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Abstract

ATP-binding cassette transporter A1 (ABCA1) controls cholesterol and phospholipid efflux

to lipid-poor apolipoprotein E (APOE) and is transcriptionally controlled by Liver X receptors

(LXRs) and Retinoic X Receptors (RXRs). In APP transgenic mice, lack of Abca1 increased

Aβ deposition and cognitive deficits. Abca1 haplo-deficiency in mice expressing human

APOE isoforms, increased level of Aβ oligomers and worsened memory deficits, preferen-

tially in APOE4 mice. In contrast upregulation of Abca1 by LXR/RXR agonists significantly

ameliorated pathological phenotype of those mice. The goal of this study was to examine

the effect of LXR agonist T0901317 (T0) on the phenotype and brain transcriptome of APP/

E3 and APP/E4 Abca1 haplo-deficient (APP/E3/Abca1+/- and APP/E4/Abca1+/-) mice. Our

data demonstrate that activated LXRs/RXR ameliorated APOE4-driven pathological pheno-

type and significantly affected brain transcriptome. We show that in mice expressing either

APOE isoform, T0 treatment increased mRNA level of genes known to affect brain APOE

lipidation such as Abca1 and Abcg1. In both APP/E3/Abca1+/- and APP/E4/Abca1+/- mice,

the application of LXR agonist significantly increased ABCA1 protein level accompanied by

an increased APOE lipidation, and was associated with restoration of APOE4 cognitive defi-

cits, reduced levels of Aβ oligomers, but unchanged amyloid load. Finally, using Gene set

enrichment analysis we show a significant APOE isoform specific response to LXR agonist

treatment: Gene Ontology categories “Microtubule Based Process” and “Synapse Organi-

zation” were differentially affected in T0-treated APP/E4/Abca1+/- mice. Altogether, the

results are suggesting that treatment of APP/E4/Abca1+/- mice with LXR agonist T0 amelio-

rates APOE4-induced AD-like pathology and therefore targeting the LXR-ABCA1-APOE

regulatory axis could be effective as a potential therapeutic approach in AD patients, carriers

of APOEε4.
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Introduction

The inheritance of APOEε4 allele is the major genetic risk factor for late-onset Alzheimer dis-

ease (LOAD) [1]. AD patients, carriers of APOEε4 allele show earlier onset of the disease and

higher amyloid load. AD mouse models expressing human APOE isoforms to a large extent

recapitulate amyloid phenotype and cognitive deficits [2–4]. The mechanism by which APOE4

affects the pathogenesis of AD remains poorly understood and it is still unclear if APOEε4
allele confers insufficient protection against beta-amyloid (Aβ) or if it has deleterious effects

[5, 6]. Compared to APOEε3 carriers, the higher incidence of LOAD and an increased Aβ
deposition in APOEε4 carriers might be a result of lower brain APOE protein levels, or its

lower lipidation [6]. In addition to APOEε4, other low prevalence functional genetic variants

are proposed as risk modifiers [7].

ATP-binding cassette transporter A1 (ABCA1) controls cholesterol and phospholipids

efflux to lipid-poor apolipoproteins and is essential for the formation of HDL in periphery and

HDL-like particles in brain [8]. While rare ABCA1 variants have been shown to affect plasma

HDL and AD risk [9], genome wide association studies (GWAS) have produced conflicting

reports on the associations of common ABCA1 genetic variants with LOAD (reviewed in [8]).

A recent study reported that a rare variant of ABCA1 (N1800H) resulting in a loss-of-function

is associated with high risk of AD and cerebrovascular disease in a large cohort from the Dan-

ish general population [10]. This variant, found in 1:500 individuals, has a well-established

effect on plasma HDL and cholesterol efflux, and is associated with low plasma levels of APOE

[10].

In transgenic mice expressing human APP, global deletion of Abca1 translates into substan-

tially decreased amounts of APOE and increased amyloid deposition [11–13]. In contrast,

Abca1 overexpression decreases amyloid pathology [14]. The effect of Abca1 gene dose on AD-

like phenotype was examined in old APP transgenic mice expressing mouse Apoe and the

results demonstrated that presence of one copy of Abca1 in the mouse genome significantly

worsened memory deficits in correlation with an increased amount of Aβ oligomers [15].

Interestingly, in middle-aged APP mice expressing human APOE isoforms, Abca1 haplo-defi-

ciency differentially affected the phenotype of APP/E4 mice in that it decreased Aβ clearance,

plasma HDL level and increased amyloid load preferentially in APP/APOE4 mice [3]. This

suggests that APOE4 confers less resistance to additional genetic defects and increasing

APOE4 level may be beneficial in ameliorating AD phenotype.

The expression of ABCA1 in humans and rodents is transcriptionally controlled by Nuclear

receptors Liver X Receptors (LXRα and LXRβ). LXRα/β are transcription factors that form

obligate heterodimers with Retinoid X Receptors (RXRs). Previous studies demonstrated that

treatment with synthetic LXR ligands decreased Aβ burden, increased its clearance in APP

expressing mice and decreased inflammatory reactions in brain [16–18]. Since the diverse

effects of activated LXRs/RXRs heterodimers in brain and periphery have been ascribed to

changes in transcriptome [19, 20] and their activation status can be easily monitored and

manipulated, the application of synthetic small molecule LXR/RXR ligands has also been sug-

gested as a rational therapeutic approach in the treatment of AD [17, 19–23]. We have shown

that synthetic RXR agonist, bexarotene, restored memory deficits in APP/PS1 transgenic mice

expressing either APOE3 or APOE4 and in correlation with the improved memory perfor-

mance significantly decreased the amount of soluble oligomers in the brain [24]. Boehm-

Cagan et al. confirmed the effect on cognition in non-transgenic WT type mice expressing

human APOE isoforms [25]. However, whereas our data showed that bexarotene treatment

significantly decreased Aβ level in the interstitial fluid of APP/PS1 transgenic mice expressing

either APOE isoform, there was no effect on amyloid plaque load [26]. Thus our findings were
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in contrast to the original report by Cramer et al. [24] showing rapid plaque clearance, and in

agreement with other studies [27–30]. Our recent data suggest that the effects of activated

LXRs/RXRs extend beyond cholesterol and phospholipids efflux, improving neuronal differen-

tiation and adult neurogenesis in APOE4 and APOE3 mice [31, 32].

