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Abstract

Comprehensive learning particle swarm optimization (CLPSO) is a powerful state-of-the-art

single-objective metaheuristic. Extending from CLPSO, this paper proposes multiswarm

CLPSO (MSCLPSO) for multiobjective optimization. MSCLPSO involves multiple swarms,

with each swarm associated with a separate original objective. Each particle’s personal best

position is determined just according to the corresponding single objective. Elitists are

stored externally. MSCLPSO differs from existing multiobjective particle swarm optimizers

in three aspects. First, each swarm focuses on optimizing the associated objective using

CLPSO, without learning from the elitists or any other swarm. Second, mutation is applied to

the elitists and the mutation strategy appropriately exploits the personal best positions and

elitists. Third, a modified differential evolution (DE) strategy is applied to some extreme and

least crowded elitists. The DE strategy updates an elitist based on the differences of the elit-

ists. The personal best positions carry useful information about the Pareto set, and the

mutation and DE strategies help MSCLPSO discover the true Pareto front. Experiments

conducted on various benchmark problems demonstrate that MSCLPSO can find nondomi-

nated solutions distributed reasonably over the true Pareto front in a single run.

1. Introduction

Multiobjective optimization deals with multiple objectives that often conflict with each other.

The presence of such multiple objectives gives rise to a set of nondominated solutions. Multi-

objective optimization methods are either generating or preferences-based [1]. Regarding the

generating methods, no preferences of the objectives are given, and nondominated solutions

reasonably covering the entire extension of the true Pareto front need to be found so as to pro-

vide the decision maker diverse information to determine the final tradeoff [2]. The prefer-

ences-based methods, with the preferences of the objectives known in advance, convert the

multiple objectives into a single objective through techniques such as weighting and ε-con-

straint; the single-objective problem can then be solved using a single-objective optimizer. It

has been noted in [3] that the weighting technique cannot find a nondominated solution on
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the nonconvex portions of the Pareto front and the ε-constraint technique finds a nondomi-

nated solution only if certain conditions are satisfied. The Pareto dominance relationship

doesn’t rely on any preferences knowledge and can be used in the generating methods to han-

dle the multiple objectives directly.

Over the past several decades, a number of generating multiobjective metaheuristics

(MOMHs) have been applied to solve real-world multiobjective optimization problems

(MOPs) in a wide range of areas. Compared with traditional optimizers such as linear pro-

gramming, nonlinear programming, optimal control theory, and dynamic programming,

MOMHs are significantly more flexible as they don’t require the objectives and constraints to

be continuous, differentiable, linear, or convex, and MOMHs are rather efficient. In addition,

population-based MOMHs using a population of individuals (with each individual represent-

ing a candidate solution) facilitate the discovery of multiple nondominated solutions in a sin-

gle run.

This paper aims to propose a high performance MOMH based on particle swarm optimiza-

tion (PSO). PSO is a swarm intelligence inspired metaheuristic introduced in 1995 [4, 5]. PSO

is population-based and solves a single-objective optimization problem (SOP) using a swarm

of particles. All the particles “fly” in the search space. Each particle, denoted as i, is associated

with a position, a velocity, and a fitness that indicates its performance. PSO relies on iterative

learning to find the optimum. In each iteration (or generation), i adjusts its velocity according

to its previous velocity, its historical best position (i.e. personal best position), and the personal

best positions of its neighborhood particles. As indicated by the reported experimental results

of some recently proposed PSO variants such as comprehensive learning PSO (CLPSO) [6],

orthogonal learning PSO (OLPSO) [7], selectively informed PSO (SIPSO) [8], and PSO with

limited information (LIPSO) [9], the personal best positions of i’s neighborhood particles need

to be nontrivially and appropriately leveraged during the update of i’s flight trajectory so as to

achieve satisfactory exploration performance on multimodal SOPs. CLPSO and OLPSO

encourage i to learn from different exemplars (i.e. i’s personal best position or a position deter-

mined from i’s neighborhood) on different dimensions. For SIPSO, the particles take different

learning strategies based on the degree of connections; a densely-connected hub particle gets

full information from all the neighbors while a non-hub particle with few connections only fol-

lows the best-performed neighbor. LIPSO adjusts i’s velocity through the use of limited yet

adequate search experience information regarding i’s neighborhood. PSO can handle large

scale SOPs with the aid of parallelization [10].

When extending PSO to the domain of multiobjective optimization, elitists need to be

stored externally [11–14] or internally [15–18]. An elitist is a solution nondominated among

all the candidate solutions generated so far. Existing MOMHs either treat the outstanding

MOP as a whole or involve decomposition. For multiobjective PSOs (MOPSOs) that treat the

MOP as a whole [12, 13], i’s personal best position is determined based on Pareto dominance.

An external repository stores elitists. i learns from its (and other particles’) personal best posi-

tion(s) and an elitist selected from the external repository. Decomposition based MOPSOs

decompose the MOP into multiple different SOPs. Multiple swarms/particles are used, with

each swarm/particle independently optimizing a separate SOP. i’s personal best position is

thus determined according to the corresponding single objective. The multiple swarms/parti-

cles collaborate to derive nondominated solutions through direct and/or indirect information

exchange. Vector evaluated PSO (VEPSO) [11] and coevolutionary multiswarm PSO

(CMPSO) [14] take advantage of multiple swarms, with each swarm focusing on optimizing a

separate objective of the original multiple objectives. In VEPSO, i learns from its personal best

position and the search experience of its neighboring swarms. In CMPSO, the swarms don’t

exchange information directly, but instead the personal best position and an elitist randomly
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selected from the external repository are used to update i’s velocity. The external repository is

shared by all the swarms. Multiobjective evolutionary algorithm based on decomposition

(MOEA/D) [19] is a framework that lets each individual to optimize a separate SOP. Each sin-

gle objective is attained using aggregation techniques such as weighted sum, Tchebycheff, and

boundary intersection. Each individual evolves based on its personal search experience and its

neighboring individuals’ search experience. The works [15–18] are MOPSOs based on the

MOEA/D framework.

Extending from the powerful single-objective PSO variant CLPSO, this paper proposes

multiswarm CLPSO (MSCLPSO) for multiobjective optimization. CLPSO has been extended

to handle multiobjective optimization in [13, 20]. No decomposition is involved in multiobjec-

tive CLPSO (MOCLPSO) and attributed MOCLPSO (A-MOCLPSO) respectively proposed in

[13] and [20]. MSCLPSO is the same with CMPSO [14] in terms of using multiple swarms, the

way of determining the personal best position, and storing elitists in a shared external reposi-

tory. MSCLPSO promotes the diversity of the elitists through respectively the crowding dis-

tance technique [21] for two-objective MOPs and the M-nearest-neighbors product-based

vicinity distance technique for MOPs with more than two objectives [22]. The crowding dis-

tance technique works excellently in the case of two objectives, but it fails to effectively approx-

imate the diversity of the elitists when the number of objectives is three or more [22].

