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Abstract

Adaptation of agents through learning or evolution is an important component of the resil-

ience of Complex Adaptive Systems (CAS). Without adaptation, the flexibility of such sys-

tems to cope with outside pressures would be much lower. To study the capabilities of CAS

to adapt, social simulations with agent-based models (ABMs) provide a helpful tool. How-

ever, the value of ABMs for studying adaptation depends on the availability of methodolo-

gies for sensitivity analysis that can quantify resilience and adaptation in ABMs. In this

paper we propose a sensitivity analysis methodology that is based on comparing time-

dependent probability density functions of output of ABMs with and without agent adapta-

tion. The differences between the probability density functions are quantified by the so-

called earth-mover’s distance. We use this sensitivity analysis methodology to quantify the

probability of occurrence of critical transitions and other long-term effects of agent adapta-

tion. To test the potential of this new approach, it is used to analyse the resilience of an ABM

of adaptive agents competing for a common-pool resource. Adaptation is shown to contrib-

ute positively to the resilience of this ABM. If adaptation proceeds sufficiently fast, it may

delay or avert the collapse of this system.

Introduction

Many social-ecological systems, which provide important ecosystem services, are under

increasing pressure from human activities and environmental changes [1, 2]. To predict how

these systems will respond to pressures, we need to describe their Complex Adaptive System

(CAS) characteristics. CAS are systems with many autonomous agents that interact with each

other and with their environment [3]. The system-level behaviour of CAS ‘emerges’ from

lower-level interactions and cannot a priori be predicted from the properties of its agents. To

properly manage CAS that are under pressure, it is important to understand which properties

affect resilience, i.e., the capacity of the system to cope with pressures while maintaining its

identity and avoiding drastic changes [4]. It has been shown that some CAS show an initial

resilience against pressure, until a tipping point is reached where the system undergoes a dras-

tic transition to an entirely different system state [5]. In order to predict the occurrence of

such transitions, we need to understand the origin and extent of the resilience of CAS [6].

Real-world CAS constantly experience the influence of small disturbances, changing condi-

tions, and random events. This means that CAS are never in a static equilibrium situation and
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their state is continuously changing [4]. Most of these changes are small, and do not affect the

organisation of the system fundamentally. Such small changes are commonly described as

movements within a ‘domain of attraction’. Within a domain of attraction, the system main-

tains the same qualitative structure and organisation. Often these domains of attraction are

illustrated metaphorically as valleys in a potential landscape that describes the state of the sys-

tem. For example, Fig 1a shows a hypothetical potential landscape with two domains of attrac-

tion. The ball represents the current state of the system, and is naturally attracted towards the

bottom of the domain of attraction. Pressures and shocks of limited strength and duration

continuously shake the system within the boundaries of the current domain of attraction, but

rarely push the system past those boundaries. Pressures and shocks that are strong and/or fre-

quent, in contrast, are more likely to push the system outside its domain of attraction. Such a

tipping point leads to a qualitatively different kind of system state, and may have drastic conse-

quences for the development of the system. The resilience of the system against the occurrence

of tipping points is, of course, determined by the shape of the current stability domain. If this

stability domain is wide and deep, external pressures are unlikely to cause a tipping point, and

the system is said to be resilient.

In many studies, resilience is assessed by modelling the system with an ordinary differential

equation model and using bifurcation analysis to detect the boundaries of the domains of

attraction (e.g., [7]). In this approach, the stability landscape is assumed to be static over the

course of the simulation. In the context of CAS, however, this assumption is an oversimplifica-

tion [4]. Changing conditions may affect the width, depth, and position of the domains of

attraction. This is illustrated in Fig 1b, in which the potential landscape is initially identical to

Fig 1a, but over time the leftmost domain of attraction gradually becomes less resilient and

eventually disappears. As a result, the system will undergo a transition into the remaining sta-

bility domain. Adaptation is considered to be a key factor for understanding how the resilience

of CAS changes over time [1, 6]. Adaptation refers to the capacity of agents to affect the resil-

ience of the system through adjustment of their behavioural rules in response to perceived or

expected changes in the system. This adaptation may refer to Darwinian natural selection, but

also to agents trying to learn to cope with their environment, for instance through trial-and-

error, or through imitation of other agents (e.g., [8–10]). Adaptation ensures that agents can

change the resilience of the system by adjusting the boundaries of the domain of attraction, for

Fig 1. Hypothetical potential landscape ϕ(Y) as function of a state variable Y. (a): The landscape is static in

time. The black ball represents the current system state. The two valleys correspond to two separate stability

domains. (b): The landscape changes over time. At t = 0 the landscape is identical to (a). Over time, the leftmost

stability domain becomes less resilient and eventually disappears.

doi:10.1371/journal.pone.0171833.g001

Resilience through adaptation

PLOS ONE | DOI:10.1371/journal.pone.0171833 February 14, 2017 2 / 21



instance by becoming better adapted to conditions that put pressure on the system. Thus, in

terms of the potential landscape in Fig 1b, adaptation might prevent the loss of resilience of the

leftmost stability domain, by deepening this domain.