The aim of this study was to examine changes in brain transcriptome of Abca1 heterozy-

gous APP/E3 and APP/E4 mice treated with LXR ligand T0901317 and correlate the results to

the phenotype.

Materials and methods

Chemicals and reagents

T0901317 (T0) was purchased from Cayman Chemical (Ann Arbor, MI). All other materials

were purchased through Fisher Scientific, unless otherwise noted.

Animals and diet

All animal experiments were approved by the University of Pittsburgh Institutional Animal

Care and Use Committee and carried out in accordance with PHS policies for use of animals

in research. APP/PS1ΔE9 mice [33] and Abca1+/- heterozygous mice were purchased from

The Jackson Laboratory (Bar Harbor, ME). Human APOE4+/+ and APOE3+/+ targeted replace-

ment mice (APOE-TR) were originally purchased from Taconic (Germantown, NY). All mice

that were either purchased or bred for at least ten generations were on C57BL/6 genetic back-

ground. APP/PS1ΔE9/APOE4+/+/Abca1+/- and APP/PS1ΔE9/APOE3+/+/Abca1+/- (referred to

as APP/E4/Abca1+/- and APP/E3/Abca1+/- respectively) as well as non–transgenic, expressing

endogenous APP, littermates (referred to as E4/Abca1+/- and E3/Abca1+/-) were bred as previ-

ously described [3]. At five months of age, 104 APP transgenic and non–transgenic controls

(APP/E4/Abca1+/-, 11 females and 15 males; APP/E3/Abca1+/-, 12 females and 17 males; E4/

Abca1+/-, 14 females and 9 males; E3/Abca1+/-, 13 females and 13 males) were randomly

assigned to vehicle (control) or T0 fed diet.

Each diet was prepared as previously described [34]. Briefly, T0 was dissolved in dimethyl

sulfoxide (DMSO), Cremophor (Sigma–Aldrich, St. Louis, MO), then double distilled water

(final 0.03% DMSO in prepared food), mixed with milled standard chow (Prolab1 Isopro1

RMH 3000, 5P76, LabDiet1, St. Louis, MO) and divided into daily portions. The diet was

dried in order to achieve a 0.028% (w/w) T0 drug concentration and a dosage of 20 to 25 mg

T0/kg mouse/day. Standard chow for the vehicle group was prepared as described, but only

containing DMSO and Cremophor. Mice were kept on the corresponding diets for 28 days

and assessments (behavior, immunohistochemistry, gene expression and Western blotting)

performed at 6 months of age. Age and gender matched non–transgenic littermates were used

as controls for behavior experiments.

Behavioral testing

Novel object recognition. Novel object recognition (NOR) was performed as previously

described with modifications [35]. On day one, mice were acclimated to the behavioral arena

(White plastic box, 40 cm x 40 cm x 30 cm) for ten minutes. Twenty-four hours following

acclimation, mice were placed in the center of the arena with two similar objects (Tower of

Lego1 bricks 8cm x 3.2cm, built in white, blue, yellow, red and green bricks) and allowed to

explore the objects for two trials lasting five minutes each, with a five minute inter-trial inter-

val. The similar objects were located in the east and west quadrant and spaced equidistant

from the arena walls. Twenty-four hours following the habituation, one object was replaced
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with a novel object (large metal bolt and nut of similar size). Mice were placed in the arena and

allowed to explore the objects for ten minutes. Exploratory visit was defined as the mouse sniff-

ing, climbing on, or touching an object or within three centimeters while facing an object.

Exploration time was recorded and scored with ANY-maze software (Stoelting Co., Wood

Dale, IL). The arena was cleaned with 70% ethanol between animals to eliminate olfactory

cues. Exploration time was calculated by dividing time exploring the novel object by total time

exploring objects. Animals exhibiting memory impairments spent less time exploring the

novel object.

Contextual fear conditioning. Contextual fear conditioning (Equipment obtained from

Stoelting Co., Wood Dale, IL) was performed as previously described with minor modifica-

tions [36]. Briefly, mice were placed in a conditioning chamber for two minutes, followed by

30 seconds of tone representing the conditioned stimulus (Sound, 2800 Hz; Intensity, 85 dB).

At the end of the tone, mice received a foot shock (0.7 mA) for two seconds through the floor

of the chamber. The cycle was repeated once more. At the end of the second cycle, the mice

remained in the chamber for 30 seconds before returning to their housing cages. Twenty-four

hours after the training phase, contextual fear conditioning was assessed and consisted of mea-

suring freezing behavior for five minutes in the original conditioning chamber. Twenty-four

hours after the contextual phase, freezing behavior during the cued fear conditioning was

assessed and consisted of placing mice in a novel context for two minutes (plain gray walls

replace by black and white stripped walls), followed by exposure to the conditioned stimulus

for three minutes. Freezing behavior was defined as the absence of movement except for respi-

ration. Freezing behavior was recorded using ANY-maze software and calculated as percent

freezing of the total time spent in the chamber.

Animal tissue processing

Mice were anesthetized with Avertin (Intraperitoneal injection; 250 mg/kg of body weight).

