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Abstract

Dysregulated Wnt signaling pathway is highly associated with the pathogenesis of several

human cancers. Dickkopf proteins (DKKs) are thought to inhibit Wnt signaling pathway

through binding to lipoprotein receptor-related protein (LRP) 5/6. In this study, based on the

3-dimensional (3D) structure of DKK3 Cys-rich domain 2 (CRD2), we have designed and

developed several peptide inhibitors of Wnt signaling pathway. Modeller 9.15 package was

used to predict 3D structure of CRD2 based on the Homology modeling (HM) protocol. After

refinement and minimization with GalaxyRefine and NOMAD-REF servers, the quality of

selected models was evaluated utilizing VADAR, SAVES and ProSA servers. Molecular

docking studies as well as literature-based information revealed two distinct boxes located

at CRD2 which are actively involved in the DKK3-LRP5/6 interaction. A peptide library was

constructed conducting the backrub sequence tolerance scanning protocol in Rosetta3.5

according to the DKK3-LRP5/6 binding sites. Seven tolerated peptides were chosen and

their binding affinity and stability were improved by some logical amino acid substitutions.

Molecular dynamics (MD) simulations of peptide-LRP5/6 complexes were carried out using

GROMACS package. After evaluation of binding free energies, stability, electrostatic poten-

tial and some physicochemical properties utilizing computational approaches, three pep-

tides (PEP-I1, PEP-I3 and PEP-II2) demonstrated desirable features. However, all seven

improved peptides could sufficiently block the Wnt-binding site of LRP6 in silico. In conclu-

sion, we have designed and improved several small peptides based on the LRP6-binding

site of CRD2 of DKK3. These peptides are highly capable of binding to LRP6 in silico, and

may prevent the formation of active Wnt-LRP6-Fz complex.
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1. Introduction

Wnt signaling pathway regulates cell proliferation and embryonic patterning during develop-

ment [1]. This signaling pathway has an important role in tumorigenesis of several human

cancers and is most often deregulated in colorectal cancer (CRC) facilitating malignant devel-

opment of polyps in the intestinal epithelium [2, 3]. Nowadays, inhibition of Wnt signaling

pathway has been emerged as a promising therapeutic strategy in cancer treatment [4]. In ver-

tebrates, Wnt signaling pathway dissemination is inhibited by two classes of extracellular

antagonists: the first class which includes certain members of the DKK family, can bind and

inhibit the LRP5/6 component of the Wnt receptor complex; while the members of second

class which comprises secreted frizzled related protein (sFRP) family, WIF (Wnt inhibitory

factor)-1 and Cerberus, can directly bind to the Wnt proteins or frizzled receptor [5].

While canonical and non-canonical pathway can be activated downstream to wnt signal-

ing pathway, members of DKK family are highly capable of inhibiting canonical Wnt signal-

ing by targeting LRP5/6, and therefore, hinder the formation of Wnt receptor complex.

Among members of this family, DKK1 is the most widely studied member and exhibits a

high potential of Wnt inhibition [6]. However, there is now compelling evidence suggesting

that DKK3 can also be defined as a key inhibitor of Wnt signaling pathway [7]. A crystallo-

graphic study has elucidated that DKKs bind to an ectodomain of LRP5/6 which comprises

four tandem β-propeller—EGF-like domain (PE) pairs. Also it was found that there is an

overlapping between Wnt3a- and DKK-binding surfaces on the third PE pair of LRP5/6 [8].

Therefore, targeting this binding site may interfere with the formation of the active tri-com-

plex (LRP6-Wnt-Frizzeld) responsible for initiation of Wnt signaling pathway. Additionally,

our in silico analyses established that DKK3, similar to other DKK family members, can bind

to the third PE pair of LRP5/6 through its CRD2. Interestingly, we found that the CRD2 of

DKK3, here referred to as DKK3C, is bound to the LRP5/6 receptor even tighter than the

whole structure. Therefore, this ligand may be regarded as a therapeutic candidate in the

cancers which are dependent on the activity of Wnt signaling pathway. Because of their

small size and some unique physicochemical properties, small peptides have been widely

proposed as therapeutic agents in cancer therapy [9, 10]. It has been demonstrated that use

of ligand-derived C-terminal and internal peptides interfering with binding cleft of PDZ

domain of Dishevelled (Dvl) proteins, key regulators of Wnt signaling pathway, may be an

effective therapeutic strategy for inhibiting Wnt signaling pathway [11]. Nevertheless, due to

some intrinsic weaknesses, such as poor physicochemical stability, poor solubility, and short

circulating plasma half-life, natural peptides are often not efficiently applicable for use as

therapeutic agents [12]. Thus, the weaknesses of initial peptides need to be resolved by

computational improvement. Most recently, Zhang Y et al. rationally designed and improved

several peptide ligands according to the structure-based information of CaMKIIα-MUPP1

PDZ interaction using a computational mutagenesis approach. The optimized peptides had a

high binding affinity to MUPP1 PDZ 11 domain and could competitively disrupt the appro-

priate interaction between two proteins [13].

