directly compute Eq (10) and update U without
calculating S ;). In other words, we don’t need to compute the Kronecker products round by
round. Algorithm 1 gives the pseudo-code of STFClus.

Algorithm 1: STFClus (Sparse Tensor Factorization based Clustering for Heterogeneous
Information Networks).

1. Input relationshiptensor X, number of clustersK, initial guess for

{U(t)}tT:1 and G, and convergence thresholde.

2. repeat

.fort«—1toT:

. UpdateU(t’ accordingtoEgs (10), (21) and (22);
. NormalizeU'® accordingtoEqg (11);

. end for

. Update GaccordingtoEqg (20) ;

cuntil ¥ - [G;UY,U,... . UT] [[<e.
. Output {U(’)}TZ1 andg.

t

O O J o U W

Initialization. In the STFClus algorithm, the initial guess of the core tensor and factor
matrices have a large impact on the final result. The best method for the core tensor and factor
matrices initialization may vary between given real-world datasets. In general, each mode of
the input tensor has its own physical meaning, and each element of the input tensor represents
a relationship among different modes of the tensor. The STFClus algorithm aims to cluster all
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modes of the input tensor simultaneously by utilizing these relationships. Each factor matrix is
the cluster indication matrix for a mode of the input tensor, and the core tensor is the mixture
coefficient among different factor matrices.

As with the cluster indication matrices, the factor matrices should meet the constraints
stated in Eq (5). It is clear that a factor matrix satisfying all the constraints is not unique, and
the strategies for initialization are diversified. Of course, we can use random initialization, as it
is simple and rapid. However, random initialization may lead to an increase in the number of
iterations or even result in an unacceptably slow convergence speed.

Therefore, We propose a feasible method for initialization of the factor matrices that is sim-
ilar to the traditional K-means method, called the STFClus_initial. We first cluster each mode
of the input tensor independently as the corresponding mode factor matrix initialization; sub-
sequently, the core tensor can be determined uniquely using the factor matrices.

Since STFClus_initial works in a similar way for different modes of input tensors, we will
simply describe the process for a single mode. Without loss of generality, we detail the use of
STFClus_initial on the tth mode of the input tensor. It is known that the tth mode of the
tensor represents the th type of objects in the heterogeneous information network. STFClus_i-
nitial on the tth mode of the input tensor can then be formalized as: given the tensor X" of the
heterogeneous information network, we want to partition the tth mode of X into K clusters.

The key aspect of STFClus_initial is how it measures the similarity between different

objects. We note that, in the sparse representation of the input tensor M = [m/,m/, - - -,

71T
]

,eachrowm;, = [m;, m;, -, m; ], forj=1,2,--,], corresponds to a nonzero element in
the tensor, which indicates the relationship between the corresponding objects. The tth com-
ponent of each row corresponds to the object from tth type.

According to M, we can define the similarity of two different tth type of objects (such as v’
and v;) as follows:

sim (v}, v}) = sam({mj:\mﬁ - a}’ {mj:|mjt - b}7 t) (23)
(T - 1)max( {mj:|mj[ = tl} {mjzlmjt = b}D

where the |¢| denotes the cardinality of a set, and the function sam(s) denotes the total number
of the same components in corresponding columns (except the tth column) of two matrices.

)

For two matrices A € R’ and B € R with the same number of columns, and a natural
number ¢ < [, the function sam(s) can be defined as:

I
sam(A,B,t) = Z|{ar‘i|am €A, r=12,---,r}n{b b, cB,r=12---,1}
i=1

it

According to Eq (23) we can see that the similarity function holds three properties:
1. 0 <sim(v),v}) <1
2. sim(v,v}) =1
3. sim(V!,v}) = sim(v},v"),a # b
We denote the K clusters as {O}, O3, - - -, O} }. We can also define the similarity between an
object and a cluster as the weighted sum of the similarity between the object and each object in
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the cluster, namely,

sim(v!,0}) = Zu;,?sim (vf, vj’) (24)

U]‘ €0,
Thus the probability of an object belonging to the corresponding cluster can be calculated
as:

® sim (vf, O,i)

u, =
K . ¢ A
> szm(vi7 Oy

(25)

ik

Furthermore, STFClus_initial on the tth mode of input tensor can be summarized as
follows:

« Stepl: Choose K objects from tth type as the initial clusters { O}, O}, - - -, O% } randomly.
Here, we require that the similarity between any two of the K objects should not be equal to
one.

o Step2: Calculate sim (v}, 0,),fori=1,2,---,Nyand k=1, 2, - - -, K according to Egs (23) and
(24).