Blood was collected through cardiac puncture followed by transcardial perfusion with 25 ml of

cold 0.1 M phosphate buffered saline (PBS), pH 7.4 [36]. Brains were removed and divided

into hemispheres. One hemisphere was dissected into cerebellum, subcortical region, hippo-

campus and cortex and snap frozen on dry ice. The second hemisphere was fixed in 4% para-

formaldehyde at 4˚C for 48 hours, and then stored in 30% sucrose.

Histology and Immunohistochemistry

Histology, X-34 and 6E10 immunohistochemistry was performed as previously described [31,

36]. Brain hemispheres were removed from the 30% sucrose solution and embedded in Histo-

Prep™. Brain hemispheres were cut into 30 μm coronal sections. Six sections starting at the for-

mation of the dentate gyrus (-1.2mm from Bregma) and separated by 450 μm were used for

immunohistochemistry. Sections were stored in glycol-based cryoprotectant at -20˚C until

staining.

For X-34 staining, sections mounted on positively charged glass slides were washed in PBS

and treated with 1,4-bis(3-carboxy-4-hydroxyphenylethenyl)-benzene (X-34) for 10 min each.

Slides were destained with 0.2% NaOH in 80% ethanol for 3 min and washed with PBS before

and after destaining.

For 6E10 staining, sections adjacent to those used for X-34 were immunostained with bioti-

nylated 6E10 antibody (803009, Biolegend, San Diego, CA). Antigen retrieval was done on

free-floating sections with 70% formic acid. Blocking of endogenous peroxidases and avidin-

biotin followed antigen retrieval. Then, sections were incubated with 6E10 biotin-labeled

antibody (1:1000) overnight at 4˚C and developed with Vectastain ABC Elite kit and DAB
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substrate (Vector Laboratories, Burlingame, CA). After staining, sections were coverslipped

with Permafluor.

All sections were examined under the microscope using the Nikon Eclipse 90i at 10× mag-

nification. For quantitative analysis, percent positive staining was defined as the percent area

covered by X-34 or 6E10 staining using NIS Elements software (Nikon Instruments Inc., Mel-

ville, NY).

Western blotting

To prepare lysate for both Western blotting and ELISA, frozen cortices were homogenized in a

glass Dounce containing tissue homogenization buffer (250 mM sucrose, 20 mM Tris base, 1

mM EDTA, and 1 mM EGTA (Sigma–Aldrich, St. Louis, MO, 1 ml per 100 mg of tissue) and

protease and phosphatase inhibitor cocktail (Roche, Indianapolis, IN). The Bradford assay was

used to determine protein concentration of all samples. The supernatant of the initial homoge-

nate (TBS extract) was used to determine soluble APOE (EMD Millipore, Temecula, CA) and

APOJ (Santa Cruz Biotechnology, Dallas, TX) concentration. The pellet was re-suspended,

sonicated and spun with RIPA buffer containing protease and phosphatase inhibitors. 30 μg of

total protein was mixed with Tris-Glycine denaturing loading buffer, loaded, and electropho-

resed on 10% Tris-Glycine or 4–12% Bis-Tris gels. On nitrocellulose membranes ABCA1 was

detected using polyclonal antibody, ab7360 (Abcam, Cambridge, MA), and APPfl with 6E10

antibody. β-Actin served as a loading control for all Western blots and detected using a mono-

clonal antibody (Sigma-Aldrich, St. Louis, MO). Membranes were incubated with respective

secondary antibodies conjugated to horseradish peroxidase, and visualized by enhanced

chemiluminescence, Plus-ECL (PerkinElmer, Waltham, MA). Blots were imaged using the

chemiluminescent setting on the Amersham Imager 600 (GE Healthcare Life Sciences, Marl-

borough, MA). All bands were quantified by densitometry (ImageQuant, version 5.2; GE

Healthcare) and normalized to β-Actin. To quantify APPfl and ABCA1, bands were normal-

ized to respective vehicle groups. Quantification of APOE and APOJ is represented as fold of

vehicle treated APP/E3/Abca1+/- mice.

Native PAGE

Native PAGE was performed according to a previously published protocol [37] with slight

modifications. TBS brain extract was mixed with 2× non-denaturing loading buffer and

resolved on Novex™ 4–20% Tris-Glycine gels. TBS brain extract from Apoeko mice was used as

a negative control. Amersham™ HMW calibration kit was used as a native ladder (GE Health-

care, Marlborough, MA). Polyclonal anti-APOE (EMD Millipore, Temecula, CA) along with

respective secondary antibody was used for incubation and developed as described for West-

ern blot. Quantification of lipidated APOE is represented as the fold of respective vehicle

groups.

Aβ oligomer ELISA

Aβ oligomer ELISA was performed as previously published [36] with few modifications. We

used a standard curve of Aβ1–40Ser26Cys dimer. 6E10 antibody was used as the capture anti-

body (10 μg/ml) to coat a 96 well Nunc MaxiSorp plate overnight at 4˚C. After removing the

antibody, the plate was washed with PBS and blocked with Block Ace for four hours. Following

the removal of Block Ace, Aβ1–40Ser26Cys dimer standards and RIPA fraction from the cortex

were diluted in EC buffer and loaded on the plate in duplicates. Biotinylated 6E10 antibody was

used as the detection antibody (0.167 μg/ml) and incubated 4 hours at room temperature. The

assay was developed with HRP-labeled streptavidin (1:30,000) for 1.5 hours at RT, followed by
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the use of the TMB Microwell Peroxidase Substrate System (KPL, Gaithersburg, MD). Plate was

read on the SpectraMax i3 (Molecular Devices, Sunnydale, CA) at 650 nm. Final values were

compared to Aβ1–40Ser26Cys dimer standard curve using linear regression analysis, normalized

to the total protein concentration in each sample and expressed as ng Aβ/mg protein.