To the best of our knowledge, there is no published data reporting the rational peptide

designing against Wnt signaling pathway based on the three-dimensional (3D) structure of

DKK3. In this study, we have designed several potential inhibitory peptides against Wnt sig-

naling pathway based on the LRP5/6-binding site of DKK3C and evaluated their binding

energy, stability and other physicochemical properties in silico. In silico analysis showed that

the designed peptides are readily bound to the Wnt- and DKK-binding interfaces of LRP6,

and may be considered as possible therapeutic modalities for inhibiting Wnt-mediated cancer

progression and invasion.
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2. Results

2–1. Evaluation of three-dimensional (3D) structure of DKK3C

The 3D structure of DKK3C has not yet been determined experimentally, hence we predicted

3D structure of this domain using HM method. The quality of predicted 3D model of DKK3C
was validated using several methods. Ramachandran plot analysis illustrated that 91%, 8% and

1% of residues were located in the most favored, additionally allowed and generously allowed

regions, respectively. There was no residue in the disallowed region of Ramachandran plot

(Fig 1A). In order to compare the resulted 3D model of DKK3C with the template structure

(PDB ID: 2JTK) a structural alignment was performed using TM-align web tool. TM-score of

DKK3C-2JTK structural alignment was computed to be 0.83 implicating a high accuracy of

HM prediction method (two structures with TM-score = 1 have almost the same fold) (Fig

1B). The overall model quality computed by ProSA Z-score was calculated as -5.19 implicating

a very high quality of the model when compared with experimentally validated protein struc-

tures (Fig 1C). The local model quality was also confirmed using ProSA web tool (Fig 1D). In

parallel, a secondary structure alignment was conducted and the result manifested a significant

secondary structure compatibility between DKK3C and the template model (Fig 1E). The com-

patibility of 3D-1D structures was evaluated using Verify 3D score. This score assesses the

environment of each residue in a model with respect to the high resolution X-ray structures

Fig 1. Validation of CRD2 model by several methods. (A) Ramachandran plot. The most favored, additionally

allowed, generously allowed and disallowed regions are shown in red, yellow, beige and white colors, respectively. (B)

Structural alignment of DKK3C (gray) and 2JTK pdb (blue). (C) ProSA Z-score plot of modeled 3D structure of DKK3C.

The position of this model among experimentally solved protein structures is shown in an open red circle. (D) Local

model quality by plotting energies as a function of amino acid sequence position. Generally, positive values correspond

to problematic parts of the input structure. (E) Sequence and secondary structure alignment of DKK3C and mouse

dkk2 (PDB ID: 2JTK) conducted by ESPript 3.0 (http://espript.ibcp.fr/ESPript/ESPript/).

doi:10.1371/journal.pone.0172217.g001
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and evaluates the compatibility of the model 3D structure with its sequence by assigning a

compatibility score to each residue. Verify 3D was computed as 70.29% implicating a good

3D-1D compatibility of DKK3C model (>65% is considered as valid). ModFOLD results

uncovered that the predicted model of DKK3C was significantly correct (p< 0.001). The global

model quality score computed by ModFOLD was 0.7145 implicating the high confident

model. The global model quality scores ranged between 0 and 1. Generally, scores less than 0.2

implicate the incorrectly modelled structures and scores greater than 0.4 are indicative of

more confident models, which are highly similar to the native structure.

2–2. Comparison of LRP6-binding interface of CRD2 in DKK1 and DKK3

Comparison of each separately predicted 3D models of whole DKK3 and its CRD2, after

refining and energy minimization steps, showed that DKK3C is embedded in the protein

comprising from five β-strands along with several coils. Despite other DKK members, there

is a region consisting of about 60 residues at the C-terminal of DKK3 that makes several

small helices. This region may prevent the favorable binding of DKK3C to LRP6 (Fig 2A). As

mentioned above, molecular docking studies showed that the binding affinity of DKK3C-

LRP6 (ΔGinteraction = -14.6 (kcal mol-1)) was remarkably higher than whole DKK3-LRP6 com-

plex (ΔGinteraction = -13.8 (kcal mol-1)). Although there was a substantial overlap between the

LRP6-binding sites of DKK1 and DKK3, it was realized that a 7-mer box of DKK1 which was

implicated in the DKK1-LRP6 interaction had no role in the binding of DKK3C to LRP6

Fig 2. 3D structures of whole DKK3 protein along with CRD2 of DKK1 and DKK3. (A) Cartoon representation of 3D structure of DKK3;

N-terminal, CRD2 and C-terminal regions are shown in green, orange and blue colors, respectively. (B) The LRP6-binding residues (blue) of

CRD2 in DKK1. (C) The LRP6 binding residues of DKK3. A 6-mer box (red) of positively charged residues in CRD2 of DKK1 has an

important role in DKK1-LRP6 interactions, while this site in CRD2 of DKK3 (red) has considerably changed with several non-conservative

substitutions and has no role in DKK3C-LRP6 interactions.

doi:10.1371/journal.pone.0172217.g002
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(Fig 2B and 2C). This may explain why the binding affinity of DKK1C to LRP6 complex was

higher than DKK3C-LRP6 complex. According to the molecular docking results as well as lit-

erature-based information, two 11-mer boxes of DKK3C (residues 222–232 and 254–264)

were chosen for peptide designing. Due to forming more H-bonds and non-bonded connec-

tions with LRP6, these two boxes could bind to the third PE pair of LRP6 even stronger than

the corresponding LRP6-binding sites of DKK1. Further confirmation was achieved by using

Meta Pocket 2.0 (MPK2) web tool [14]. This server utilizes a consensus method in which the

binding sites are predicted by eight different methods including LIGSITECS, PASS, Q-Site

Finder, SURFNET, Fpocket, GHECOM, Con-Cavity and POCASA. Indeed, several tools

were applied to improve the accuracy of identification of putative binding pockets. Taken

together, it was found that some specific residues of each mentioned box were actively

involved in the DKK3C-LRP6 interactions. Therefore, these residues were not altered during

the steps of affinity maturation and stability enhancement.