MSCLPSO is novel in three aspects. First, each swarm focuses on optimizing the associated

SOP strictly using CLPSO, without learning from the elitists and any other swarm. Second,

mutation is applied to the elitists and the mutation strategy appropriately exploits the personal

best positions and elitists. Third, a modified differential evolution (DE) strategy is applied to

some extreme and least crowded elitists. The DE strategy updates an elitist based on the differ-

ences of the elitists. The personal best positions carry useful information about the Pareto set,

and the mutation and DE strategies help MSCLPSO discover the true Pareto front. MSCLPSO

takes the decomposition based multiswarm architecture and updates each particle i’s velocity

purely based on the search experience of the particles in i’s host swarm because information

determined based on Pareto dominance or some other single objective might not contribute to

the optimization on i’s associated objective. MSCLPSO was applied to the 2-objective sustain-

able operation of China’s Three Gorges cascaded hydropower system in [23]. This paper gives

a detailed description of MSCLPSO and presents the algorithm’s performance on a variety of

benchmark MOPs.

The rest of this paper is organized as follows. In Section 2, the working principle of CLPSO,

definitions related to multiobjective optimization, and a brief literature review on MOMHs are

presented. Section 3 details the implementation of MSCLPSO. In Section 4, the performance

of MSCLPSO is evaluated on some 2- and 3-objective benchmark MOPs. Section 5 concludes

the paper.

2. Background

2.1 Comprehensive learning particle swarm optimization

Let there be D decision variables, the swarm of N particles fly in a D-dimensional search space.

Each particle i (1� i� N) is associated with a position Pi = (Pi,1, Pi,2, . . ., Pi,D) and a velocity

Vi = (Vi,1, Vi,2, . . ., Vi,D). Vi and Pi are initialized randomly. In each generation, Vi and Pi are

updated as follows.

Vi;d ¼ wVi;d þ crdðEi;d � Pi;dÞ ð1Þ

Pi;d ¼ Pi;d þ Vi;d ð2Þ

MSCLPSO
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where d (1� d� D) is the dimension index; w is the inertia weight; c is the acceleration coeffi-

cient and c is suggested to be 1.5 [6]; rd is a random number uniformly distributed in the range

[0, 1]; and Ei = (Ei,1, Ei,2, . . ., Ei,D) is the guidance vector of exemplars.

The inertia weight w linearly decreases. Specifically, let kmax be the predefined maximum

number of generations, in each generation k, w is updated according to Eq (3).

w ¼ wmax � ðwmax � wminÞ
k

kmax
ð3Þ

where wmax and wmin are respectively the maximum and minimum inertia weights. The rec-

ommended values for wmax and wmin are respectively 0.9 and 0.4 [6].

The dimensional velocity Vi,d is usually clamped to a positive value Vmax
d . If Vi;d > Vmax

d ,

then Vi,d is set to Vmax
d ; or if Vi;d < � Vmax

d , then Vi,d is set to � Vmax
d . Let Pd and Pd respectively

be the lower and upper bounds of the search space on dimension d, Vmax
d is suggested to be set

as 20% of Pd � Pd [6].

Let Bi = (Bi,1, Bi,2, . . ., Bi,D) be the personal best position of i. After the position Pi is updated,

Pi is evaluated and will replace Bi if Pi has a better fitness value.

The exemplar Ei,d can be Bi,d or Bj,d with j 6¼ i. The decision to learn whether from Bi,d or

Bj,d depends on a learning probability Li. For dimension d, a random number uniformly dis-

tributed in the range [0, 1] is generated. If the generated number is no less than Li, i will learn

from Bi,d on dimension d; otherwise from Bj,d. The particle j is selected from a 2-tournament

procedure. If Ei happen to be the same as Bi, ECLPSO will randomly choose one dimension to

learn from some other particle’s corresponding dimensional personal best position.

An empirical expression is developed in CLPSO to set the learning probability Li for each

particle i.

Li ¼ 0:05þ 0:45
expð10ði� 1Þ

N� 1
Þ � 1

expð10Þ � 1
ð4Þ

CLPSO allows each particle i to learn from the same exemplars until i’s fitness values cease

improving for a refreshing gap of h consecutive generations. h is suggested to be 7 [6].

CLPSO calculates the fitness value of a particle i only if i is feasible (i.e. within ½Pd ; Pd � on

each dimension d).

2.2 Multiobjective optimization and pareto dominance

Without loss of generality, consider a multiobjective minimization problem described in Eq

(5).

Min f ðxÞ ¼ ðf1ðxÞ; f2ðxÞ; . . . ; fMðxÞÞ

s:t: gðxÞ � 0
ð5Þ

where x = (x1, x2, . . ., xD) is the decision vector; M (M� 2) is the number of objectives; fm is

the function or numerical simulation procedure used to evaluate the fitness of x on objective

m, m = 1, 2, . . ., M; and g is the combination of constraints. Some definitions related to multi-

objective optimization and Pareto dominance are given below.

Definition 1: The search space is SS = {x 2 RD | g{x}� 0}.

Definition 2: The objective space is OS = { f(x) 2 RM | x 2 SS}.

Definition 3: Given two points a = (a1, a2, . . ., aM) and b = (b1, b2, . . ., bM) in the objective

space OS, b dominates a if bm� am for all m = 1, 2, . . ., M, and b 6¼ a.

MSCLPSO
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Definition 4: A point a in the objective space OS is nondominated if there is no other point

b in OS such that b dominates a.

Definition 5: A point x in the search space SS is Pareto-optimal if f(x) is nondominated.

Definition 6: The Pareto set is PS = {x 2 SS | x is Pareto-optimal}.

Definition 7: The Pareto front is PF = {f(x) 2OS | x2 PS}.

The objective space OS is partially ordered in the sense that two arbitrary points are related

to each other in two possibly ways: either one dominates the other or neither dominates.

Definition 3 can be modified based on the concept of ε-dominance [24].

Definition 8: Given two points a = (a1, a2, . . ., aM) and b = (b1, b2, . . ., bM) in the objective

space OS, b ε-dominates a if bm—am� ε for all m = 1, 2, . . ., M, and there exists one m such

that bm—am< ε, where ε is a predefined small positive number.

2.3 Brief literature review on MOMHs

MOMHs have attracted extensive research interests. A large number of MOMHs have been

proposed in literature. The MOMHs were tested on some commonly used benchmark MOPs

and/or applied to real-world MOPs. The main challenges to achieve high performance multi-

objective optimization include guiding the search towards the true Pareto front and obtaining

reasonably distributed nondominated solutions.