« Step3: Calculate ”51?’ fori=1,2,--,N;and k=1,2,- -, Kaccording to Eq (25).

« Step4: Repeat Step2 and Step3 until U unchanged or the iteration number is larger than a
predefined number iterNum.

In practice, the algorithm will converge in less than 3 iterations in most cases. Since the U®
is only the initial guess for STFClus, and it will be updated in STFClus, we can set iterNum = 2.

After obtaining the initialization of U, for t =1, 2, - - -, T, the core tensor G is determined
uniquely by the factor matrices. According to the objective function in Eq (5), we can get the
core tensor as follows:

g =[x; (Uu))f’ (Uu))*’ . (Um)*]] (26)
where the superscript "

Eq (5) makes sure that U is full column rank, i.e., the columns of U” are linearly indepen-
dent. So the Moore-Penrose pseudo-inverse can be calculated as:

(U")' = ((Um)TUm)

The pseudo-code of STFClus_initial is given in Algorithm 2.
Algorithm 2: STFClus_initial (An initial algorithm for STFClus).

specifies the Moore-Penrose pseudo-inverse. The last constraint in

-1

(u9)’ (27)

. Input relationshiptensor X, number of clustersK.
.fort<—1ltoT:

. do

. Choose Kobjectsas initial clusters {0}, O,,---,0L} randomly;
. whileanysim(v € OLI,U, €0,)==1

. repeat

. fori«<—1toN;:

. fork«<—1tok:

. Calculatesim(v}, 0,) accordingtoEgs (23) and (24)
10. end for

11. Calculate uf,? accordingtoEqg (25)

O J o U w N

e}
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12. end for

13.untilu'® unchangedor iterNum> 2

14. end for

15. CalculateGaccordingtoEgs (26) and (27) ;

16. Output the initial guess for {U(’)}L1 andG.

Time complexity analysis. The time complexity for the proposed method comprises of
two parts: STFClus_initial and STFClus. First, in STFClus_initial, we need to calculate the ini-
tial guess for factor matrices and core tensor. For the factor matrices initialization, we need to
compute the similarity between each non-zero element in the tensor, i.e., the relationships in
the heterogeneous information network, with each relationship containing T objects. So the
time complexity for factor matrices initialization is O(TJ?), where J is the number of non-zero
elements in the tensor. For the core tensor initialization, according to Eqs (26) and (27), we
need to compute the Moore-Penrose pseudo-inverse of each factor matrix, and mode-n matrix
product of tensor A" with all factor matrices. The time complexity for computing the Moore-

Penrose pseudo-inverse of all factor matrices is O(2K> N + TK’), where N = 3 | N, is the
total number of objects in the network. So the time complexity for the core tensor initialization
is O(TKJ + 2K2 N + TK®). Therefore, the total time complexity for STFClus_initial is O(TP +
TK] + 2K> N + TK).

Second, in STFClus, we need to update the factor matrices and core tensor at each round.
According to Eqs (21) and (22), computing X S(T[) costs O((T — 1)KJ + KT N,), and computing
us (t)S(Tt) costs O(K*> N + TK™*"). So, the time complexity for updating all the factor matrices
at each round is O((T* - T)KJ + (KT + TK® + 3K)N + T K'™). According to Eq (20), the time
complexity for updating core tensor is O(TKJ + K> N + TK™*! + 2K”). Then, the total time
complexity for STEClus is O(T> KJ + (K™ + (T + 1)K* + 3K)N + (T* + T)K™** + 2K").

For heterogeneous information networks, T is the number of object types, K is the number
of clusters, J is the number of relationships and N is the total number of objects. We have T <«
J, T < N,and K < J, K < N. In order to show this more clearly, the time complexity for
STFClus_initial can be summarized as O(a,J* + a,J + a3N + ay), and the time complexity for
STFClus can be summarized as O(b,] + b,N + bs), where a,, a,, as, as, b;, by, and bs are all con-
stants. Thus, we can see that the time complexity for STFClus_initial is proportional to the
number of objects and to the square of the number of relationships in the network, while the
time complexity for STFClus is almost a linear function of the number of objects and relation-
ships in the network.

Experiments and results

In this section, we present several experiments on synthetic and real-world datasets for hetero-
geneous information networks, and compare the performance of our method, STFClus, with a
number of state-of-the-art clustering methods.