2-3. Peptide library screening

Based on molecular docking studies as well as literature-based data, two distinct boxes, located

at positions 222–232 and 254–264 of DKK3, were chosen for generation of peptide libraries.

Since, the residues 222, 226–229, 231–232 and 255–259 had a weak binding affinity to LRP6,

they were substituted with favorable residues to improve the LRP-binding affinity of DKK3C.

A peptide library was constructed for each box separately. After analysis of constructed librar-

ies using R package and further affinity maturation steps, seven peptides were chosen (four

peptides from Box-I and three peptides from Box-II) as the high-scored peptides in case of tol-

erance, affinity and physicochemical properties. The binding affinity and stability of selected

peptides were improved using several repetitions of amino acid substitution, checking binding

affinity, stability and other intended features. Only very few mutations on the 11th residue of

tolerated peptides were favorable for LRP6 binding (ΔGinteraction < ΔGinteraction of input pep-

tide). Fig 3 illustrates a schematic representation of the peptide optimization steps.

Furthermore, calculation of the surface potential of the LRP6-binding interface exhibited

that DKK1 and DKK3 are mainly bound to a cavity of LRP6, a negatively charged site, through

a hydrophobic pocket with a high positive surface potential (Fig 4). Consequently, the positive

charge and hydrophobicity parameters were considered as important criteria for selecting

desired peptides.

Final selected peptides were examined for water solubility and aggregation hot spots. Fortu-

nately, only one of the peptides, named PEP-I4, had poor water solubility and an aggregation

hot spot. The details of various calculated properties for each peptide are tabulated in Table 1.

2–4. The peptide-LRP6 complexes are highly stable and folded during

MD simulation

The dynamics of the peptide-LRP5/6 complexes were evaluated by comparing the backbone

root mean square deviation (RMSD) plots during simulations. RMSD can accurately show a

quantitative expression of the conformational changes of peptide-LRP5/6 complexes during

simulations. Protein backbone RMSD plots of peptide-LRP5/6 complexes are depicted in Fig

5A. The PEPI1-LRP5/6 and PEPII2-LRP5/6 complexes were stabilized at earlier time as com-

pared to other peptide-LRP5/6 complexes. However, other peptide-LRP5/6 complexes were

also stabilized after approximately 5 ns simulations. The lowest RMSD values were seen in

PEPI1-LRP5/6 (~0.15 nm) and PEPII2-LRP5/6 (~0.2 nm) complexes, while the RMSD values

of other peptide-LRP5/6 complexes were increased until ~0.25 nm and stayed around this

value for a period of approximately 10 ns simulations. In parallel, radius of gyration (Rg)
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values of each peptide-protein complex were also plotted to determine the folded state of each

complex during 20 ns MD simulations. Except PEPI4-LRP5/6, other peptide-LRP5/6 com-

plexes were highly compacted and folded during simulations (Fig 5B).

2–5. Structural fluctuations and surface accessibility of LRP6 binding site

To further assess the structural fluctuations of the peptide-LRP6 complexes, we calculated the

root mean square fluctuations (RMSF) from the trajectories of each peptide-LRP6 simulations.

Focusing on the Wnt-binding residues of LRP6, the results disclosed that the mobility of these

residues was reduced upon peptide binding, specifically by PEP-I1 and PEP-II2. Indeed, the

Wnt-binding site of LRP6 became more rigid and tended to be less flexible after peptide bind-

ing. Considering the different values of RMSF, LRP6 exhibited a different mobility when it

bound to the peptides. Very low fluctuations of Wnt- and DKK-binding residues of LRP6 is

most likely due to high stable conformation of peptide-LRP6 complexes. PEPI1-LRP6 and

PEPII2-LRP6 complexes illustrated the lowest structural fluctuations throughout MD simula-

tions (Fig 6A). In parallel, the solvent accessibility surface area (SASA) of each Wnt-binding

residue was calculated from the trajectories of final 10 ns peptide-LRP6 simulations. The SASA

of Wnt-binding residues in the peptide-LRP6 complexes were substantially lower than free

LRP6 (except for K770 residue). This suggests that these residues are probably buried upon

binding of designed peptides to LRP6. The surface accessibility of H834, a key residue of LRP6
which is involved in binding to Wnt proteins, was significantly decreased upon binding of

PEP-I1 and PEP-II2 to LRP6. The average of SASA for Wnt-binding site of each complex was

calculated as: free LRP6 (63.04 nm2), PEPI1-LRP6 (41.61 nm2), PEPI2-LRP6 (60.07 nm2),

PEPI3-LRP6 (50.63 nm2), PEPI4-LRP6 (52.60 nm2), PEPII1-LRP6 (52.54 nm2), PEPII2-LRP6

Fig 3. A schematic representation of BoxI (Left) and BoxII (Right) peptide optimization. The initial peptides (I) were tolerated (T) using

Backrub and sequence tolerance protocols conducted by Rosetta package. Each position of peptide was substituted with other residues