The effects of agent adaptation in CAS are often modelled using agent-based models

(ABMs), which explicitly model interactions between agents in an environment [3]. In [10]

a distinction is made between adaptive and non-adaptive ABMs. Adaptive ABMs are defined

as ABMs ‘in which the interacting, autonomous agents change their behaviors during the

simulation, as agents learn, encounter novel situations, or as populations adjust their com-

position to include larger proportions of agents who have successfully adapted’ [10]. In con-

trast, in non-adaptive ABMs the behavioural rules of agents remain constant throughout the

simulation. In this paper we will follow this definition of adaptive ABMs. Nowadays, the use-

fulness of ABMs is still limited by a lack of available methodologies for analysing and draw-

ing robust conclusions from the model behaviour [10–15]. Standard methodologies of

model analysis often yield insufficient information to uncover key relations between the

model inputs and its outputs [16, 17]. Furthermore, there is currently no standardised meth-

odology to determine the boundaries of domains of attraction in ABMs [18]. Agent adapta-

tion further complicates this issue, because it is necessary to take into account that agents

have the capacity to change the shape of the stability domain [19–21]. Besides adaptation,

the presence of stochasticity is another factor that may complicate the analysis of many

ABMs. Many ABMs contain stochasticity, and this introduces intrinsic variation in the

model output.

In this paper we propose a methodology to analyse adaptation and its effects on resilience

using ABMs. We apply the methodology to a previously published ABM [16] of consumers

competing for a common-pool resource. The methodology is based on a comparison between

an ABM with adaptation and a version where adaptation has been disabled. For both versions

we account for stochasticity of the model output by estimating probability density functions

(pdfs) that assign probabilities to each possible output value. Since adaptation is a process that

takes place over time, we estimate both pdfs as a function of time. If the boundaries of the cur-

rent domain of attraction of the ABM are crossed, then the output pdf shows a transition to a

different system state. We use methods of sensitivity analysis to locate such boundaries. For

the ABM without adaptation these boundaries are fixed, but for the ABM with adaptation the

boundaries may shift as agents become better adapted. The difference between the pdfs of both

ABMs is used to measure the effects of adaptation on the resilience of the system. We quantify

this difference using the so-called earth-mover’s distance.

Materials and methods

Stochastic output

Since most ABMs are stochastic, each single simulation run of an ABM yields its own output.

We use a large number of replicate runs to estimate the range of possible output values. Most

sensitivity analysis methods use these replicate runs only to estimate the mean and variance of

the model output under various parameter settings (e.g., [22]). If the model output is normally

distributed, then the mean and variance indeed fully describe its variation. For ABMs, how-

ever, both the underlying model behaviour and the corresponding shape of the output distri-

bution are usually not known a priori. This shape contains information that is important for

understanding the model behaviour. For example, if a number of model runs undergo a transi-

tion into another domain of attraction, this will lead to a bimodal output distribution.

In this paper, we use replicate runs to estimate the output distribution. These estimates will

be visualised as histograms. Since the output distributions are time-dependent, they are

Resilience through adaptation
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estimated as functions of time. Plots of the time-dependent estimated pdfs visualise the change

of the model output over time. For example, the pdf Fig 2 initially shows fluctuations over

time, after which it converges to a domain of attraction. After this convergence it seems to sta-

bilise as a normal distribution. Since adaptation is a process that takes place over time, its

effects are contained in the time-dependent pdf. Critical transitions where the model is pushed

into an alternative domain of attraction appear as sudden changes in the pdf.

Statistical tests

To assess the characteristics of the estimated output pdfs, we use statistical tests for stationarity

and ergodicity. Details of these tests are given in S1 Appendix. Stationarity tests use a number

of replicate runs to verify whether an ABM becomes ‘stationary’, i.e. reaches a state in which

its output pdf shows no long-term changes over time [23]. For example, in Fig 2 the model

appears to converge to a stationary state, after some initial fluctuations. If the ABM becomes

stationary, the corresponding pdf represents the long-term behaviour of the ABM and there is

no adaptation over the considered time-span.