Nondominated sorting genetic algorithm II (NSGA-II) [21] and MOEA/D [19] adopt

crossover and mutation to evolve the individuals. MOEA/D-DE [25] replaces the crossover

operator of MOEA/D with DE to solve MOPs with complicated Pareto sets. MOEA/D-DE

updates an individual based on the difference of two individuals selected from the updated

individual’s neighborhood, assuming that such a difference provides a good search direc-

tion. Gaussian mutation was employed in CMPSO [14] to help refine the externally stored

elitists.

The diversity of the elitists can be promoted using techniques such as adaptive grid adopted

in Pareto archived evolution strategy (PAES) [26] and PAES2 [27], clustering in strength

Pareto evolutionary algorithm (SPEA) [28], crowding distance in NSGA-II [21], fitness shar-

ing in niched Pareto genetic algorithm (NPGA) [29], maximin sorting in [30], M-nearest-

neighbors product-based vicinity distance in [22] and multiobjective immune algorithm with

nondominated neighbor-based selection 2 (NNIA2) [31], nearest neighbor density estimation

in SPEA2 [32], and weighting based aggregation in MOEA/D [19].

Hypervolume, introduced by Zitzler and Thiele [28], is a desirable metric used to evalu-

ate the performance of a MOMH, as the maximization of hypervolume constitutes the nec-

essary and sufficient conditions for deriving maximally diverse nondominated solutions

over the true Pareto front [33]. Recently, some hypervolume based MOMHs [34–36] have

been proposed and they directly use the hypervolume metric to act as a selection pressure

rewarding convergence and diversity. However, it is NP-hard to calculate the hypervolume

metric [37].

Many MOMHs are decomposition based. The earliest decomposition based MOMH is vec-

tor evaluated genetic algorithm (VEGA) [38]. VEPSO [11] is an adaptation of VEGA to the

PSO framework. Harrison et al. [39] investigated various strategies for direct information shar-

ing among the swarms in VEPSO. The multigroup learning automata based approach pro-

posed in [40] utilizes a synergistic learning strategy to encourage each group to learn not only

from the elitists but also from the search experience of all the other groups. Zhang et al. [41]

enhanced the performance of MOEA/D-DE with a dynamic resource allocation strategy. The

works [42–47] are other recent improvements on MOEA/D.

MSCLPSO
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3. Multiswarm comprehensive learning particle swarm optimization

3.1 Basic architecture

MSCLPSO is a decomposition based multiswarm MOPSO [23]. As Fig 1 shows, M swarms are

used and each swarm m (1�m�M) focuses on optimizing objective fm using CLPSO. Elitists

are stored into an external repository. The repository is shared by all the swarms. Each swarm

m doesn’t learn from the elitists and the search experience of any other swarm.

3.2 Maintenance of the external repository

The external repository REP is initialized to be empty. As the number of elitists quickly grows

during the run, REP has a fixed maximum size Rmax. REP is maintained as follows in every

generation [23]:

Step 1) A temporary set TMP is initialized to be empty.

Step 2) All the elitists in REP are added into TMP.

Step 3) For each particle i in each swarm m, the particle’s position Pm,i is added into TMP if

Pm,i is feasible (i.e. within ½Pd ;Pd � on each dimension d).

Step 4) Apply mutation to some elitists of REP and add the mutated solutions into TMP.

Step 5) Apply DE to a number of extreme and least crowded elitists of REP and add the differ-

entially evolved solutions into TMP.

Step 6) Set REP to be empty.

Step 7) Each solution in TMP is checked whether it is dominated by any other solution in

TMP. Any dominated solution is removed from TMP.

Step 8) Sort the remaining elitists in TMP in the decreasing order of crowding/vicinity dis-

tances. If the number of the elitists in TMP is larger than Rmax, the first Rmax elitists are

allowed to stay in TMP and the others are removed from TMP. All the elitists in TMP are

then copied to REP.

In Step 8), the elitists in TMP are sorted using respectively the crowding distance tech-

nique [21] for two-objective MOPs and the M-nearest-neighbors product-based vicinity dis-

tance technique [22] for MOPs with more than two objectives. The crowding/vicinity

distance of an elitist provides an estimate of the density of the surrounding solutions. The

crowding distance of an elitist is a weighted distance of the elitist’s two neighboring solu-

tions, while the vicinity distance is the multiplication product of the distances between the

elitist and the elitist’s M nearest neighbors. Allowing the nondominated solutions with larger

crowding/vicinity distances to stay in REP enhances the diversity of the resulting elitists on

the Pareto front.

Fig 1. Basic architecture of MSCLPSO.

doi:10.1371/journal.pone.0172033.g001
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PLOS ONE | DOI:10.1371/journal.pone.0172033 February 13, 2017 6 / 21



3.3 Mutation

As briefly discussed in [23], the personal best positions and elitists carry useful information

about the Pareto set. The mutation strategy adopted in MSCLPSO exploits the personal best

positions and the differences of the elitists. After a sufficient number of generations, the per-

sonal best position Bm,i of particle i in swarm m is an exact-optimum or near-optimum corre-

sponding to objective fm. If the Pareto-optimal decision vectors are indifferent on dimension

d, Bm,i,d might be close to dimension d of the Pareto-optimal decision vector that is optimal on

objective fm, hence learning from Bm,i,d might contribute to the search of the Pareto set on

dimension d; on the other hand, if the Pareto set is complicated on dimension d, the personal

best positions obtained by different swarms often differ considerably on that dimension,

accordingly learning from the personal best positions leads to the search of different regions of

the Pareto set on dimension d. In addition, the difference between two different elitists on

dimension d is often small in the simple cases and could be large in the complicated cases.

To be more specific, let the number of the elitists in REP be R, the maximum number of

mutations be Nmut, and the mutation tradeoff probability be α, the details of the mutation

strategy in Step 4) of the external repository maintenance procedure are described in the

following.

Step 4.1) Initialize the mutation counter n = 1.

Step 4.2) If n�min{Nmut, R}, go to Step 4.3); otherwise, return.

Step 4.3) Randomly select an elitist l from REP. l’s decision vector is copied as Ql =

{Ql,1, Ql,2, . . ., Ql,D}. Randomly select a dimension d. Generate a random number rmut1 uni-

formly distributed in the range [0, 1]. If rmut1 < α or R< 2, go to Step 4.4); otherwise, go

Step 4.5).

Step 4.4) Randomly select a swarm m. Randomly select a particle i in swarm m. Mutate Ql,d

according to Eq (6).

Ql;d ¼ Ql;d þ rmut2ðBm;i;d � Ql;dÞ ð6Þ

where rmut2 is a random number uniformly distributed in the range [0, 1].

Step 4.5) Randomly select two different elitists l1 and l2 from REP. l1 and l2 don’t need to be

different from l. Mutate Ql,d according to Eq (7).