(substitutions with BLOSUM62 score -4 were omitted to avoid deleterious substitutions). The blue, orange and yellow colors indicate

unfavorable (ΔGinteraction of resulted peptide > ΔGinteraction of input peptide), favorable (ΔGinteraction of resulted peptide < ΔGinteraction of input

peptide) and neutral substitutions (ΔGinteraction of resulted peptide≊ ΔGinteraction of input peptide), respectively, and the green color

represents non-mutated residues. Substitutions that caused a <100 change in the value of interaction weighted score (calculated by

ClusPro) were considered as neutral. All possible combinations of favorable substitutions were generated and the best peptides were

selected among them.

doi:10.1371/journal.pone.0172217.g003
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Fig 4. Binding model and surface potentials of DKK1/3 and LRP6. (A) DKK3C-LRP6 and (B) DKK1-LRP6 complexes. DKK1-LRP6

complex was obtained from PDB (ID: 3S2K), while DKK3C-LRP6 is the result of ClusPro docking server. The surface potential of binding

sites (open circles) calculated by PyMOL software are shown in the bottom of figure. Blue, red and gray colors infer the positive, negative

and hydrophobic regions, respectively.

doi:10.1371/journal.pone.0172217.g004
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(39.04 nm2) and PEPII3-LRP6 (48.54 nm2). Fig 6B represents the SASA values of Wnt-binding

residues for each simulated peptide-LRP6 complex.

2–6. The peptides in complex with LRP6 produced high positive

electrostatic potential and H-bonds

Electrostatic potential changes upon binding of the peptides were calculated by using normal

mode analysis performed by PBEQ-Solver. The average conformation of the peptides was

Table 1. Binding affinity energy, instability index and physicochemical properties of seven selected peptides.

Peptide

Name

Peptide Sequence Binding Energy Instability Index* GRAVY** Net Charge at PH 7 Water Solubility Aggregation Hot Spot

Box-I

Initial FQRGLLFPVCT -822.2 66.03 0.836 0.9 Poor No

PEP-I1 CQRGVWARVRC -1340.2 -19.15 -0.282 2.9 Good No

PEP-I2 CQRGWYGRVKC -1159.9 -4.60 -0.927 2.9 Good No

PEP-I3 CQRGQWYRVDC -1217.3 -34.52 -1.173 0.9 Good No

PEP-I4 CQRGFWGAVRC -1133.1 -22.63 -0.036 1.9 Poor Yes

Box-II

Initial WELEPDGALDR -733.6 5.17 -1.091 -3 Good No

PEP-II1 WRKVQEGALDR -1057.7 4.31 -1.355 1.0 Good No

PEP-II2 WQKGKQGALDR -1295.7 0.61 -1.718 2.0 Good No

PEP-II-3 WNRGRQGALDR -1143.3 15.53 -1.827 2.0 Good No

* Instability index value <40 indicates that the peptide is stable.

** The positive and negative GRAVY measures infer the hydrophilicity and hydrophobicity, respectively

doi:10.1371/journal.pone.0172217.t001

Fig 5. RMSD and Rg plots of peptide-LRP6 complexes after 20 ns MD simulations. (A) RMSD of the backbone atoms and (B) Rg plots

of PEPI1-LRP6 (green), PEPI2-LRP6 (red), PEPI3-LRP6 (magenta), PEPI4-LRP6 (orange), PEPII1-LRP6 (brown), PEPII2-LRP6 (blue)

and PEPII3-LRP6 (cyan) complexes as a function of time.

doi:10.1371/journal.pone.0172217.g005
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extracted from the last 10 ns of each peptide-LRP6 simulations. Expectedly, we found a high

positive potential around the peptides when bound to the LRP6 (Fig 7A). Arginine and lysine

residues contributed to the high-volume positive coulomb cage bulb around the peptides.

While, the negative lobes were attributed to the presence of negatively charged residues, aspar-

tate and glutamate, in the peptide sequence. In addition, the formations of H-bonds between

the peptides and LRP6 during MD simulations was identified. The number of peptide-protein

H-bonds in PEPI3-LRP6 and PEPII2-LRP6 complexes were obviously higher than other pep-

tides (Fig 7B).

Calculation of several components of peptide-LRP6 binding free energies obtained from

the last snapshots of the MD trajectories showed a strong electrostatic interaction between

the peptides and LRP6. The net sum of electrostatic interactions between the PEP-I1 and

LRP6 (‹ΔEelectrostatic› = -349.13 kcal/mol) was more favorable than other peptide-LRP6 com-

plexes. The obtained results from energetic analysis of 31 equally spaced snapshots taken

from each peptide-LRP6 MD simulations are summarized in Table 2. Owing to the same

structures of each peptide in the non-bound and bound states, the internal component of the

‹ΔEMM›, ‹ΔEinternal›, has zero contribution to the binding free energy (‹ΔEinternal› = 0) [15].

2–7. All peptides could efficiently occupy the Wnt-binding site of LRP6

As mentioned before, there is an overlap between the Wnt- and DKK-binding sites of LRP6.

The putative residues of LRP6 which are involved in the binding of LRP6 to Wnt ligands

include K770, N813, H834, Y875, M877, E708, E663, K662, Y706 and R1184. These residues

are also bound to the members of DKK family. Analysis of peptide-LRP6 using Ligplot

Fig 6. Evaluation of structural fluctuations and surface accessibility. (A) The RMSF of each peptide-LRP6 complex as a

function of the residue number in the LRP6 protein. (B) The SASA values for Wnt-binding residues of LRP6 with or without

each designed peptides.

doi:10.1371/journal.pone.0172217.g006
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(Dimplot) program revealed that the peptides can readily accommodate on Wnt-binding site

of LRP6. However, only PEP-I1, PEP-I4 and PEP-II2 could form hydrogen bond with H834,

the main residue involved in the Wnt-LRP6 interactions. All peptides bound to the LRP6’s

third PE mainly via non-bonded contacts. More details about peptide-LRP6 interactions are

shown in Table 3.