All experiments are implemented in the MATLAB R2015a (version 8.5.0) 64-bit. The syn-
thetic datasets are generated by the codes of synthetic datasets generation algorithm, which
are shown in the S1 File. The real-world datasets are all publicly available online. The Matlab
codes for STFClus_initial algorithm and STFClus algorithm are shown in the S2 File and
the S3 File respectively. All the source codes are available online at https://github.com/
tianshuilideyu/STFClus. The MATLAB Tensor Toolbox (version 2.6, http://www.sandia.gov/
~ tgkolda/TensorToolbox/) is used in our experiments. All experimental results are average
values obtained by running the algorithms ten times on corresponding datasets, thus provid-
ing significant insight into the performance of different parameters and different algorithms.
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Dataset description

The synthetic datasets. The purpose of using synthetic datasets is to be able to verify the
level of the performance that STFClus can deliver given that the detailed cluster structures of
the synthetic datasets are known and so it is possible to evaluate the performance quantitatively
based on the STFClus with different parameters.

The synthetic datasets are generated with the following parameters:

o T:the number of object types in the heterogeneous information network. It is also the num-
ber of modes in the tensor.

« K: the number of clusters.
o S: the tensor scale,and S= N; X N, X - - - X N

o D: the density of the tensor, i.e., the percentage of nonzero elements in the tensor. And
D= §, where J is the number of nonzero elements.

o O: Whether the clusters are overlapping, denoted by a 1(yes) or 0 (no).

In order to make the synthetic datasets similar to a realistic situation, we assume the distri-
bution for different types of objects that appear in a relationship to follow Zipf’s law (see details
https://en.wikipedia.org/wiki/Zipf%27s_law). Zipf's law is defined by f,(r; p,, N,) = %,

n=1
where N, is the number of the tth type of objects, r is the object index, and p; is the parameter
characterizing the distribution. Zipf’s law denotes the frequency of the rth object of tth type
appearing in the relationship. Then, with the parameters above, we can construct different syn-
thetic datasets for different experiments.

Experiment A on synthetic datasets: in order to evaluate the performance quantitatively
with different D and S, we fix T =4, K =2, and O = 1, and we set the parameter p; = 0.95, p, =
1.01, p3 = 0.99, and p4 = 1.05. We then construct four different scaled datasets, with S = 2.5K,
§=250K, S =2.5M and S = 25M, respectively. For each network, we set different densities as
D=0.5%, D=1%, D =5% and D = 10% respectively. See details in Table 1.

Experiment B on synthetic datasets: In order to evaluate the performance quantitatively
with different T'and O, we fix K =2, D = 0.5% and S = 5M, and we set the parameter p; = 0.95,
p2=1.01, p3=0.99, p, = 1.05, ps = 0.9, ps = 1.1, p; = 0.95 and pg = 1.05. We then construct four
datasets with the same scale, in which T'=2, T'=4, T =6 and T = 8 respectively, and for each T,
we set O =1 and O = 0 respectively. See details in Table 2.

The real-world datasets. In order to test the performance of STFClus in real-world sce-
narios, one medium-scale real-world dataset and two large-scale real-world datasets are used,
and the details are summarized in Table 3.

The first real-world dataset is extracted from the DBLP database, called DBLP-four-areas
dataset, which contains the ground truth of cluster labels for some objects. It is a four
research areas subset of DBLP used in [3-6, 8, 13, 36], and it can be downloaded from:

Table 1. The synthetic datasets for Experiment A.

NyxNo%x-..x N D
Syn_ail 10x5%x5x10=2.5K 0.5%, 1%, 5%, 10%
Syn_a2 50 x 10 x 10 x 50 = 250K 0.5%, 1%, 5%, 10%
Syn_a3 50 x 10 x50 x 100 =2.5M 0.5%, 1%, 5%, 10%
Syn_a4 100 x 50 x 50 x 100 =25M 0.5%, 1%, 5%, 10%

doi:10.1371/journal.pone.0172323.1001
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Table 3. The details of real-world datasets.

Table 2. The synthetic datasets for Experiment B.