Ergodicity tests compare an output sample of a single model run, which is obtained by

recording the model output every time-step, to output samples of a number of replicate runs

measured at a set time [23, 24]. The model is considered to be ergodic if the null-hypothesis

that the output samples are identical is not rejected. In other words, the stochastic variation

between replicates is then equal to the stochastic variation over time of a single model run. A

difference between the output samples indicates that the model output contains variation over

time that cannot be attributed to stochasticity, and may indicate that adaptation has taken

place over the considered time-scale. Since only a single model run is used to estimate the

time-averaged pdf, ergodicity is a highly attractive property if we want to explore the model

behaviour on very long time-scales. In the following, we will refer to histograms that are

obtained by recording a single model run over successive times-steps as time-averaged histo-

grams. We refer to histograms that are recorded over replicate runs as function of time as

time-dependent histograms.

Fig 2. Time-dependent histogram. Time-dependent histogram that estimates the probability P(n, t) of obtaining

some model output n at time t. The figure was generated using 10.000 replicate runs. In this example, the output

seems to stabilise as a normal distribution around of mean value of n = 90.

doi:10.1371/journal.pone.0171833.g002
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Sensitivity measures

In order to assess how adaptation influences the model output, we need to measure the sensi-

tivity of the output pdf to the presence of adaptation. We measure this sensitivity by comparing

the estimated time-dependent pdfs of the output of model versions with adaptation Pa(n, t)
and without adaptation Pb(n, t). Here n denotes the number of agents, which is used through-

out this paper as the central model output. To quantify the comparison we use the earth-mov-

er’s distance de [25].

For an intuitive interpretation of the earth mover’s distance, consider two pdfs Pa(n, t) and

Pb(n, t) as amounts of mass that are spread over a distance specified by the model output n.

The earth-mover’s distance de(Pa(n, t), Pb(n, t)) is then the work required to transform Pa(n, t)
into Pb(n, t). Several properties follow from this interpretation. Firstly, for all Pa(n, t) and

Pb(n, t), de(Pa, Pb)� 0, and de(Pa, Pb) = 0 implies that Pa = Pb. Any positive value of de(Pa, Pb)

thus indicates a difference between the pdfs. Small values indicate that the pdfs are quite simi-

lar, and large values indicate strong differences between the pdfs. We denote by

QðtÞ ¼ deðPaðn; tÞ; Pbðn; tÞÞ ð1Þ

the effects of adaptation at time t. Note that all the used symbols are described in Table 1. Q(t)

Table 1. Description of used symbols.

Symbol Description Units

D Diffusion coefficient km2day−1

de Earth mover’s distance -

dJ Jensen-Shannon distance between histograms -

du Euclidian distance between histograms -

d(j, k) Distance between bins of histograms (S2 Appendix) -

Eh Energy cost for an agent to harvest J

Em Energy cost for an agent to move J

g(j, k) Flow between bins of histograms (S2 Appendix) -

Ht Vector used in runs test (S1 Appendix) -

j, k, l Indices for output values -

N Number (observations, model runs,. . .) #

n Number of agents #

Pa(n, t) Normalised histogram of ABM with adaptation -

Pb(n, t) Normalised histogram of ABM without adaptation -

Qi(t) Adaptation measure for parameter i at time t -

Q0iðtÞ Rate of adaptation over time t−1

T Length of time-series -

t Time index day

V Variance -

W Statistic used in trend test (S1 Appendix) -

wharvest Agent’s harvest parameter -

wmove Agent’s move parameter -

Y Model output variable -

z Inheritance parameter -

λ Extinction parameter day−1

μ Mean -

ρ Increase in pressure -

ϕ Potential J

doi:10.1371/journal.pone.0171833.t001
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measures the effect of a parameter change, namely the enabling or disabling of adaptation.

Other sensitivity measures based on a comparison between output pdfs have been previously

suggested (e.g. [26–28]). All of these measures are based on the (lack of) overlap between those

pdfs. For our purposes, these measures are not suitable, because we want to measure the effects

of adaptation even when there is little or no overlap between the pdfs. The earth-mover’s dis-

tance allows us to do this, because an increase in the distance between pdfs will result in an

increase of the earth-mover’s distance, even when the pdfs do not overlap.

In addition to the effects of adaptation at a specific time, we are also interested in the rate of

adaptation. We calculate the rate of change of Q(t) by computing the difference between time-

steps,

Q0ðtÞ ¼ deðPaðtÞ; PbðtÞÞ � deðPaðt � DtÞ; Pbðt � DtÞÞ; ð2Þ

with Δt small compared to the time-scale of the process. This measure for the rate of adapta-

tion helps to identify periods in time where adaptation proceeds relatively fast, or where there

is little adaptation. For example, adaptation may be influential on short simulation times, but

have little effect on longer simulation times, or the other way around.