3. Discussion

Although, DKK3 was not previously thought to have interaction with LRP6 [16], emerging evi-

dences indicate that this ligand can also bind to LRP6 via its CRD2 [17]. In another computa-

tional study, Fujii and colleagues reported that a unique 7-amino-acid insertion (L249-E255 in

human DKK3) and P258 reduces the binding affinity of DKK3C to its receptor [18]. Consistent

with this study, we found that a LRP-binding interface of DKK1 with several positively-charged

residues (K222, H223, R224, R225, K226) have substituted to non-conserve residues in DKK3
(D243, P244, A245, S246, R247), which along with an insertion of a 4-amino-acid insertion

(D250-L253 in human DKK3) may result in a weak binding of DKK3C to LRP6. Accordingly,

Fig 7. Calculation of electrostatic potentials around the peptides and H-bond numbers of peptide-LRP6

complexes. (A) Electrostatic potentials around the peptides upon binding to LRP6. Hydrophobic, positive and negative

potentials are shown in gray, blue and red colors, respectively. The highest level of blue and red colors is observed in

regions with electrostatic potentials�2 and�-2, respectively. (B) The formation of H-bonds between the peptides and

LRP6 during the production phases of MD simulation.

doi:10.1371/journal.pone.0172217.g007
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we found that there are two distinct boxes in the DKK3C that are highly capable of binding to

the third PE pair of LRP6. Therefore, several small peptides were designed based on these

boxes of DKK3C. MD simulations revealed that the peptides can efficiently bind to Wnt-bind-

ing site of LRP6 and presumably block it.

Table 2. Evaluation of peptide-LRP6 free energies, contacts and interacting surface.

Interaction Free Energy Components (kcal/mol-1)

Energy PEP-I1 PEP-I2 PEP-I3 PEP-I4 PEP-II1 PEP-II2 PEP-II3

ClusPro -1340.2 -1159.9 -1217.3 -1133.1 -1057.7 -1295.7 -1143.3

HADDOCK -146.4±4.3 -124.8±2.7 -133.8±2.7 -129.9±4.9 -127.9±5.0 -143.7±2.9 -138.1±4.0

ΔGinteraction -8.0 -6.8 -7.0 -6.3 -7.0 -8.3 -8.1

ΔEelectrostatic -349.13±16.08 -180.47±8.34 -174.23±7.43 -192.49±10.31 -138.61±6.43 -163.08±6.98 -233.28±12.1

ΔEVdW -52.73±9.12 -87.26±14.18 -116.32±18.93 -9.05±2.2 -33.02±4.81 -79.69±8.38 -33.22±4.72

ΔGsolvation -373.90 ±21.43 -398.68 ±23.1 -324.21 ±18.6 -318.32 ±14.21 -318.08 ±13.98 -496.38 ±24.69 -285.25 ±12.43

ΔEMM -401.86 -267.73 -290.55 -201.54 -171.63 -242.77 -266.50

Kd (M) 6.8e-06 1.1e-05 7.5e-06 4.4e-06 1.4e-06 8.2e-07 1.1e-06

Number of Interfacial Contacts (ICs)

ICs ch-ch 4 4 6 2 5 5 5

ICs ch-po 5 4 2 2 7 7 3

ICs ch-ap 16 14 15 11 11 15 13

ICs po-po 2 2 2 2 2 1 2

ICs po-ap 4 2 4 7 4 6 4

ICs ap-ap 13 15 13 16 15 18 16

Non Interacting Surface (NIS) per property

%NIS ch 27.54 28.99 28.17 30.54 29.52 30.32 29.80

%NIS ap 38.42 38.65 39.44 36.95 38.10 33.84 35.86

Kd: Dissociation constant

ch: charge, po: polar, ap: apolar

doi:10.1371/journal.pone.0172217.t002

Table 3. Residues of LRP6 interacting with the peptides as predicted by LIGPLOT. Bold residues: Wnt-

and DKK-binding, bold and underline: DKK-binding.

LRP6 Residues

Peptide

Name

Hydrogen bonds forming AAs Non-bonded contacts forming AAs

PEP-I1 L667, M710, D668, G795, E708, N794,

Y706, E663, H834, Y875, L838, D878,

I879, R886

G709, A666, A752, W767, R751, I681, A664,

A640, M877, F836, V876, W850, G837, L880,

T797, T839, L796

PEP-I2 T724, E708, R751, Y706, N794, M877,

E663, W850

L796, A752, G795, S665, D878, F836, Y875,

H834, L810

PEP-I3 G795, T765, W767, R792, R751, N794,

E708, Y706, I681, H834, Y875

L810, A752, A793, S665, A664, M877, F836,

W850

PEP-I4 Y706, E708, R639, Y875, R792, R751 M877, E663, W850, V876, F836, H834, L810,

W767,

PEP-II1 R792, L810, D811, W850, Y875, V876,

M877,

E708, Y706, H834, F836, P835, E663, R639

PEP-II2 H834, W850, Y875, R751, E708, D878,

S665, R792

V876, M877, Y706, F836, N794, A666, L810,

PEP-II3 A664, E663, S665, E708, D878, R751,

R792, N794, L810

M877, A666, W767, F836, V876,

doi:10.1371/journal.pone.0172217.t003
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According to the Chen et al. study, E663, E708, Y875, M877 and H834 residues of LRP6
are important in its binding to Wnt ligands. However, the impacts of E663 and H834 resi-

dues on the Wnt-LRP6 interaction are significantly higher than other aforementioned resi-

dues [8]. The lowest SASA measures for E663 and H834 residues of LRP6 were observed in