Ql;d ¼ Ql;d þ rmut3ðZl1;d � Zl2;dÞ ð7Þ

where rmut3 is a random number uniformly distributed in the range [0, 1]; and Zl1 and Zl2

are respectively the decision vector of l1 and that of l2.

Step 4.6) Repair Ql,d using the re-initialization technique introduced in MOEA/D-DE [25, 41]

if Ql,d is outside the dimensional search space ½Pd ;Pd �.

Step 4.7) Add Ql into TMP.

Step 4.8) Increase the mutation counter n = n + 1, and go back to Step 4.2).

The mutation tradeoff probability α controls whether to mutate based on the personal best

position using Eq (6) or the difference of the elitists using Eq (7). α is suggested to take a

medium value in the range [0, 1] so as to achieve a balanced use of the information embodied

in the personal best positions and elitists. The number of maximum mutations Nmut can be

MSCLPSO
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less than Rmax. As can be seen from Step 4.3), each elitist and each dimension has an equal

chance to be selected.

3.4 Differential evolution

Let the maximum number of DEs be Nde, for each elitist l in REP with 1� l�min{Nde, R},

l’s decision vector is copied as Ql. Let the DE tradeoff probability be β, a random number rde1

uniformly distributed in the range [0, 1] is generated. If rde1 < β and R� 2, each dimension

of Ql is differentially evolved according to Eq (8); otherwise according to Eq (9). All the

dimensions use the same pair of DE coefficients rde2 and rde3, with rde2 and rde3 being two

random numbers generated from a normal distribution with mean 0.5 and standard devia-

tion 0.5.

Ql;d ¼
Ql;d þ rde2ðZl1;d � Ql;dÞ þ rde3ðQl;d � Zl2;dÞ; if Dl1;l � Dl2;l

Ql;d þ rde2ðZl2;d � Ql;dÞ þ rde3ðQl;d � Zl1;dÞ; otherwise

(

ð8Þ

Ql;d ¼

Ql;d þ dðPd � PdÞ; if rde2Zl1;d � rde3Zl2;d > dðPd � PdÞ

Ql;d � dðPd � PdÞ; else if rde2Zl1;d � rde3Zl2;d < � dðPd � PdÞ

Ql;d þ rde2Zl1;d � rde3Zl2;d; otherwise

8
>><

>>:

ð9Þ

where l1 and l2 are two elitists randomly selected from REP; Δl1,l is the Euclidean distance

between l1 and l in the objective space; Δl2,l is the Euclidean distance between l2 and l in the

objective space; and δ is the velocity limiter which is a number in the range (0, 1]. Ql,d is fur-

ther repaired using the re-initialization technique introduced in MOEA/D-DE [25, 41] if Ql,d

is outside the dimensional search space ½Pd; Pd �. After all the dimensions are differentially

evolved, Ql is added into TMP. The above details explain Step 5) of the external repository

maintenance procedure. The number of maximum DEs Nde can be less than Rmax.

Remember that in Step 7), the elitists in TMP are sorted in the decreasing order of crowd-

ing/vicinity distances, and then copied to REP. Therefore, the smaller the index of an elitist in

REP, the larger the crowding/vicinity distance of that elitist. MSCLPSO applies DE to a num-

ber of elitists with the smallest indices in REP. In other words, the differentially evolved elitists

are extreme and least crowded. Note that an elitist that is extreme on a single objective is

assigned an infinite crowding/vicinity distance [21, 22]; though such an elitist may actually be

crowded, it may however be still far from the corresponding true extreme nondominated solu-

tion on the Pareto front. The application of DE to the extreme and least crowded elitists is

expected to improve the diversity of the elitists [23].

In Eq (8), l1 and l2 don’t need to be different, but at least one of them is different from l. Eq

(8) pushes l towards the more distant (measured in the objective space) elitist of l1 and l2, and

in the meanwhile pulls l away from the nearer elitist, with the purpose of exploring the search

space. In addition, Eq (8) provides more diverse search directions than the DE operators used

in literature MOMHs.

Eq (9) also provides diverse search directions. l1, l2, and l don’t need to be mutually differ-

ent. The term rde2Zl1,d—rde3Zl2,d is clamped to the range ½� dðPd � PdÞ; dðPd � PdÞ�. δ is sug-

gested to take a small value in order to facilitate exploiting the region near l.
The mutation tradeoff probability β thus is suggested to take a medium value to achieve a

balance between the exploration and exploitation of the search space. The assumption of the

DE strategy is that the Pareto-optimal decision vectors are somewhat correlated and the learn-

ing from l1 and l2 could provide an appropriate search direction for the evolution of l.

MSCLPSO
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3.5 Flow chart and complexity analysis

The swarms obtain personal best positions that carry useful information about the Pareto set.

The mutation and DE strategies help MSCLPSO discover the true Pareto front. The flow chart

of MSCLPSO is depicted in Fig 2.

MSCLPSO needs to store various data structures and algorithm parameters. The largest

data structure is TMP and it requires O(MN + Rmax + Nmut + Nde) memory space. Hence, the

space complexity of MSCLPSO is O(MN + Rmax + Nmut + Nde) plus the space required by the

objective functions and constraints.

The maintenance of the external repository in Step 3 mainly involves the dominance

checking. The dominance checking compares each solution with every other solution in

TMP on all the objectives. There are maximally MN + Rmax + Nmut + Nde solutions in TMP.

Hence the dominance checking requires O((MN + Rmax + Nmut + Nde)
2D) comparisons. In

addition, Step 3 requires O(Nmut + Nde) function evaluations (FEs). The time requirement of

CLPSO is O(ND) basic operations plus O(N) FEs. As there are M swarms, Step 4 thus

requires O(MND) basic operations plus O(MN) FEs. Step 1 is executed once. Accordingly,

overall MSCLPSO requires O(kmax(MN + Rmax + Nmut + Nde)
2D) basic operations plus

O(kmax(MN + Nmut + Nde)) FEs.

4. Experimental studies

4.1 Performance metric

The inverted generational distance (IGD) [14, 21, 41] has been widely adopted and strongly

recommended as a performance metric for evaluating MOMHs in recent years, as it can reflect

both convergence and diversity of the obtained nondominated solutions. Assuming that the

Fig 2. Flow chart of MSCLPSO.

doi:10.1371/journal.pone.0172033.g002

MSCLPSO

PLOS ONE | DOI:10.1371/journal.pone.0172033 February 13, 2017 9 / 21



true Pareto front PF is known and U is a set of uniformly distributed points sampled along PF,

the IGD metric is calculated according to Eq (10).
X

u
su

U
ð10Þ

where u is a point in U; su is the Euclidean distance between u and the nondominated solution

in REP that is nearest to u, measured in the objective space; and U is the number of points in

U. It is clear that if the nondominated solutions in REP have a good spread along the true

Pareto front, the IGD value will be small.