T Ny x Nyx...x Np (o]
Syn_b1 2 5Kx 1K 1,0
Syn_b2 4 50 x 10 x 100 x 100 1,0
Syn_b3 6 50x10x10x10x10x 10 1,0
Syn_b4 8 5x4x5x5x10x10%x10x% 10 1,0

doi:10.1371/journal.pone.0172323.t002

http://web.cs.ucla.edu/ ~ yzsun/data/DBLP_four_area.zip. The four research areas in the
DBLP-four-areas dataset are database (DB), data mining (DM), machine learning (ML), and
information retrieval (IR), respectively. There are five representative conferences in each area.
All the related authors, the papers published in these conferences and the terms contained in
the papers’ titles are included. The DBLP-four-areas dataset contains 14,376 papers with 100
labelled, 14,475 authors with 4,057 labelled, 20 labelled conferences and 8,920 terms. Here,
there are no labelled records in terms, since terms are difficult to label even manually. In
DBLP, many terms are included in multiple research areas, for example, ‘system’ is a high-
frequency term in both DB and IR, and it also often appears in DM and ML. The frequencies
of ‘system’ appearing in DB, DM, ML and IR are 31.65%, 23.10%, 10.41% and 34.83%, respec-
tively. The density of the DBLP-four-areas dataset is 9.01935 x 10~, so we can construct a
medium-scale 4-mode tensor with size 14,376 x 14,475 x 20 x 8,920 and 334,832 non-zero ele-
ments. Each non-zero element in the 4-mode tensor represents a relationship or a sub-network
in the DBLP, i.e., one author wrote a paper published on a conference and that contained a
specific term. We compare the performance of STFClus with several other state-of-the-art
methods on the labelled records in this dataset.

The second real world dataset is the DBLP database(downloaded form http://dblp.uni-trier.
de/xml/ in August 2015), called DBLP-full-areas dataset, which contains all the research areas
in computer science. It includes four types of objects: Author, Paper, Venue (conferences or
journals) and Term, which are organized in a star network schema, as shown in Fig 1A. In the
DBLP database, papers may come from journals, conferences, books, web pages and so on. We

Types of objects Number of objects Number of relationships Density
DBLP-four-areas Author 14,475 334,832 9.01935x 107°
Paper 14,376
Conference 20
Term 8,920
DBLP-full-areas Author 952,214 35,204,622 1.00896 x 10713
Paper 1,237,709
Venue 1,534
Term 192,995
Douban Movie Network Movie 12,677 441,008,031 1.20416 x 107'°
Actor 6,311
Director 2,449
Type 38
User 13,367
Group 2,753
User_copy 13,367

doi:10.1371/journal.pone.0172323.t003
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choose journal and conference papers in our experiment, because most journal and conference
papers comprise the latest research results. Even so, the DBLP-full-areas dataset is still a large-
scale dataset, containing 952,214 authors, 1,237,709 papers, 1,534 venues and 192,995 terms.
The density of DBLP-full-areas dataset is 1.00896 x 10~", so we construct a large-scale 4-mode
tensor with size 952,214 x 1,237,709 x 1,534 x 192,995 and 35,204,622 non-zero elements.
Compared with the DBLP-four-areas dataset, we can see that the increased number of multiple
modes leads to an explosion of relationships (non-zero elements) in the generated tensor,
although it is still very sparse.

For an additional case study, we use the Douban Movie Network, which is collected by
Chuan Shi [37], and can be downloaded from https://github.com/zzqsmall/SemRec/tree/
master/data. The Douban Movie Network follows a general network schema, as shown in Fig
1B, and includes 12,677 movies, 6,311 actors, 2,449 directors, 38 movie types, 13,367 users and
2,753 user groups. In addition to the attribute information of users and movies, the Douban
Movie Network also includes social relations among users and recommendation actions
between users and movies. The records of users, movies, directors and actors in this dataset
are anonymous. In order to meet the restrictions of a heterogeneous information network in
our work, we take a copy of users and denote it as user_copy, and organize the seven types of
objects as the network schema shown in Fig 2. The density of the Douban Movie Network is
1.20416 x 107", so we construct a very large-scale7-mode tensor with size 12,677 x 6,311
x 2,449 x 38 x 13,367 x 2,753 x 13,367, and 441,008,031 non-zero elements. Each non-zero ele-
ment in this 7-mode tensor represents a user with social relation information recommended a
movie with the attribute information.

Evaluation metrics

In order to compare the clustering results with other state-of-the-art clustering methods for
heterogeneous information networks, we adopt the Normalized Mutual Information (NMI)
[38] and Accuracy (AC) as our performance measurements.