PEPI1-LRP6 (E663 = 30.15 nm2, H834 = 13.72 nm2) and PEPII1-LRP6 (E663 = 26.31 nm2,

H834 = 1.56 nm2) complexes compared to free LRP6 (E663 = 62.4 nm2, H834 = 33.85 nm2).

This suggests that the binding of PEP-I1 and PEP-II2 to LRP6 may cause a meaningful con-

formational change in the 3D structure of LRP6 which results in a reduced availability of

E663 and H834 residues for Wnt ligands. The SASA values of other Wnt-binding residues of

LRP6 were also reduced through interaction of the peptides with LRP6 (Fig 6B). In all cases,

except PEP-I4 and PEP-II1 peptides, the peptides were anchored by the hydrogen bonds

with at least one of these critical Wnt-binding residues, E663 and H834. Among seven

selected peptides, only PEP-I1 could form hydrogen bonds with both E663 and H834 resi-

dues simultaneously. The common Wnt- and DKK-binding residues of LRP6, which include

E663, Y706, E708, K770, N813, H834, Y875 and M877 residues, are probably occupied by the

peptides through hydrogen bonds (Fig 8). Studies have shown that I681, S749, R751, W767,

G769, R792, N794, L810, D811, D830, F836 and W850 residues of LRP6 play a pivotal role in

Fig 8. (Up) Representation of third PE pair of LRP6. (Down) H-bond interactions between the designed peptides and third PE pair

of LRP6. (A) PEP-I1, (B) PEP-I2, (C) PEP-I3, (D) PEP-I4, (E) PEP-II1, (F) PEP-II2 and (G) PEP-II3 with LRP6 surface. The common Wnt-

and DKK-binding residues of LRP6 are shown in color. Non-bonded connections have been omitted to simplify the figure.

doi:10.1371/journal.pone.0172217.g008
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the DKK-LRP6 interactions [19–21]. Our results indicated that all selected peptides could

efficiently bind to at least five of these residues simultaneously (Table 3). On the whole,

designed peptides may have the ability to selectively interact with Wnt- and DKK-binding

residues of LRP6 and result in the prevention of Wnt signaling pathway through blocking

Wnt-binding site of LRP6.

RMSD and Rg values are widely used for evaluating macromolecules stability and rigidity,

respectively [22, 23]. A slight rise of RMSD values of peptide-LRP6 complexes implicate higher

stability of peptide-protein complexes. The highest complex stability was observed in PEPI1-

LRP6 and PEPII2-LRP6 complexes. Furthermore, Rg values of peptide-protein complexes

were decreased during MD simulations. This elucidates that peptide-LRP6 complexes are

highly compacted under physiological conditions. The structural fluctuations of peptide-LRP6
complexes were also assessed by measuring the RMSF values of each complex during MD sim-

ulations. RMSF is an indicator of the macromolecular flexibility and rigidity under thermal

equilibrium, and the high fluctuating residues in the protein sequence are highly unstable pre-

sumably involved in promoting the protein structure to an unfolded state [24]. Pushie et al.

demonstrated that the residues with higher RMSF values are associated with surface-exposed

regions involved in protein-protein interactions [25]. PEP-I1, PEP-I3 and PEP-II2 could sub-

stantially reduce the RMSF measures of Wnt-binding residues compared to other peptides.

The SASA evaluation of Wnt-binding site of LRP6 also confirmed the reduced accessibility of

these residues upon peptide binding (Fig 6).

This is reasonable enough that the surface accessibility of functional residues is crucial for

protein function. A reduced SASA value has been known to be associated with a significant

reduction of protein activity [26]. Our SASA analysis revealed that Wnt-binding residues of

LRP6 tended to be more buried upon peptide-LRP6 interactions. This suggests that the bind-

ing of designed peptides to LRP5/6 may result in the attenuation of Wnt-binding interface of

LRP6 through burying the functional residues involved in Wnt-LRP6 interaction.

Nowadays, electrostatic interactions have been proven to be critical for the catalytic activity

and protein—protein recognitions [27]. These energies stabilize the folded state of a protein

and play a key role in fold specificity of macromolecules [28, 29]. Cheng et al. have reported

that the DKK1-binding site of LRP6 is a hydrophobic patch with some polar residues. They

found that the hydrophobic region of this binding site interacts with F205 and W206 residues

of DKK1. Additionally, several polar interactions including D811 of LRP6 with R236 of DKK1,

E708 of LRP6 with H204 of DKK1, R792 of LRP6 with E232 of DKK1, and H834 of LRP6 with

S228 of DKK1 are actively involved in the maintenance of LRP6-DKK1 complex [21]. More-

over, Lin et al. found that several positively charged residues have a crucial role in the binding

of Mesd to LRP6 [30]. These findings underscore that the binding cavities of LRP6 are largely

charged with negatively charged residues. During the peptide binding affinity maturation

steps, we considered the high positive surface potential of peptides as an important property

for selecting the final peptides. Accordingly, peptides with higher positive surface potentials

had a higher binding affinity to the LRP6 binding site.