RNA isolation, qPCR, and sequencing

RNA was isolated from the cortex and purified according to the RNAeasy mini kit manufac-

turer protocol (Qiagen, Valencia, CA) as previously described [32]. RNA quality was deter-

mined using the 2100 Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA).

Samples with a RIN > 8 were used for library generation and sequencing (mRNA Library

Prep Reagent Set; Illumina, San Diego, CA) on the Illumina HiSeq2000 instrument at the

Functional Genomics Core, University of Pennsylvania, Philadelphia, PA (http://fgc.genomics.

upenn.edu/). Subread (v1.5.0, http://subread.sourceforge.net) was used to align sequencing

reads to the mouse genome (mm9). EdgeR package (v3.14.0) in R environment (v3.2.4) was

used to analyze the differential gene expression. qPCR assays were performed using TaqMan™
Gene Expression Assay or Power SYBR1 Green PCR Master Mix (Applied Biosystems, Foster

City, CA). cDNA was synthesized using EcoDry™ Premix, Random Hexamers (Clontech,

Mountain View, CA).

Functional annotation clustering and analysis

Functional annotation clustering was performed using two different bioinformatics databases.

We first used Database for Annotation, Visualization and Integrated Discovery (DAVID;

http://david.abcc.ncifcrf.gov/; Huang et al., 2009) to determine gene ontology (GO) terms.

Additional analysis with data from EdgeR output tables was performed using Gene set enrich-

ment analysis (GSEA v2.2.2, https://www.broadinstitute.org/GSEA) with a gene matrix set for

Biological Process (BP) (c5.bp.v5.1.symbols.gmt) [38, 39].

Statistical analysis

All results are reported as means ± SEM. With the exception of RNA-seq results, all data were

analyzed by two-way ANOVA for genotype and treatment factors followed by Sidak’s post hoc

test or t-test. Unless otherwise indicated, all statistical analyses were performed in GraphPad

Prism, version 6.0. Significance was determined as p< 0.05.

Results

Pharmacological activation of LXR/RXR transcription factors improves

cognitive performance of Abca1 haplo-deficient APP/E4 mice

We have previously demonstrated that Abca1 deficiency differentially affects AD-like pheno-

type in mice expressing human APOE4 or APOE3. To determine if ligand activated LXR can

alleviate cognitive deficits in APP/E4/Abca1+/- mice, we treated five month old APP/E4/

Abca1+/- mice with T0 for one month and the phenotype was examined at the age of six

months. It should be noted that at the start of the treatment, the amyloid plaques are already

present therefore the treatment should be considered therapeutic. First, we examined changes

in cognitive function following T0 treatment in a novel object recognition paradigm. As seen

in Fig 1A, analysis by two-way ANOVA revealed a significant main effect of APOE genotype

[F(1, 51) = 7.44, p< 0.01] and T0 treatment [F(1, 51) = 4.45, p< 0.05]. In contrast, neither

LXR ligand treatment nor APOE isoform had an effect on non-transgenic littermates (Fig 1B).

To confirm the effect seen in novel object recognition, we used contextual fear conditioning
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paradigm that tests hippocampal-associated learning. As shown on Fig 1C, analysis by two-

way ANOVA shows no interaction and significant main effects of T0 treatment (F(1, 51) =

5.94, p = 0.018) and APOE genotype (F(1, 51) = 10.6, p = 0.002). Sidak’s multiple compari-

son post-hoc test revealed a significant difference between T0 and vehicle treated APP/E4/

Abca1+/- mice (p< 0.05). Interestingly, in difference to novel object test, LXR ligand treatment

and APOE genotype had a significant main effect on the performance of WT controls (Fig

1D). Cued test demonstrated no effect of T0 and APOE genotype confirming that the effect of

T0 is reflected by hippocampal-associative memory (Fig 1E and 1F). Thus, the conclusion

from these experiments is that LXR ligand treatment significantly improves cognition of APP/

E4/Abca1+/- mice.

Fig 1. T0 treatment restores cognition in APP/E4/Abca1+/- mice. 5-month-old APP/E3/Abca1+/-, APP/E4/

Abca1+/- and non-transgenic mice were treated with T0 and vehicle (Veh) for one month and assessed at 6

months of age. Cognitive function was evaluated with novel object recognition (A and B) and contextual fear

conditioning behavioral paradigms (C and D). A, T0 affected the performance of APP transgenic mice in the

novel object recognition test. Analysis by two-way ANOVA shows no interaction between APOE genotype

and T0 treatment with a significant main effects of APOE genotype (F(1, 51) = 7.44, p < 0.01) and T0

treatment (F(1, 51) = 4.45, p< 0.05). B, T0 treatment did not affect the performance of non-APP littermates.

Effects of APOE genotype (F(1, 45) = 1.9) and T0 treatment (F(1, 45) = 0.002). C, LXR agonist significantly

improved the performance of APP/E4/Abca1+/- mice in contextual fear conditioning paradigm. Analysis by

two-way ANOVA shows no interaction between APOE genotype and T0 treatment and significant main

effects of T0 treatment (F(1, 51) = 5.94, p = 0.018) and APOE genotype (F(1, 51) = 10.6, p = 0.002). Sidak’s

multiple comparison test shows a significant difference between T0 and vehicle treated APP/E4/Abca1+/-

mice (*, p < 0.05). D, T0 also affected the behavior of non-APP controls in the contextual fear conditioning

behavior paradigm. Analysis by two-way ANOVA shows no interaction and significant main effects of T0

treatment (F(1, 45) = 4.47, p = 0.03) and APOE genotype (F(1, 45) = 4.49, p = 0.04). T0 had no effect on APP

(E) and non-APP mice (F) during the cued phase of fear conditioning. For all panels, N = 11–15 male and

females mice per group. Data represented as means ±SEM.