NMI is used to measure the mutual dependence information between the clustering result
and the ground truth. Given N objects, K clusters, one clustering result, and the ground truth
classes for the objects, let n(i, ), i, j = 1, 2, - - -, K be the number of objects that labelled i in clus-
tering result while in the jth class of ground truth. The joint distribution can be defined as

p(i,j) = ", the marginal distribution of rows can be calculated as p, (j) = "1, p(i,j), and
the marginal distribution of column can be calculated as p, (i) = 3"+, p(i, j). Then, the NMI is

defined as: :
£ 5 pliog( 20 )
V2 P ()logey ) S5, . (1)logp, (1)

NMI =

The NMI ranges from 0 to 1, the larger value of NMI, the better the clustering result is.
AC is used to compute the clustering accuracy that measures the percent of the correct clus-
tering result. AC is defined as:

XL X, 6(map(v,), label (0,)
SN,

where map(v') is the cluster label of the object v!; the label(v') is the ground truth class of the

AC
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object v’ . The () is an indicator function:
{ 1 if map(v.) = label(v')
0 if map(v') # label(v!)

5() =

Since both of NMI and AC are used to measure the performance of clustering one type of
object, the weighted average NMI and AC is also used to measure the performance of STFClus
and other state-of-the-art methods:

m — ZtT:] Nt(NMI)r
T
Zt:l N[

2o 2 N(AC),
AC = ==
2N,

Experimental results

STFClus on synthetic datasets. Experiment A: In order to evaluate the performance
quantitatively with different densities D and network scales S, STFClus is tested on the datasets
in Table 1. Since there are four different densities for each scale network, the 16 synthetic data-
sets are grouped into 4 different scales networks. The experimental results are shown in Figs 4
and 5.

Fig 4 shows the iteration number and running time of STFClus on the synthetic datasets in
Table 1. It should be noted that, since the running time of STFClus_initial algorithm on
Syn_a4 with D = 5% and D = 10% is unacceptable, we use the random initialization method to
initialize factor matrices on Syn_a4 with D = 5% and D = 10%. We also find that the STFClus
doesn’t converge sporadically starting with the random initialization. In fact, non-convergence
occurs two or three times out of ten. In addition, the iteration number and running time of
STFClus are increased with increased network scale and density.

Fig 5 shows the AC and NMI of STEClus on the synthetic datasets in Table 1. We can find
that with increased density, both AC and NMI are increased and become close to 1. This
means that with the increase in network density, useful relationships in the network become
richer and richer, and the clustering results become more and more close to the real world.

60-
50 —=—D=0.005
o+ D=0.01
40{ | ——D=0.05
» v D=0.1
Zg T 30
£
3 S 20/
104 //
5. L
S=25k S=250K S=25M  S=25M

0 7 . — ;
S=2.5k S$=250K S=2.5M S=25M
Scale Scale
Fig 4. The iteration number and running time with different Dand S.
doi:10.1371/journal.pone.0172323.g004
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Fig 5. The AC and NMI values with different Dand S.
doi:10.1371/journal.pone.0172323.9005

When D = 0.5%, both AC and NMI on four synthetic datasets are low, since too few useful
relationships exist in the network. Generally, larger network scales and density result in greater
iteration numbers and running times, but offer higher accuracy and quality of clustering
results.

To conclude, the use of synthetic networks in experiment A demonstrates that STFClus can
work well on large-scale and sparse heterogeneous information networks.

Experiment B: In order to evaluate the performance quantitatively with different object
types T and various overlapping O states, we apply the STFClus method for the datasets in
Table 2. In fact, there are 8 synthetic datasets grouped into 4 differently scaled networks, since
each synthetic dataset has both overlapping and non-overlapping clusters. The experimental
results are shown in Figs 6 and 7.

Fig 6 shows the iteration number and running time of STFClus on the synthetic datasets in
Table 2. It can be found that with an increasing number of object types at the same network
scale, the iteration number and running time are increased. When the clusters are non-
overlapping, usually the iteration number is less than that when the clusters are overlapping.
In Fig 6, both the iteration number and running time increase abruptly when T = 8. There are
two possible reasons for this. First, the more object types T in the network, the more
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Fig 6. The iteration number and running time with different Tand O.
doi:10.1371/journal.pone.0172323.g006
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Fig 7. The AC and NMI with different Tand O.
doi:10.1371/journal.pone.0172323.9007

dimensions possessed by the tensor. This means that the number of factor matrices and the
scale of core tensor would become larger when the object types T in the network is increased.
The second reason is that when the network scale and density are fixed, the number of objects
in each type, i.e., N, is decreased while the object types T is increased. This phenomenon can
be found in Table 2. When T = 8, N, becomes less than ten. The network scale and density
being fixed means that the non-zero elements in the tensor are unchanged. In other words, the
number of relationships in the network remains unchanged while the network scale and den-
sity are fixed. With an increase in object types T, each relationship becomes more complex,
i.e., each relationship contains more objects, and the frequency of each object appearing in the
relationships is increased.