Conclusion

In this study, we have proposed a therapeutic peptide design strategy to interrupt the Wnt-

LRP6 interaction which was based on structural, dynamic and energetic analyses of the

DKK3C-LRP6 interaction as well as the previous published data. The designed peptides are

highly capable of binding to the Wnt- and DKK-binding sites of LRP6 in silico, in a selective

manner. These peptides, especially PEP-I1 and PEP-II2, could induce a local conformational

change in LRP6 structure leading to an increased buried surface area of Wnt-binding site. The
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peptide-LRP6 complexes were highly stable and compact, and therefore, could be considered

as possible therapeutic agents for hindering Wnt signaling pathway in the cancers which are

dependent on function of this signaling pathway. However, the impacts of the selected peptides

on Wnt signaling pathway need to be validated experimentally.

4. Materials and methods

4–1. Modeling, refinement and quantitative evaluation of DKK3C

Modeller v9.15 software was used for performing HM using the crystal structure of CRD2 of

the mouse dkk2 (PDB ID:2JTK) as the template [31]. The HM method consists of the follow-

ing steps: (i) template selection; (ii) target template alignment; (iii) model building; and (iv)

model evaluation. These steps can be iteratively repeated, until a reasonably accurate model is

generated. The sequence identity and similarity of this template with DKK3C were defined to

be 30% and 73% respectively. Among 10000 generated models, 10 top models were chosen

(based on their DOPE score) for further analyses. Evaluation of the models quality was carried

out by VADAR, SAVES (https://services.mbi.ucla.edu/SAVES/), ProSA and ModFOLD web

tools [32–34]. Parallel checking of model quality was conducted utilizing several tools to

enhance the accuracy of validation. Finally, the best model was selected and considered for fur-

ther analyses. GalaxyRefine and NOMAD-REF servers were used for refining and energy min-

imizing the selected model [35]. These servers rebuilt the model side-chains and performed

overall structure relaxation using MD simulations. The low free-energy conformations were

further refined by full-atomic simulations using ModRefiner method [36].

4-2. Construction of peptide library

The stability of initial peptide sequences was remarkably low; therefore, a focused peptide

library was constructed based on all possible amino acid substitutions. According to the

molecular docking studies and literature data mining, some residues were recognized as the

key residues involved in DKK3-LRP6 interactions, and therefore, were not manipulated. A

peptide library was constructed using Rosetta backrub and sequence tolerance protocols

implemented in the Rosetta3.5 software [37]. Using these protocols, a given peptide sequence

can be tolerated while still preserving its function at the defined level. The results were ana-

lyzed using R package and the tolerated peptide sequence was generated [38].

4-3. Optimization of binding affinity and stability of the peptides

First, the initial peptide sequences were tolerated utilizing Rosetta backrub and sequence toler-

ance protocols. However, the binding affinity of these peptides, both BoxI- and BoxII-derived

peptides, to LRP6 were not satisfactory and needed to be improved. To this end, several steps

of affinity maturation were performed by generating some logical substitutions. BLOSUM-62

scoring matrix, one of the most effective matrices for predicting the common amino acid sub-

stitutions, was used to generate non-deleterious substitutions [39]. Except the amino acid sub-

stitutions with score of -4, any residue was separately substituted with all other amino acids.

Nevertheless, the main LRP6-DKK3C interacting residues which had been predicted by molec-

ular docking studies as well as literature-based information did not change. Following each

substitution, the binding affinity, stability and several physicochemical properties of the pep-

tides were evaluated. At each position, the amino acid substitutions that lead to an increase in

the binding affinity of the peptides to LRP6 were distinguished. All possible combinations of

favorable substitutions were generated and their binding energy to LRP6 was calculated again.

In this step, MD simulations were not carried out due to the high computational demand.
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Finally, seven improved peptides (Box-I: four peptides, Box-II: three peptides) were selected

for production of MD simulation trajectories.

4-4. Evaluation of binding affinity and stability of peptide variants

Any substitution was followed by evaluating peptide binding affinity and stability using Clu-

sPro docking server and ProtParam (http://us.expasy.org/tools/protparam.html) web tool,

respectively [40]. In parallel, a molecular docking was separately conducted using HADDOCK

server to validate the peptide-LRP6 interaction mode. This program is a powerful docking tool

which uses a data-driven approach supporting for a wide range of experimental data [41]. Clu-

sPro assigns a weighted score for binding energy of a given protein complex. ProtParam calcu-

lates the instability index of the proteins and peptides. Instability index is a reliable measure

that provides an estimate of the stability of a protein in a test tube by using statistical analysis

of 12 unstable and 32 stable proteins. The proteins and peptides with instability index lower

than 40 are classified as stable [42]. Prior to docking, the structure of each peptide was pre-

dicted by using PEP-FOLD server [43]. The initially docked peptide-protein complexes

resulted from ClusPro server were refined using GalaxyRefineComplex web tool (http://

galaxy.seoklab.org/cgi-bin/submit.cgi?type=COMPLEX).

4-5. Calculation of physicochemical properties of peptides

Several physicochemical properties of the peptides including molecular weight, net charge at

pH 7, pI, water solubility, aliphatic index, grand average of hydropathicity (GRAVY) and

aggregation hot spots were calculated using ProtParam, PepCalc and Aggrescan tools [44, 45].