doi:10.1371/journal.pone.0172161.g001
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Ligand activated LXR/RXR do not affect amyloid plaque level but

significantly decrease soluble Aβ oligomers in APP/E4/Abca1+/- mice

To examine if LXR/RXR agonist treatment can alleviate amyloid plaque pathology in APP/E3/

Abca1+/- and APP/E4/Abca1+/- mice, brain sections were stained with X-34 to visualize com-

pact fibrillary amyloid plaques. Representative images of X-34 staining in the cortex and hip-

pocampus are shown in Fig 2A. Analysis by two-way ANOVA confirmed a significant main

effect of APOE genotype but there was no effect of T0 treatment. To visualize diffuse and

compact (total) amyloid plaques, brain sections were stained with anti-Aβ antibody 6E10. Rep-

resentative images of 6E10 staining in the cortex and hippocampus are shown in Fig 2C. Simi-

larly, to the results of X-34 staining, the analysis showed a significant main effect of APOE
genotype on the total amyloid burden, regardless of the T0 treatment (Fig 2D). Next, we deter-

mined the effect of T0 on the level of soluble Aβ oligomers in the cortices of APP/E3/Abca1+/-

Fig 2. T0 treatment significantly decreased soluble Aβ oligomers, but not amyloid plaque pathology in APP/E4/

Abca1+/- mice. Amyloid plaque pathology of mice shown on Fig 1 was assessed by immunohistochemistry and ELISA. A,

Brain sections were stained with X-34 to visualize compact fibrillary amyloid plaques in vehicle and T0 treated APP/E3/

Abca1+/- and APP/E4/Abca1+/- mice. Representative images of X-34 staining were captured at 10×magnification. B, X-34

positive amyloid plaques were analyzed by two-way ANOVA. There is no interaction between APOE genotype and T0

treatment and a significant main effect of APOE genotype (F (1, 55) = 34.7, p < 0.0001), but not of T0 treatment. N = 14–16

mice per group. N.S., not significant. C, Brain sections were stained with anti-Aβ antibody, 6E10, to visualize diffuse and

compact (total) amyloid plaques in vehicle and T0 treated APP/E3/Abca1+/- and APP/E4/Abca1+/- mice. Representative

images of 6E10 staining are shown (10×magnification). D, 6E10 positive amyloid plaque load analyzed by two-way ANOVA.

There is no interaction between APOE genotype and T0 treatment and a significant main effect of APOE genotype (F(1, 19)

= 4.41, p = 0.049), but not of T0 treatment. N = 5–6 mice per group. N.S., not significant. E, T0 treatment significantly

decreases Aβ oligomers in APP/E4/Abca1+/- mice. RIPA fraction was evaluated for soluble Aβ by Aβ oligomer ELISA.

Analysis by two-way ANOVA revealed an interaction between APOE genotype and T0 treatment (F(1, 32) = 4.82, p = 0.036).

Sidak’s post-test demonstrated a significant difference between vehicle treated APP/E3/Abca1+/- and APP/E4/Abca1+/- mice

(***, p<0.001) and T0 and vehicle treated APP/E4/Abca1+/- mice (*, p<0.05). N = 6–10 mice per group. F, T0 has no effect

on full-length APP. For all panels the data are means ±SEM.

doi:10.1371/journal.pone.0172161.g002
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and APP/E4/Abca1+/- mice (Fig 2E). We found a statistically significant interaction between

APOE genotype and T0 treatment and a difference in the amount of Aβ oligomers in T0 and

vehicle treated APP/E4/Abca1+/- mice (Sidak’s post-hoc test p< 0.05). These changes were not

a consequence of T0 effect on full length APP processing as its protein level was unchanged

(Fig 2F). The conclusion is that LXR ligand T0 does not affect amyloid plaques but signifi-

cantly decreases soluble Aβ oligomers that confirms our previous data on the effect of activated

LXR/RXR on amyloid pathology [26].

Genome-wide effects of activated LXR/RXR on brain transcriptome in

APP/E3/Abca1+/- and APP/E4/Abca1+/- mice

To determine the effect of T0 treatment on the transcriptome of APP/E3/Abca1+/- and

APP/E4/Abca1+/- mice shown on Figs 1 and 2, we performed RNA-seq. We used total RNA

extracted from cortices of APP/E3/Abca1+/- (4–5 mice per group) and APP/E4/Abca1+/- (5

mice per group) male mice treated with T0 or vehicle and analyzed the sequencing datasets

using edgeR v. 3.14.0 (http://bioconductor.org/). First, we evaluated the source of the variation

in gene expression. We applied Principal Component Analysis (PCA) to process the abun-

dance matrix of observed variables (static normalized expression level of genes across the

genotypes and treatment) and to calculate Principal Components that account for most of the

variance in the datasets. The scattered plot on Fig 3A is a two-dimensional (PC1 vs PC2) repre-

sentation of T0 treatment and genotype. Interestingly, APP/E3/Abca1+/- and APP/E4/Abca1+/-

mice formed two very distinct clusters encompassing the type of treatment. Thus it demon-

strates that the effect of APOE isoform on gene expression is higher than the T0 treatment, yet

APP/E4/Abca1+/- mice were more responsive to pharmacological activation of LXR/RXR.

Next we compared expression profiles of vehicle and T0 treated APP/E3/Abca1+/- mice and

identified a total of 411 differentially expressed genes: 137 up- and 274 down-regulated by T0

at a cut-off of p< 0.05 (Fig 3B). Using the same criteria, we found 746 differentially expressed

genes in APP/E4/Abca1+/- mice: 438 up- and 308 down-regulated following T0 treatment (Fig

3D). In mice expressing either APOE isoform, among common up-regulated genes known to

affect brain lipoprotein metabolism and APOE lipidation were Abca1, Abcg1 and Lpcat3
(marked on the volcano plots shown on Fig 3B and 3D). Surprisingly, T0 treatment did not

affect APOE mRNA level in mice expressing either isoform.