Fig 7 presents the AC and NMI results of the STFClus on synthetic datasets in Table 2. Both
the AC and NMI are increased and equal to 1 with increasing number of object types. This
means that when the network scale and density are fixed, the accuracy of the clustering results
improves with increasing number of object types T in the network. We can also see that the
clustering results of non-overlapping clusters are better when T'= 2 and T = 4. However, the
advantage disappears when T = 6 and T = 8. That is to say, when the number of object types T
is small, the clustering results of STFClus on non-overlapping clusters are improved. However,
when the number of object types T becomes sufficiently large, the clustering results of STFClus
on both overlapping and non-overlapping networks are satisfactory. Because there are more
object types in the network, more useful information about each object is shown through
relationships.

Opverall experiment B shows that STFClus can work better on networks with more object
types. When the number of object types is sufficiently large, STFClus can handle networks
with overlapping or non-overlapping clusters equally well.

STFClus on DBLP-four-areas dataset. In this section, the clustering performance of
STFClus on the DBLP-four-areas dataset is compared with a number of state-of-the-art clus-
tering methods as follows:

1. NetClus [3]: This is an extended version of RankClus [1], which can deal with networks fol-
lowing the star network schema.

2. PathSelClus [6, 8]: This is a clustering method based on the pre-defined symmetric meta-
path, requiring user guidance. In PathSelClus, the distance between the same type object is
measured by PathSim [5], and the method starts with seeds as given by the user.
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Table 4. AC of experiments on DBLP-four-areas dataset.

AC STFClus NetClus PathSelClus FctClus

Paper 0.7699 0.7154 0.7551 0.7887
Author 0.8254 0.7177 0.7951 0.8008
Conference 0.9998 0.9172 0.9950 0.9031
AC 0.8250 0.7186 0.7951 0.8010

doi:10.1371/journal.pone.0172323.t004

3. FctClus [4]: This is a recently proposed clustering method for heterogeneous information
networks. As with NetClus, the FctClus method can deal with networks following the star
network schema.

As the baseline methods can only deal with heterogeneous information networks of a spe-
cific schema, here we must construct different sub-networks for them. For NetClus and
FctClus, we use all four modes, but they are organized as a star network schema [3, 4], where
the paper (P) is the centre type, and author (A), conference (C) and term (T) are the attribute
types. For PathSelClus, we also use the four modes: author (A), paper (P), conference (C) and
term (T). However, we select the symmetric meta-path of P-T-P, A-P-C-P-A and C-P-T-P-C
to cluster the papers, authors and conferences respectively, and in PathSelClus, we give each
cluster one seed to start.

Since the STFClus doesn’t need any information of network schema, we model the DBLP-
four-areas dataset as a 4-mode tensor, and each mode represents one object type. The 4 modes
are author (A), paper (P), conference (C) and term (T), respectively. The actual sequence of
the object types is insignificant. Each element of the tensor represents a relationship among
the four types of objects and we use the sparse representation of tensor. The AC, NMI and run-
ning time on DBLP-four-areas dataset of STFClus and the three baseline methods are summa-
rized in Tables 4-6. From the experimental results on DBLP-four-areas dataset, we can see
that STFClus performs the best on AC and NMI, while PathSelClus gives the best running
time.

Though STFClus gives the longest running time in experiment, STFClus can obtain the
clusters of all types of objects simultaneously, while the other baselines can only cluster one
type of objects each time. This is why only the total time is shown for STFClus in Table 6.

Table 5. NMI of experiments on DBLP-four-areas dataset.

NMI STFClus NetClus PathSelClus FctClus

Paper 0.7044 0.5402 0.6142 0.7152
Author 0.8549 0.5488 0.6770 0.6012
Conference 0.9994 0.8858 0.9906 0.8248
NMI 0.8520 0.5503 0.6770 0.6050
doi:10.1371/journal.pone.0172323.t005

Table 6. Running time of experiments on DBLP-four-areas dataset.