4.2 Benchmark problems

Various benchmark MOPs have been proposed in literature to evaluate MOMHs. The follow-

ing benchmark MOPs are chosen: ZDT2 and ZDT3 from the ZDT test set [2], two modified

versions of ZDT4 called ZDT4-V1 and ZDT4-V2, WFG1 from the WFG test set [48], UF1,

UF2, UF7, UF8, and UF9 from the UF test set [49]. Eqs (11) and (12) respectively describe the

ZDT4-V1 and ZDT4-V2 problems.

ZDT4 � V1 :

f1 ¼ x1

f2 ¼ yð1 �

ffiffiffi
f1
y

s

Þ
;

8
>><

>>:

where y ¼ 1þ 10ðD � 1Þ þ
XD

d¼2

ððxdÞ
2
� 10cosð4pxdÞÞ; x1 2 ½0; 1�; xd 2 ½� 1; 1�; 2 � d � D

ð11Þ

ZDT4 � V2 :

f1 ¼ x1

f2 ¼ yð1 �

ffiffiffi
f1
y

s

Þ
;

8
>><

>>:

where y ¼ 1þ 10ðD � 1Þ þ
XD

d¼2

ððhdÞ
2
� 10cosð4phdÞÞ; hd ¼ 1000ðxd � 0:5Þ; x1 2 ½0; 1�; xd 2 ½� 5; 2�; 2 � d � D

ð12Þ

As can be seen from Eqs (11) and (12), y is similar to the complex multimodal Rastrigin’s

function [50]. ZDT4-V1 is the same with ZDT4 except that the search space of xd (2� d� D)

is [-1, 1] in ZDT4-V1 while [-5, 5] in ZDT4. The characteristics of the 10 benchmark MOPs

are listed in Table 1. The problems exhibit different characteristics such as 2 and 3 objectives,

10 and 30 dimensions, unimodal and multimodal objective functions, linear, convex, concave,

disconnected, and mixed Pareto fronts, and simple and complicated Pareto sets. Therefore, the

problems can be used to evaluate the performance of MOMHs from various aspects. In

Table 1, o denotes the number of position-related working parameters for the WFG1 problem

and is set as 2. S1 File gives the source code of the MSCLPSO algorithm with all the benchmark

problems.

4.3 MOMHs compared and parameter settings

Two performance issues are investigated: 1) can the personal best positions, mutation, and DE

help MSCLPSO discover the true Pareto front? and 2) how does MSCLPSO perform compared

with other literature MOMHs? For the first issue, two MSCLPSO variants, namely MSCLPSO-

1 and MSCLPSO-2, are studied. In MSCLPSO-1, the mutation tradeoff probability α = 0, i.e.

MSCLPSO
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the mutation strategy doesn’t learn from the personal best positions. In MSCLPSO-2, the max-

imum number of DEs Nde = 0, i.e. the DE strategy is not invoked. Concerning the second

issue, MSCLPSO is compared with four representative MOMHs: CMPSO [14], MOEA/D [19],

MOEA/D-DE [41], and NSGA-II [21].

The parameters of the MSCLPSO variants are determined based on trials on all the bench-

mark MOPs and are listed in Table 2. The parameters of CLPSO take the recommended values

stated in Subsection 2.1. The parameters of CMPSO, MOEA/D, and NSGA-II take the recom-

mended values given in the corresponding references. The elitists are externally stored in a

repository for the MSCLPSO variants and CMPSO and internally preserved in the evolving

Table 1. Characteristics of all the benchmark problems.

Problem M D Search space Pareto set Pareto front

ZDT2 2 30 xd 2 [0, 1], 1� d� D x1 2 [0, 1], xd = 0, 2� d� D Concave, f1 U*, f2 M**

ZDT3 2 30 xd 2 [0, 1], 1� d� D x1 2 [0, 1], xd = 0, 2� d� D Convex, disconnected, f1 U, f2 M

ZDT4-V1 2 10 x1 2 [0, 1],

xd 2 [-1, 1], 2� d� D

x1 2 [0, 1], xd = 0, 2� d� D Convex, f1 U, f2 M

ZDT4-V2 2 10 x1 2 [0, 1],

xd 2 [-5, 2], 2� d� D

x1 2 [0, 1], xd = 0.5, 2� d� D Convex, f1 U, f2 M

WFG1 2 10 xd 2 [0, 2d], 1 � d � D xd 2 [0, 2d], 1� d�o,

xd = 0.35, o + 1� d�D

Convex, mixed, f1 U, f2 U

UF1 2 30 x1 2 [0, 1],

xd 2 [-1, 1], 2� d� D

x1 2 ½0; 1�;

xd ¼ sinð6px1 þ
dp

D
Þ; 2 � d � D

Convex, f1 M, f2 M

UF2 2 30 x1 2 [0, 1],

xd 2 [-1, 1], 2� d� D

x1 2 ½0; 1�;

xd ¼ ð0:3ðx1Þ
2cosð24px1 þ

4dp

D
Þ þ 0:6x1Þ

cosð6px1 þ
dp

D
Þ; if 2 � d � D and d is odd;

xd ¼ ð0:3ðx1Þ
2cosð24px1 þ

4dp

D
Þ þ 0:6x1Þ

sinð6px1 þ
dp

D
Þ; if 2 � d � D and d is even

Convex, f1 M, f2 M

UF7 2 30 x1 2 [0, 1],

xd 2 [-1, 1], 2� d� D

x1 2 ½0; 1�;

xd ¼ sinð6px1 þ
dp

D
Þ; 2 � d � D

Linear, f1 M, f2 M

UF8 3 30 x1 2 [0, 1], x2 2 [0, 1],

xd 2 [-2, 2], 3� d� D

x1 2 ½0; 1�; x2 2 ½0; 1�;

xd ¼ 2x2sinð2px1 þ
dp

D
Þ; 3 � d � D

Concave, f1 M, f2 M, f3 M

UF9 3 30 x1 2 [0, 1], x2 2 [0, 1],

xd 2 [-2, 2], 3� d�D

x1 2 ½0; 0:25� [ ½0:75; 1�; x2 2 ½0; 1�;

xd ¼ 2x2sinð2px1 þ
dp

D
Þ; 3 � d � D

Linear, disconnected, f1 M, f2 M, f3 M

* U refers to unimodal.

** M refers to multimodal.

doi:10.1371/journal.pone.0172033.t001

Table 2. Algorithm parameters of the MSCLPSO variants.