To examine biological categories affected by the treatment, we performed gene ontology

analysis using DAVID. We submitted all significantly up-regulated genes (the number of

genes is shown in red on Fig 3B and 3D) and downregulated genes (shown in blue on Fig 3B

and 3D) at p< 0.05 cutoff. As visible from S1 Table, similarly upregulated by T0 in both

APP/E3/Abca1+/- and APP/E4/Abca1+/- mice were processes related to lipid and cholesterol

metabolism, DNA repair, and chromatin modifications. In contrast, there was little similarity

between biological processes down regulated in APOE3 and E4 mice. As shown on S2 Table,

in APP/E3/Abca1+/- mice, significantly downregulated by T0 was GO term “innate immune

response” including toll like receptor 3 (Tlr3), bone marrow stromal cell antigen 2 (Bst2), as

well as interferon induced genes such as Ifit1 and Ifit3, and Oas2 and Oasl2. In contrast,

uniquely and significantly downregulated in APP/E4/Abca1+/- mice were transforming growth

factor beta receptor signaling, cell differentiation, cell chemotaxis and synaptic transmission

among others.

In validation qPCR assays we confirmed up-regulation of Abca1, Abcg1, Scd1 and Scd2,

Srebf1 and Lpcat3 using total RNA isolated from brains of male and female mice of both geno-

types (Fig 3C and 3E). To confirm the effect of activated LXR/RXR on transcription is trans-

lated into increased protein level, we performed western blotting on ABCA1 and APOE. As
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Fig 3. Transcriptional analysis of T0 treated six month old APP/E3/Abca1+/- and APP/E4/Abca1+/-

mice. We used total RNA extracted from cortices of APP/E3/Abca1+/- APP/E4/Abca1+/- male mice treated

with T0 or vehicle and shown on Fug.1 and 2. A, Principle component analysis (PCA) plot shows two
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visible from Fig 4A, T0 treatment increased ABCA1 protein level in both genotypes. Fig 4B

shows that pharmacological LXR/RXR activation by T0 did not change total APOE protein

level which is in agreement with gene expression data. Similarly, we did not observe any signif-

icant effect of activated LXR/RXR on APOJ/CLU protein level (Fig 4B). Lastly, we examined

APOE lipidation using native PAGE. As shown in Fig 4C, T0 treatment increased APOE lipi-

dation in APP/E3/Abca1+/- and APP/E4/Abca1+/- mice of both genders. Interestingly, APOE

lipidation in APP/E4/Abca1+/- was significantly lower than in APP/E3/Abca1+/- mice. We con-

clude that in both isoforms, LXR treatment significantly increased protein level of ABCA1 that

in turn affects cholesterol efflux and APOE lipidation.

dimensional comparison (PC1 vs PC2) of APOE genotype and T0 treatment in APP/E3/Abca1+/- (4 mice for

vehicle and 5 for T0 treatment) and APP/E4/Abca1+/- mice (5 mice per group). B and D, The volcano plots

show differential gene expression between T0 treated APP/E3/Abca1+/- (B) and APP/E4/Abca1+/- (D) mice

when compared to their vehicle treated counterparts using EdgeR RNA-sequencing results analysis.

Significant up-regulated genes are represented in red, significantly down-regulated genes are represented in

blue; the cut off is at p<0.05. Up-regulated genes represent target genes of T0 treatment. C and E, qPCR

validation of upregulated genes in T0 treated APP/E3/Abca1+/- and APP/E4/Abca1+/- mice from the volcano

plot analysis. For C and E, N = 12 mice per group. qPCR values are mean ± SEM. Analysis were performed

by student t-test. *, p<0.05, **, p<0.01, ****, p<0.0001.

doi:10.1371/journal.pone.0172161.g003

Fig 4. T0 treatment increases ABCA1 protein level and APOE lipidation. ABCA1, APOE and APOJ

protein levels were determined by SDS-PAGE and APOE lipidation by Native PAGE. A, Representative

image of ABCA1 protein level is shown above the graph. T0 significantly affected ABCA1 protein level.

Analysis by two-way ANOVA shows no interaction between APOE genotype and T0 treatment. There is a

significant main effect of T0 treatment (F(1, 34) = 26.12, p < 0.0001), but not of APOE genotype. Sidak’s post-

test shows a significant difference between T0 and vehicle treated APP/E3/Abca1+/- and APP/E4/Abca1+/-

mice. N = 8–10 mice per group. B, T0 treatment did not affect APOE or APOJ protein levels. N = 9–10 mice

per group. C, APOE lipidation state in APP/E3/Abca1+/- and APP/E4/Abca1+/- mice. Representative images of

APOE lipidation are shown: upper panel—male mice; lower panel—female mice (Fem). Arrows are indicative

of lipidated APOE migrating at 12 nm. D, Quantification of native gel. Sidak’s post-test shows a significant

difference between T0 and vehicle treated APP/E3/Abca1+/- and APP/E4/Abca1+/- mice. N = 4 mice per

group. *, p < 0.05, ***, p<0.001.

doi:10.1371/journal.pone.0172161.g004
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APOE isoform-specific effect on gene expression

Since PCA (Fig 3A) showed high isoform-dependent variability in APP/E3/Abca1+/- and

APP/E4/Abca1+/- datasets, we tested the effect of APOE genotype by comparing all APP/E4/

Abca1+/- mice (vehicle and T0 treated) to all APP/E3/Abca1+/- mice (vehicle and T0 treated).

Using p value at p< 0.05 as a cut-off we identified 1,373 UP- and 1,347 Down-regulated genes

in APP/E4/Abca1+/- mice when compared to APP/E3/Abca1+/- (Fig 5A).