Running time (s) STFClus NetClus PathSelClus FctClus

Paper — 802.6 542.3 808.4
Author —_ 743.7 681.1 774.9
Conference — 658.4 629.3 669.8
Total time 2840.9 2204.7 1852.7 2253.1

doi:10.1371/journal.pone.0172323.t006
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NetClus performs worse in the AC and NM]I, just achieving 71.86% on AC and 55.03% on
NMI. However, an important advantage of NetClus is that the objects ranking in each cluster
can be obtained while clustering the objects. PathSelClus performs better than NetClus on AC
and NMI. And it has an advantage too, i.e., based on the PathSim [5], PathSelClus can rapidly
measure the similarity between any two objects of the same type using the predefined symmet-
ric meta-path. PathSelClus also delivers the best result for running time. However, the results
of PathSelClus strongly depend on the choice of meta-path and seeds as given by users.

Case studies on DBLP-full-areas dataset and Douban Movie Network. Since there is no
ground truth for cluster labels of the DBLP-full-areas dataset and the Douban Movie Network,
we cannot adopt AC and NMI to measure the performance of STFClus. In Table 3, we can see
that the tensors constructed from both the DBLP-full-areas dataset and the Douban Movie
Network are large-scale but low density. If we don’t use the sparse representation, the scale of
the entire tensors may reach exabyte, or even zetabyte levels. Such large scale tensors are cur-
rently unrealistic for memory access and retrieval. Further, the storage of the entire tensor is
unacceptable to most PCs. Although the storage space can be reduced to gigabyte (even mega-
byte) levels by using sparse representation and the computation of Kronecker products is
avoided in STFClus, the intermediate results during the tensor decomposition may be much
larger than the final result, and thus can lead to memory overflows.

To resolve such issues arising with larger-scale operations, we adopt the method introduced
in [39] to divide the tensors constructed from both the DBLP-full-areas dataset and the Dou-
ban Movie Network into a grid of multiple smaller-scale sub-tensors and thereafter the
STFClus is applied to all sub-tensors, and the results are re-constructed for the original tensors.
In the experiment, Matlab Distributed Computing Server toolbox and Parallel Computing
toolbox are used. All the experiments are run on a parallel system with 8 labs.

For DBLP-full-areas dataset, we divided the tensor with size 952,214 x 1,237,709 x 1,534 x
192,995 into a 1,000 x 1,000 x 100 x 1,000 dimensional grid that consists of 10'1 sub-tensors.
We find that more than 99.98% of sub-tensors are zero tensors, i.e., all elements in these sub-
tensors are zero elements. In practice, we maintain only the sparse sub-tensors, whose ele-
ments are not all zero elements, and their corresponding indices in the grid. Then, STFClus
runs on all the sparse sub-tensors, whose elements are not all zero elements, simultaneously.
For the sub-tensors whose elements are all zero elements, we set the elements in corresponding
factor matrices and core tensors equal to zero. Finally, the strategy of re-constructing factor
matrices and core tensor for original tensors in [39] is used. The same method is used to deal
with the Douban Movie Network. We divided the tensor with size 12,677 x 6,311 x 2,449 x 38
x 13,367 x 2,753 x 13,367 into a 100 x 10 x 10 x 1 x 100 x 10 x 100 dimensional grid consisting
of 10° sub-tensors. More than 97.54% sub-tensors are zero tensors.

We set the number of clusters K = 15 for DBLP-full-areas dataset and K = 20 for Douban
Movie Network. The details of implementation and results are summarized in Table 7. In
Table 7, the non-zero sub-tensor represents the elements of sub-tensor that are not all zero
elements.

From Table 7, we can see that the number of non-zero sub-tensors is very large, although
most sub-tensors are zero tensors in such a large-scale dataset. Moreover, all the non-zero sub-
tensors are very sparse. The total running time includes three constituents: grid generation,
parallel computing of STFClus, and factor matrices and core tensor reconstruction. For the
DBLP-full-areas dataset and the Douban Movie Network, the grid generation and factor matri-
ces and core tensor reconstruction took up most of the running time, while the parallel com-
puting of STEClus just cost 32.1% of the time on the DBLP-full-areas dataset and 21.68% of
the time on the Douban Movie Network. The system in total spent about 2.5 days to handle
the DBLP-full-areas dataset and almost 3 days to handle the Douban Movie Network.
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Table 7. Case studies on DBLP-full-areas dataset and Douban Movie Network.