MSCLPSO variant Parameters

MSCLPSO N = 10, α = 0.5, β = 0.5, δ = 5%, Nmut = Rmax (M– 1) / 5, Nde = Rmax (M– 1) / 10

MSCLPSO-1 N = 10, α = 0, β = 0.5, δ = 5%, Nmut = Rmax (M– 1) / 5, Nde = Rmax (M– 1) / 10

MSCLPSO-2 N = 10, α = 0.5, β = 0.5, δ = 5%, Nmut = 3 Rmax (M– 1) / 10, Nde = 0

doi:10.1371/journal.pone.0172033.t002
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population for MOEA/D and NSGA-II. To facilitate fair comparison, the (maximum) number

of externally/internally stored elitists is set as 100 on the 2-objective benchmark MOPs and

300 on the 3-objective MOPs. U is set as 1000 and 10000 respectively for the 2- and 3-objective

MOPs. The benchmark MOPs require different number of FEs to obtain the shape of the true

Pareto front due to their different difficulty levels. The FEs values on the problems are listed in

Table 3. ε-dominance is applied to the MSCLPSO variants and CMPSO and ε = 0.0001. The

MSCLPSO variants, CMPSO, MOEA/D, and NSGA-II are executed for 30 independent runs

on each problem.

In [41], MOEA/D-DE was evaluated on the UF problems with complicated Pareto sets.

MOEA/D-DE used a population of 600 individuals to solve the 2-objective UF problems and a

population of 1000 individuals to solve the 3-objective UF problems. 100 elitists and 150 elitists

were selected from the final population to calculate the IGD metric respectively on the 2- and

3-objective problems. In contrast, MOEA/D used populations of 100 and 300 individuals

respectively on the 2-objective ZDT and 3-objective DTLZ problems with simple Pareto sets in

[19]. It seems like MOEA/D-DE doesn’t have a unified parameter setting framework for vari-

ous benchmark MOPs. Therefore, MSCLPSO is compared with MOEA/D-DE only on the

UF1, UF2, UF7, UF8, and UF9 problems with 300000 FEs on each of the problems. The perfor-

mance data of MOEA/D-DE are directly copied from [41]. On the UF8 and UF9 problems,

150 elitists with the largest vicinity distances are selected from the final external repository of

MSCLPSO.

4.4 Experimental results and discussions

Table 4 lists the IGD results related to the 30 runs of the MSCLPSO variants, CMPSO, MOEA/

D, and NSGA-II on all the benchmark MOPs. MSCLPSO, CMPSO, MOEA/D, and NSGA-II

are ranked according to their mean IGD results and the MOMHs are compared using the well-

known Wilcoxon rank sum test with the significance level 0.05. The ranking and Wilcoxon

rank sum test results are listed in Table 5. The final single-objective best solutions obtained by

the swarms of MSCLPSO on all the benchmark MOPs are listed in Table 6. Table 7 compares

MSCLPSO and MOEA/D-DE on the UF1, UF2, UF7, UF8, and UF9 problems. Table 8 gives

the IGD results of MSCLPSO using some different parameter settings. In Tables 4 and 7, the

best results on each problem are marked in bold. The final nondominated solutions obtained

by MSCLPSO and some literature MOMHs on all the benchmark MOPs are illustrated in Figs

3 and 4. The data set underlying Figs 3 and 4 can be found in S2 File.

The personal best positions and the mutation strategy. As can be observed from the

IGD results given in Table 4 and the final nondominated solutions illustrated in Figs 3 and 4,

MSCLPSO can find diverse nondominated solutions reasonably distributed over the true

Pareto front on all the 10 benchmark MOPs. The performance of MSCLPSO is rather robust,

as indicated from the mean, standard deviation, best, and worst IGD results of MSCLPSO on

all the problems. Compared with MSCLPSO, MSCLPSO-1 cannot approximate the true Pareto

front on the ZDT4-V1, ZDT4-V2, UF8, and UF9 problems in some runs, as indicated from

the worst IGD results of MSCLPSO-1. ZDT4-V1 and ZDT4-V2 have simple Pareto sets, while

UF8 and UF9 feature complicated Pareto sets. The final single-objective solutions given in

Table 6 show that MSCLPSO can derive an exact-optimum or near-optimum for each single

Table 3. Number of function evaluations on all the benchmark problems.

Problem ZDT2 ZDT3 ZDT4-V1 ZDT4-V2 WFG1 UF1 UF2 UF7 UF8 UF9

FEs 10E4 10E4 10E4 25E4 100E4 35E4 100E4 40E4 90E4 90E4

doi:10.1371/journal.pone.0172033.t003
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objective on all the 10 benchmark MOPs. The personal best positions obtained by MSCLPSO

on objective f2 on ZDT2, ZDT3, ZDT4-V1, and ZDT4-V2 are close to the Pareto-optimal deci-

sion vectors on most dimensions in the search space. The personal best positions obtained by

MSCLPSO on both objective f1 and objective f2 on WFG1 are close to the Pareto set. The per-

sonal best positions obtained by MSCLPSO on different single objectives on UF8 and UF9 are

located in rather different regions of the search space. All the observations verify that: 1)

Table 4. IGD results of the MSCLPSO variants, CMPSO, MOEA/D, and NSGA-II on all the benchmark problems.