To examine biological categories affected by APOE isoform we performed gene ontology

analysis using DAVID. We used significantly up- or down-regulated genes at p< 0.05 and

Log2 fold change higher than 0.5. As shown on S3 Table, significantly up-regulated in APP/

E4/Abca1+/- were categories such as innate immune response, response to interferon β,

response to cytokines and cell proliferation. Genes that are members of this category such as

toll-like receptors (Tlr12 and Tlr2), C-type lectin domain genes (Clec7a/Dectin1 and Clec4a2),

interferon inducible genes (Ifit1 and Iigp1), FYN proto-oncogene, Src family tyrosine kinase

(Fyn) [40] and others are shown on Fig 5B. Down-regulated were categories such as visual per-

ception (examples are genes such as Lum, lumican) and phagocytosis (Ighm, immunoglobulin

heavy constant mu, Cd46/Mcp [41], Pip5kl1 [42]) are shown on Fig 5C.

T0 differentially affects gene expression in APP/E4/Abca1+/- and APP/

E3/Abca1+/- mice

Next, to examine if LXR treatment differentially affects biological processes in isoform-depen-

dent manner, we applied Gene Set Enrichment Analysis (GSEA) and compared T0 treated

APP/E4/Abca1+/- and APP/E3/Abca1+/- mice. We included expression data for all transcripts

Fig 5. APOE isoform-specific effect on gene expression. A, Comparison between APP/E4/Abca1+/- (vehicle plus T0)

and APP/E3/Abca1+/- mice (vehicle plus T0). The volcano plot shows differential gene expression between APP/E4/Abca1+/-

and APP/E3/Abca1+/- mice. Data were analyzed using EdgeR and the volcano plots are built using p < 0.05 cut-off. Up- and

Down-regulated genes are represented in red and blue respectively. On B and C are shown genes that are up- or down-

regulated in APP/E4/Abca1+/- mice B, shown is RNA-seq result for genes that are significantly upregulated in APP/E4/

Abca1+/- vs APP/E3/Abca1+/- mice. C, shown is RNA-seq result for genes that are significantly down-regulated in APP/E4/

Abca1+/- vs APP/E3/Abca1+/- mice. *, p < 0.05, **, p < 0.01, ***, p < 0.001.

doi:10.1371/journal.pone.0172161.g005
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without setting a cut-off to avoid a bias towards the effect of highly affected genes [39]. Using

GSEA, we ranked the top 50 up- (Fig 6A) and down-regulated (Fig 6B) genes of the gene-

ontology category “biological process”. The bubble plot shown on Fig 6C represents biological

processes affected by T0 treatment in APP/E3/Abca1+/- (right) and APP/E4/Abca1+/- mice

Fig 6. APOE isoform-specific effect on gene expression in APP/E3/Abca1+/- and APP/E4/Abca1+/-

mice. Comparison between T0 treated APP/E4/Abca1+/- and APP/E3/Abca1+/- mice. Heat-maps provided by

GSEA analysis were used to identify and rank the top 50 up-regulated genes (A) and top 50 down regulated

genes (B) in APP/E4/Abca1+/- mice. C, Bubble plot shows top ranked “biological process” (BP) differentially

affected by T0 treatment in APP/E4/Abca1+/- vs APP/E3/Abca1+/- mice. The gene lists were derived from

edgeR output tables and included expression data for all transcripts. Color indicates nominalized p-value.

Significant BP are represented in red to purple shades (p<0.05 and FDR�0.25). Size of bubble indicates the

number of significant genes in each represented BP. GSEA enrichment score curves and corresponding

heat-maps show BP significantly enriched in T0 treated APP/E4/Abca1+/- mice, D and E, “Microtubule Based

Process”. D, GSEA analysis provided a heat-map (right) and enrichment score (left) for this category.

E, RNA-seq results of significantly changed mRNA expression levels of representative genes from category

“Microtubule Based Process”. F-G, “Synapse Organization and Biosynthesis”. F, GSEA analysis provided a

heat-map (right) and enrichment score (left). G, RNA-seq results of significantly changed mRNA expression

levels of representative genes from category “Synapse Organization and Biosynthesis”. *, p < 0.05, **,

p < 0.01, ***, p < 0.001.

doi:10.1371/journal.pone.0172161.g006
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(left) and is based on the number of genes in each category and the nominal p-value (see also

S4 Table). To further illustrate significantly enriched biological process terms, we show enrich-

ment plots with corresponding heat maps for “Microtubule Based Process” and “Synapse

Organization and Biosynthesis”. While the morphological and functional validation of the

affected biological processes in APP/E4/Abca1+/- is beyond the scope of this study, the results

are suggesting APOE isoform specific response to LXR/RXR activation and enrichment in sets

of genes that help to better understand positive effects of treatment on cognitive performance.

Discussion

In this study we analyzed the effect of LXR agonist T0 on the phenotype of Abca1 haplo-defi-

cient APP/E3 and APP/E4 mice. The results demonstrate that T0 treatment significantly

ameliorates cognitive deficits seen in APP/E4/Abca1+/- mice, as examined by Novel Object

Recognition and Contextual Fear Conditioning paradigms. T0 treatment also reduced soluble

Aβ oligomers without affecting amyloid plaques, confirming our recent study [34]. Impor-

tantly, RNA-seq results and the analysis of changes in brain transcriptome demonstrated that

commonly up-regulated genes in response to T0 induced LXR/RXR activation affect lipopro-

tein metabolism and APOE lipidation.