DBLP-full-areas dataset Douban Movie Network

Non-zero sub-tensors number 15,437,462 24,623,145

Max density 6.7225x 1078 45421 x1071°

Average density 6.7083 x 107'° 5.0024 x 107'°
Running time (s) Grid generation 94,275 109,018

Parallel computing of STFClus 65,641 54,412

Factor matrices and core tensor reconstruction 44,548 87,521

Total time 204,461 250,951

doi:10.1371/journal.pone.0172323.1007

Discussion

The experimental results on both synthetic and real-world datasets show that STFClus is an
effective and efficient method for clustering heterogeneous information networks. It can han-
dle all types of objects simultaneously, and obtain a good clustering result without any infor-
mation on the network schema. In the experiments, we found that the random initialization of
STFClus may lead to the non-convergence. That is to say, a good initialization can improve
the performance of STFClus, and the STFClus_initial algorithm can provide a good start for
STFClus.

Unfortunately, the current STFClus_initial algorithm is not perfect. It is highly efficient for
sparse networks but not for dense networks. In other words, when the scale and density of the
heterogeneous information network becomes large, the time cost of the STFClus_initial algo-
rithm increases rapidly. In general, the network scale is usually large in real world applications,
so STFClus_initial algorithm performs better with amaller the network density. We must thus
make a compromise between the time complexity and efficiency of the whole method and this
is a trade-off to be optimized by users on case-specific basis.

However, case studies on two very large-scale datasets show that STFClus can be used to
analyze very large heterogeneous information networks off-line. The running time is accept-
able, and STFClus has demonstrated high accuracy clustering results which can be used as
prior knowledge for on-line analysis.

Conclusions

Many clustering methods for heterogeneous information networks have been proposed, such
as FctClus [4], NetClus [3], PathSelClus [6, 8] and so on. Each of them can deal with one type
of heterogeneous information networks with a specified network schema. However, for gen-
eral network schemas or in cases without any information of network schema, these clustering
methods are not useable. Tensor factorization is a powerful tool for clustering multi-dimen-
sional data. It has been widely used in some specific applications, such as computer graphics
[16] and vision [40]. However, many existing tensor factorization based clustering methods
focus on 3-mode tensors and clustering one mode of the tensor. In this paper, the STEClus
method is presented as a way to cluster heterogeneous information networks based on sparse
tensor factorization. The STFClus models heterogeneous information networks as a sparse
tensor. In this approach, each type of objects in the network was modeled as one dimension of
the tensor, and the relationships among different types of objects were modeled as the ele-
ments in the tensor.

In contrast to the existing clustering methods for heterogeneous information networks,
STFClus has two distinct advantages. Firstly, STEClus can model different types of objects and
the semantic relations in heterogeneous information networks without any information
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regarding the network schema. In addition, based on the tensor factorization, STFClus can
cluster all types of objects simultaneously by running the algorithm only once; i.e. STFClus is
generally applicable single-pass clustering method for heterogeneous network which is net-
work schema agnostic.

Furthermore, an initialization algorithm is specifically developed for STFClus. In general,
the initialization algorithm is good at handling sparse networks. The experimental results
showed that STFClus can deal with large-scale and sparse heterogeneous information net-
works and perform better on networks with more types of objects. Moreover, STFClus can
handle overlapping and non-overlapping clusters simultaneously. STFClus outperforms the
state-of-the-art baselines on real-world datasets.

Nevertheless, STFClus is sensitive to the initialization of factor matrices and core tensor. A
good initialization can improve the performance of STFClus, while a sub-optimal initialization
may lead to an unacceptable slow convergence speed and unsatisfactory local minima.
Although the STFClus_initial algorithm can provide a good initialization, the time cost
increases rapidly for large scale and very dense networks.

In future work, this novel approach of clustering heterogeneous information networks
based on tensor factorization can be combined with other rank-based clustering methods, e.g.,
RankClus and NetClus. Another challenge in future work is to deal with dynamically changing
tensors as the heterogeneous information networks are changing. Possible solutions include
increasing the number of tensor modes, or the number of dimensions of the tensor.

Supporting information

S1 File. The matlab codes of synthetic datasets generation algorithm. It uses Zipf's law to
generate the synthetic datasets for Experiment A and Experiment B.
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