Problem IGD result MSCLPSO MSCLPSO-1 MSCLPSO-2 CMPSO MOEA/D NSGA-II

ZDT2 Mean 4.35E-3 4.38E-3 7.95E-3 4.14E-3 3.80E-3 4.81E-3

SD 1.08E-4 9.79E-5 1.06E-3 1.01E-4 1.53E-7 2.07E-4

Best 4.11E-3 4.20E-3 6.18E-3 3.99E-3 3.80E-3 4.49E-3

Worst 4.57E-3 4.54E-3 1.02E-2 4.39E-3 3.80E-3 5.37E-3

ZDT3 Mean 4.87E-3 4.89E-3 5.55E-3 6.35E-3 8.77E-3 5.51E-3

SD 9.41E-5 1.04E-4 2.12E-4 8.43E-4 1.88E-5 2.38E-4

Best 4.72E-3 4.76E-3 5.10E-3 5.31E-3 8.75E-3 5.10E-3

Worst 5.07E-3 5.21E-3 6.01E-3 8.93E-3 8.86E-3 6.15E-3

ZDT4-V1 Mean 4.38E-3 3.16E-2 8.19E-3 1.16E-2 7.81E-2 4.18E-2

SD 1.25E-4 6.05E-2 2.22E-2 1.04E-2 9.02E-2 8.12E-2

Best 4.19E-3 4.21E-3 3.97E-3 4.30E-3 3.87E-3 4.36E-3

Worst 4.81E-3 2.56E-1 1.26E-1 5.13E-2 2.56E-1 2.56E-1

ZDT4-V2 Mean 4.26E-3 3.30E-2 8.20E-3 3.67 7.37E-1 6.60E-1

SD 1.04E-4 6.23E-2 2.22E-2 2.44 3.85E-1 3.51E-1

Best 4.04E-3 4.13E-3 3.94E-3 9.59E-1 1.86E-1 2.58E-1

Worst 4.59E-3 2.56E-1 1.26E-1 9.93 1.71 1.60

WFG1 Mean 1.35E-2 1.39E-2 1.38E-2 5.48E-1 7.72E-1 2.53E-1

SD 4.11E-4 5.57E-4 4.94E-4 2.10E-1 2.53E-2 1.38E-1

Best 1.29E-2 1.31E-2 1.29E-2 2.57E-1 7.29E-1 3.04E-2

Worst 1.45E-2 1.52E-2 1.49E-2 9.16E-1 8.18E-1 5.60E-1

UF1 Mean 4.26E-3 4.26E-3 3.10E-2 6.29E-2 1.28E-1 7.68E-2

SD 1.35E-4 1.02E-4 1.19E-2 1.59E-2 6.96E-2 2.07E-2

Best 4.08E-3 4.13E-3 1.37E-2 4.02E-2 4.36E-2 5.37E-2

Worst 4.79E-3 4.50E-3 6.04E-2 9.76E-2 2.70E-1 1.48E-1

UF2 Mean 4.42E-3 4.34E-3 1.02E-2 1.60E-2 2.98E-2 2.69E-2

SD 2.14E-4 1.95E-4 2.33E-3 3.14E-3 2.24E-2 1.05E-2

Best 4.17E-3 4.03E-3 7.01E-3 1.05E-2 1.19E-2 1.53E-2

Worst 4.99E-3 4.96E-3 1.83E-2 2.55E-2 1.20E-1 5.73E-2

UF7 Mean 4.30E-3 4.33E-3 4.98E-2 1.04E-1 4.24E-1 7.32E-2

SD 1.17E-4 1.29E-4 8.25E-2 1.04E-1 1.68E-1 1.15E-1

Best 4.09E-3 4.08E-3 1.01E-2 3.80E-2 4.03E-2 1.99E-2

Worst 4.64E-3 4.56E-3 2.91E-1 3.74E-1 6.45E-1 4.26E-1

UF8 Mean 4.75E-2 4.95E-2 1.16E-1 3.94E-1 1.88E-1 4.00E-1

SD 3.22E-3 1.16E-2 4.06E-2 3.83E-2 1.68E-1 2.84E-2

Best 4.28E-2 4.11E-2 7.32E-2 2.58E-1 8.23E-2 3.20E-1

Worst 5.44E-2 1.07E-1 2.42E-1 4.30E-1 7.49E-1 4.22E-1

UF9 Mean 2.70E-2 6.48E-2 3.85E-2 9.38E-2 1.59E-1 3.33E-1

SD 1.58E-3 6.62E-2 9.73E-3 3.44E-2 2.98E-2 2.77E-2

Best 2.37E-2 2.45E-2 2.52E-2 5.63E-2 4.99E-2 2.91E-1

Worst 3.01E-2 2.08E-1 6.74E-2 2.06E-1 1.90E-1 3.73E-1

doi:10.1371/journal.pone.0172033.t004
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CLPSO, owing to its powerful exploration capability, is a proper choice to be adopted in

MSCLPSO to help find the personal best positions; 2) the personal best positions carry useful

information about the Pareto set, whether the Pareto-optimal decision vectors in the Pareto set

are indifferent or significantly different on a dimension; and 3) learning from the personal best

position in the mutation strategy benefits the discovery of the true Pareto front.

The DE strategy. The IGD results given in Table 4 show that MSCLPSO-2 cannot

approximate the true Pareto front on the ZDT4-V1, ZDT4-V2, UF1, UF2, UF7, UF8, and UF9

problems in some or all of the runs. The comparison of MSCLPSO and MSCLPSO-2 indicates

that the DE strategy, through leveraging the useful information carried by the elitists, evolves

the elitists and is able to explore diverse regions of the search space. The comparison of

MSCLPSO, MSCLPSO-1, and MSCLPSO-2 further demonstrates that the combined use of the

Table 5. Ranks of MSCLPSO, CMPSO, MOEA/D, and NSGA-II in term of the mean IGD results on all the benchmark problems.

Problem ZDT2 ZDT3 ZDT4-V1 ZDT4-V2 WFG1 UF1 UF2 UF7 UF8 UF9 Total Rank

MSCLPSO 3 1 1 1 1 1 1 1 1 1 12 1

CMPSO 2+ 3- 2- 4- 3- 2- 2- 3- 3- 2- 26 2

MOEA/D 1+ 4- 4- 3- 4- 4- 4- 4- 2- 3- 33 4

NSGA-II 4- 2- 3- 2- 2- 3- 3- 2- 4- 4- 29 3

+ The corresponding MOMH is significantly better than MSCLPSO according to the Wilcoxon rank sum test.
- The corresponding MOMH is significantly worse than MSCLPSO according to the Wilcoxon rank sum test.

doi:10.1371/journal.pone.0172033.t005

Table 6. Final single-objective best solutions obtained by the swarms of MSCLPSO on all the benchmark problems.

Problem Swarm 1 Swarm 2 Swarm 3

Mean SD Mean SD Mean SD

ZDT2 4.30E-20 1.80E-19 4.95E-2 2.23E-2 - -

ZDT3 3.82E-11 2.09E-10 -7.60E-1 6.25E-3 - -

ZDT4-V1 3.40E-23 1.81E-22 6.67E-2 8.48E-2 - -

ZDT4-V2 1.10E-29 6.03E-29 3.55E-2 7.00E-2 - -

WFG1 1.04E-1 9.85E-3 8.30E-2 1.41E-17 - -

UF1 3.02E-2 2.99E-2 2.29E-2 2.68E-2 - -

UF2 2.23E-16 8.31E-16 1.49E-2 1.88E-2 - -

UF7 9.90E-2 2.08E-1 1.55E-2 1.17E-2 - -

UF8 1.06E-3 3.34E-3 1.09E-5 2.18E-5 5.74E-5 1.12E-4

UF9 3.65E-5 7.49E-5 6.34E-4 2.38E-3 2.52E-2 4.68E-2

doi:10.1371/journal.pone.0172033.t006

Table 7. Comparison of MSCLPSO and MOEA/D-DE on the UF benchmark problems.

UF1 UF2 UF7 UF8 UF9

MSCLPSO Mean 4.40E-3 6.19E-3 4.62E-3 9.29E-2 5.07E-2

SD 1.83E-4 8.24E-4 3.21E-4 3.45E-2 2.59E-2

Best 4.16E-3 5.05E-3 4.25E-3 6.18E-2 3.73E-2

Worst 5.10E-3 8.99E-3 5.60E-3 2.04E-1 1.84E-1

MOEA/D-DE Mean 4.35E-3 6.79E-3 4.44E-3 5.84E-2 7.90E-2

SD 2.90E-4 1.82E-3 1.17E-3 3.21E-3 5.42E-2

Best 3.99E-3 4.81E-3 4.05E-3 5.07E-2 3.50E-2

Worst 5.19E-3 1.09E-2 1.06E-2 6.56E-2 1.50E-1

doi:10.1371/journal.pone.0172033.t007

MSCLPSO

PLOS ONE | DOI:10.1371/journal.pone.0172033 February 13, 2017 14 / 21



personal best positions, the mutation strategy, and the DE strategy is required to achieve high

performance multiobjective optimization.