It is now widely accepted that a positive GRAVY value infers the hydrophobicity, while a nega-

tive GRAVY value indicates the hydrophilicity level of a protein [46]. Considering the binding

affinity and stability, the aforementioned parameters were also computed to choose the best

three peptides with completely matched properties for in vitro experiments.

4-6. MD simulations

In order to assess the conformational changes of the peptides, alone and in complex with

LRP6, MD simulations were carried out using GROMACS version 5 for a period of 20 ns

using the original GROMOS96 force field 43A1 [47]. MD simulation is a very efficient tool

that is commonly used in the solid-state physics and materials community for modeling solids

and liquids at the atomic level. Single peptides as well as peptide-LRP6 complexes were sol-

vated in a solvation box using SPC/E water model with 10Å distance between the edges of the

box and the peptides. The system was neutralized by replacing solvent molecules with Cl- and

Na+ ions. Subsequently, the system was relaxed using steepest descent algorithm followed by

conjugate gradient algorithm. After several energy minimization steps, the entire system was

equilibrated for 100 ps using canonical (NVT) and the isothermal—isobaric (NPT) ensembles.

Finally, the equilibrated system was simulated for a period of 20 ns using NPT ensemble to

understand the structural dynamics of the peptides undergoing interaction with LRP6.

4-7. Visual presentations

All protein figures were created using PyMOL and VMD programs [48, 49]. The graphs

obtained from MD simulations were mainly plotted using the Grace software (GRACE: http://

plasma-gate.weizmann.ac.il/Grace/).
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4-8. Calculation of the electrostatic potential around the peptides

The electrostatic potential around the selected peptides was calculated for the extracted struc-

tures of the peptides derived from peptide-LRP6 MD simulations. We used the average coordi-

nates of peptide structures extracted from the final 10 ns simulations (10–20 ns) for the

electrostatic potentials calculations. The PBEQ-Solver [50] was used for calculating electro-

static potential surface around each peptide by solving the nonlinear Poisson-Boltzmann (PB)

equations with a grid spacing of 1 Å [27].

4-9. Energetic analysis

To calculate the binding energy of each peptide-LRP6 complex, an average structure was pre-

pared from the last 10 ns MD simulations. The electrostatic and van der Waals (VdW) energies

were calculated for the last snapshot configurations taken from the MD trajectories of pep-

tide–LRP6 complexes and then averaging the values. Unbound peptides and LRP6 snapshot

configurations were also prepared from the peptide-LRP6 complex trajectories. The coordi-

nates of 31 snapshots were taken at 100-ps intervals during the last 3 ns simulations of each

peptide-LRP6 complex, where the complexes appeared to acquire a stable configuration, and

used for energetic analysis.

4-9-1. Gibbs free energy of the peptide-LRP6 interaction. The Gibbs free energy change

(ΔG) for all selected peptides undergoing the interaction with LRP6 were calculated from the

atomic structures of peptides and LRP6 receptor. The interaction energy calculations for each

peptide-LRP6 complexes were computed for their average structures extracted from the last 10

ns of MD production phase. PRODIGY web tool was used for measuring ΔG of peptide-LRP6
interactions as well as their polar and nonpolar contacts [51]. This server computes the num-

ber of interfacial contacts (ICs) and percentage of non-interacting surface (NIS) in a protein-

protein complex which have been demonstrated to be the key parameters in the protein-pro-

tein binding energy prediction [52]. Free energy of interaction was calculated as follow:

DGinteraction ¼ � 0:09459 ICscharged=charged � 0:10007 ICscharged=apolar
þ 0:19577 ICspolar=polar � 0:22671 ICspolar=apolar þ 0:18681 %NISapolar
þ 0:3810 %NIScharged � 15:9433

Where, ICsxxx/yyy is the number of Interfacial Contacts found between the interface of the first

and the second interactors classified based on the polar/apolar/charged nature of the interact-

ing residues (i.e. ICscharged/apolar is the number of ICs between charged and apolar residues).

The contacts between two residues were defined if any of their heavy atom was within a dis-

tance of 5.5 Å.

4-9-2. Solvation energy. The solvation energy consists of the electrostatic

(ΔGpolar, solvation) and nonpolar (ΔGapolar, solvation) contributions. Solvation energies of the pep-

tides were presented as the average values of the energies calculated for the snapshot configura-

tions at the last 3 ns MD simulations. The PBEQ-Solver has been used for calculating the

solvation energy of each peptide.

4-9-3. Molecular Mechanics (MM) calculations. The free binding energies of peptide–

LRP6 complexes have been computed with the MM according to over snapshots from MD tra-

jectories. The 31 equally spaced snapshot configurations extracted from the last 3 ns peptide-

LRP6 simulations were used for energy calculations. ‹EMM› is generally calculated as follow:

hEMMi ¼ hEinternali þ hEelectrostatici þ hEVdWi

Where, the (Einternal) value includes bond, angle, and torsional angle energies, (Eelectrostatic) and

(EVdW) values refer to the non-bonded electrostatic and van der Waals interactions of the
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peptides and proteins. The value Eelectrostatic was calculated using APBS [53] as implemented in

PyMOL. The EVdW value was calculated using a standard GROMACS utility with the same

force field applied in the MD simulations (No cutoff was defined for the evaluation of non-

bonded interactions).
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