Prior studies have demonstrated that treatment with LXR agonists ameliorates memory

deficits in APP mice [18, 23, 34, 43–46]. We postulate that the increased lipidation of APOE

can affect the phenotype through an increased clearance of Aβ oligomers and an increased

supply of cholesterol and phospholipids to neurons–“trophic effect”. As seen on the Native-

PAGE, T0 increases the level of lipidated APOE in cortical homogenates of both APP/E3/

Abca1+/- and APP/E4/Abca1+/- mice (Fig 4). Based on our transcriptomics and expression val-

idation data we posit that the increased APOE lipidation is a result of the upregulated expres-

sion of Abca1, Abcg1, Scd1, Scd2 and Lpcat3 genes, essential for cholesterol efflux. These genes

were identified as commonly up-regulated in brain of mice expressing either APOE isoform.

We hypothesize that clearance of Aβ oligomers is an important consequence of the

increased level of fully lipidated APOE. APOE-containing lipoproteins could affect Aβ metab-

olism by decreasing Aβ aggregation and preventing its conversion to oligomers. This in turn

maintains Aβ in soluble state and facilitates its clearance by glia or via BBB. In a recent study

we showed that lack of Abca1 significantly decreased Aβ clearance out of the brain and in-

creased its level in ISF [36]. Previous data from our group demonstrated also that treatment of

primary WT astrocytes with T0 increased the lipidation of APOE [45]. In the same study, we

also showed that fully lipidated APOE-lipoproteins facilitated Aβ42 degradation by microglia

in contrast to APOE-lipoproteins isolated from Abca1-/- astrocytes. Furthermore, a study by

Jiang et al. demonstrated that in vitro, APOE promotes Aβ degradation by microglia and the

process is dependent on the APOE isoform and its lipidation [17]. Whereas in this study we

did not specifically address the mechanism by which Aβ clearance is affected, our data clearly

show that the levels of Aβ oligomers in T0-treated APP/E4/Abca1+/- mice are decreased. Pub-

lished data from our group also demonstrated that LXR/RXR agonists decrease the level of sol-

uble Aβ40 and Aβ42 in ISF [26, 34, 45], and the treatment of APP/E3 and APP/E4 mice with

RXR ligand bexarotene decreases the level of soluble Aβ oligomers in brain parenchyma. Alto-

gether, these data suggest that the effect of T0 treatment on clearance of Aβ soluble species

could be a result of concerted action of activated LXRs/RXRs heterodimers. In contrast, here

and in previous studies we did not observe an effect on insoluble amyloid deposits after treat-

ment with LXR or RXR ligands [26, 34].

A second consequence of the increased APOE lipidation is that properly lipidated APOE

delivers cholesterol and phospholipids to neurons more efficiently. The lipid molecules are
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needed for repair of axonal/neuronal damage resulting from amyloid deposition and thus for

improved synaptic transmission. As extensively discussed in our previous study [36] mice

lacking Apoe have impairments in cognition and dendritic arborization. Synaptic dysfunction

in AD pathogenesis is recognized as an important mechanism and the role of APOE in affect-

ing synaptic plasticity in an isoform-dependent manner has been repeatedly confirmed

(reviewed in [6, 47, 48]). As recently shown by our group, treatment of APOE3 or APOE4

mice with RXR ligand bexarotene improved neuronal complexity and increased neuritogenesis

in APOE4 and APOE3 mice [31, 32].

Our results also show that there is a significant APOE isoform-specific effect on expression

of genes with a potential to affect amyloid phenotype and behavior. For example, mRNA expres-

sion of genes related to innate immune response such as toll-like receptors, Fyn and interferon

related genes were higher in APP/E4/Abca1+/- than in APP/E3/Abca1+/- mice (Fig 5B). Some of

these genes such as Tlr2 [49] and Fyn [50] were shown to affect cognitive performance, a result

that correlates with the APP/E4/Abca1+/- mice performing worse in cognitive tests (Fig 1). Inter-

estingly, phagocytosis was a category significantly down-regulated in APP/E4/Abca1+/- mice.

When we compared only agonist treated APP/E4/Abca1+/- and APP/E3/Abca1+/- mice, we

identified “Microtubule Based Process” and “Synapse Organization and Biosynthesis” as GO

categories uniquely enriched in APP/E4/Abca1+/- mice. Members of the beta-protocadherin

(Pcdh-β) family were up-regulated in T0 treated APP/E4/Abca1+/- mice. Pcdh genes, a subfam-

ily of cadherin adhesion molecules, are expressed in the brain (reviewed in [51]) and have

been demonstrated essential in establishing functional synapses [52]. Pcdh gene family expres-

sion has been identified in various neuronal populations and the protein localizes predomi-

nantly in synapses. An isoform of Pcdhg-β, Pcdhβ-16 is expressed in the hippocampus and

cortical layers [52] and we found isoforms of Pcdhβ-16 up-regulated following T0 treatment.

Although currently the research focuses primarily on PCDH-α and PCDH-γ and their ability

to mediate cell adhesion through combinatorial expression on the surface of neurons [53, 54],

it is reasonable to assume that PCDH-β could be involved in those processes, as well. PCDH-β
can localize to synapses, suggesting the protein might have the potential to contribute to the

formation of synaptic plasticity in the mammalian CNS. No research, however, has been con-

ducted so far, to reveal if their function is interconnected to APOE secretion and deposition of

Aβ, or cholesterol transport and its internalization at the synaptic level, or the way they influ-

ence the cholesterol/phospholipid composition of the cell membrane, necessary and required

for normal neuronal function.

In conclusion, the present findings show that LXR agonist treatment of Abca1 haplo-defi-

cient APP/E4 mice, ameliorates APOE4 driven brain pathology and cognitive deficits. The

results are attributed to the ability of T0, through LXR/RXR activation, to reverse lipid defi-

ciency of APOE4 particles in brain. The results of our study also suggest that an increased

ABCA1 and ABCG1 expression through LXR/RXR activation, resulting in improved APOE

lipidation, may be a useful target for future prophylactic as well as therapeutic approaches in

APOE4 carriers.
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