Comparison of MSCLPSO with CMPSO, MOEA/D, and NSGA-II. As the IGD results

given in Table 4 show, CMPSO, MOEA/D, and NSGA-II cannot approximate the true Pareto

front on the ZDT4-V1, ZDT4-V2, WFG1, UF1, UF2, UF7, UF8, and UF9 problems in some or

all of the runs. MOEA/D performs the best on ZDT2. As can be seen from Fig 3(b), the final

nondominated solutions obtained by MOEA/D are not reasonably distributed on the true

Pareto front of ZDT3. As Fig 3(c), 3(d) and 3(e) show, CMPSO sometimes gets stuck in a local

Pareto front on ZDT4-V1; MOEA/D gets trapped in a local Pareto front even in the best run

on ZDT4-V2; CMPSO encounters a local Pareto front in the best run on WFG1, and CMPSO

even cannot approximate the entire local Pareto front on WFG1; and NSGA-II can only locate

part of the true Pareto front in the best run on WFG1. As indicated from Fig 4(a), 4(b) and 4

(c), the MOMHs other than MSCLPSO cannot discover the entire true Pareto on the UF1,

UF2, and UF7 problems. Looking at the ranking results given in Table 5, MSCLPSO signifi-

cantly beats CMPSO, MOEA/D, and NSGA-II on 9 out of the 10 benchmark MOPs and is

overall ranked as the best MOMH. All the observations again verify the strengths of the novel

techniques adopted in MSCLPSO.

Comparison of MSCLPSO and MOEA/D-DE. As can be seen from the IGD results given

in Table 7, MSCLPSO ties with MOEA/D-DE in performance on the UF1, UF2, UF7, UF8,

and UF9 problems. MOEA/D-DE cannot effectively solve the ZDT4-V1, ZDT4-V2, and

WFG1 problems, because: 1) objective f2 of ZDT4-V1 and ZDT4-V2 is complex multimodal;

2) the Pareto-optimal decision vectors corresponding to WFG1 are not clearly correlated on

dimension 1 and dimension 2; and 3) DE often fails in the aforementioned two cases.

MSCLPSO is advantageous than MOEA/D-DE in the following aspects: 1) MSCLPSO provides

a unified parameter setting framework; 2) MOEA/D-DE needs to determine weight vectors

with the largest distances from 5000 randomly selected weight vectors [41]; 3) MOEA/D-DE

uses considerably more individuals than MSCLPSO, e.g. MOEA/D-DE uses 600 individuals

on the 2-objective UF problems, whereas MSCLPSO just uses 150 individuals in total (with 20

particles, 100 externally stored elitists, 20 individuals for mutation, and 10 individuals for DE);

and 4) MOEA/D-DE requires a nontrivial procedure to select nondominated solutions from

the final population [41].

Tuning of the algorithm parameters. As can be observed from the IGD results given in

Table 8, the performance of MSCLPSO is sensitive to the values of the algorithm parameters.

The appropriate values of the parameters are determined based on trials on all the benchmark

MOPs. α = 0 is inappropriate as indicated from the performance data of MSCLPSO-1 given in

Table 4, while α = 1 is also inappropriate as can be seen from Table 8. Table 8 also shows that

β = 0 and β = 1 are both inappropriate, and δ needs to take an appropriate value. The

Table 8. IGD results of MSCLPSO using some different parameter settings.

Parameter setting Problem IGD result

Mean SD Best Worst

α = 1 UF1 5.44E-3 5.40E-4 4.87E-3 7.20E-3

β = 0 UF1 6.40E-3 5.21E-3 4.29E-3 3.13E-2

β = 1 UF7 4.49E-3 3.88E-4 4.04E-3 5.70E-3

δ = 1% UF7 4.75E-3 3.58E-4 4.24E-3 5.57E-3

δ = 10% ZDT2 4.41E-3 1.15E-4 4.16E-3 4.68E-3

δ = 20% UF8 5.04E-2 1.81E-2 4.16E-2 1.44E-1

doi:10.1371/journal.pone.0172033.t008
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Fig 3. Final nondominated solutions obtained on the ZDT and WFG benchmark problems. (a) MSCLPSO in the best

run on ZDT2 (b) MSCLPSO in the best run and MOEA/D in the best run on ZDT3 (c) MSCLPSO in the best run and CMPSO

in the worst run on ZDT4-V1 (d) MSCLPSO in the best run and MOEA/D in the best run on ZDT4-V2 (e) MSCLPSO in the best

run, NSGA-II in the best run, and CMPSO in the best run on WFG1.

doi:10.1371/journal.pone.0172033.g003
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Fig 4. Final nondominated solutions obtained on the UF benchmark problems. (a) MSCLPSO in the best run and

CMPSO in the best run on UF1 (b) MSCLPSO in the best run and CMPSO in the best run on UF2 (c) MSCLPSO in the best

run and NSGA-II in the best run on UF7 (d) MSCLPSO in the best run on UF8 (e) MSCLPSO in the best run on UF9.

doi:10.1371/journal.pone.0172033.g004
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observations demonstrate that: 1) the mutation strategy needs to exploit both the personal best

positions and the elitists; and 2) the DE strategy needs to make a tradeoff between exploration

and exploitation.

5. Conclusions

A metaheuristic called MSCLPSO has been proposed in this paper to achieve high perfor-

mance multiobjective optimization. MSCLPSO involves multiple swarms, with each swarm

focusing on optimizing a separate original objective strictly using the state-of-the-art powerful

single-objective metaheuristic CLPSO. Elitists are stored externally. Each swarm doesn’t learn

from the elitists and any other swarm. Each particle’s personal best position is determined

based on the corresponding single objective, instead of Pareto dominance. MSCLPSO adopts a

novel mutation strategy and a novel DE strategy to evolve the elitists. The mutation strategy

appropriately exploits the personal best positions and elitists. The DE strategy achieves a bal-

ance between exploration and exploitation. MSCLPSO offers a novel technical route to handle

multiobjective optimization different from those of existing literature MOMHs. Experiments

conducted on various benchmark MOPs have demonstrated that MSCLPSO can robustly

derive diverse nondominated solutions distributed reasonably over the true Pareto front in a

single run.

Supporting information

S1 File. Java Source Code of the MSCLPSO Algorithm with the Benchmark Problems.
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S2 File. Origin Data Set for Figs 3 and 4.
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