Computation of the earth mover’s distance

Computing the earth-mover’s distance between a pair of distributions amounts to finding

the minimal ‘work’ needed to change one distribution into the other. We write g(j, k) for the

matrix element that contains the flow between output values j and k, d(j, k) for the distance

between the output values, and we consider g(j, k)d(j, k) as the work required to transport

g(j, k) from j to k. There are many possible choices for the matrix g to transform one distribu-

tion into the other. To compute the earth-mover’s distance, we minimise g(j, k)d(j, k) over

these possible choices [29],

de ¼ min
X

ðj;kÞ

gðj; kÞdðj; kÞ

 !

ð3Þ

with the constraints
X

k

gðj; kÞ ¼ PaðjÞ 8j ð4Þ

X

j

gðj; kÞ ¼ PbðkÞ 8k ð5Þ

gðj; kÞ � 0 8j; k ð6Þ

with d(j, k) the distance between j and k, and the indices j and k running over their domains.

Eqs 4 and 5 ensure that the flow is such that the distribution Pa(j) is transformed into Pb(k).

Eq 6 ensures that mass is moved from Pa(j) to Pb(k), and not the other way around. Eq 3

ensures that the flow is chosen such to minimise the required ‘work’ g(j, k)d(j, k). For two

pdfs of a single output variable, this minimisation is accomplished by going through all con-

secutive pairs of output values, and keeping track of the amount of mass that needs to be

transported. S3 Appendix contains a sample pseudo-code for this computation. For the

computation of de for continuous, or multi-dimensional distributions, we refer to [30].

Packages to compute de are available for various statistical software and programming

languages.

Resilience through adaptation
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Method to measure adaptation

In Fig 3 we present the scheme of our method to measure adaptation of ABMs. The first step

is to prepare an ABM with adaptation, and a version of the same ABM in which this adapta-

tion is disabled. Agent adaptation in our test-case consists of the selection of agent character-

istics for replication or modification [6]. Disabling this selection ensures that there is no

adaptation and that the distribution of agent properties does not change over time. In the

ABM with adaptation, the agent properties may change over time, for example through natu-

ral selection, or through individual agents learning from past experience or imitation of

other agents [3, 10]. To measure the effects of such adaptations, we compare the output of

the ABM with adaptation to that of the ABM without adaptation. The rest of the method is

composed of steps for analysing the model output and comparing the estimated output pdfs

using Eqs 1 and 2.

Based on a large number of replicate runs, we generate histograms of the output to esti-

mate the time-dependent output pdfs of the ABM without adaptation Pb and of the adaptive

ABM Pa. To measure adaptation, we need to examine how the pdfs change with time. Thus,

for each ABM we estimate the pdf at multiple points in time. Based on these data, we use sta-

tionarity tests to verify whether the ABMs reach an equilibrium, or continue to change over

the considered time-scale. Furthermore, for each ABM we also perform a single model run

with a very long simulation time to test the ergodicity. If the stationarity test reveals that the

Fig 3. Flow chart of the proposed method to measure adaptation. The method is based on a comparison

between versions of an ABM with and without adaptation. See the main text for further explanation.

doi:10.1371/journal.pone.0171833.g003
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ABM reaches a stationary state, then the time after which this state is reached is used as a

starting point for the ergodicity test, but the ergodicity test explores longer simulation times

than the stationarity test. If the model is ergodic, then we may conclude that no adaptation

takes place.

Once the pdfs of the ABMs with adaptation and without adaptation have been analysed, we

proceed by comparing them to quantify the effects of adaptation. The difference between the

pdfs is quantified using Q (Eq 1). In addition to measuring the effects of adaptation over a

specified time-span, we also measure the rate of adaptation using Q0 (Eq 2). This rate of adap-

tation is especially relevant in the context of resilience. For the resilience of the system to be

influenced by adaptation, the rate of adaptation must be sufficiently fast to respond to pres-

sures. For example, if a pressure to the system increases very fast, then adaptation must also be

able to occur fast in order to affect the consequences of the pressure.

Model description

We consider a previously published test-case, in which adaptation emerges through a process

of natural selection. An overview of all model parameters and their default values is given in

S1 Table. For a full model description we refer to [16]. Here we focus mainly on the mecha-

nism for adaptation. Fig 4 presents a flow chart of the model. The test-case is a resource-

agent system, in which the agents compete for a renewable common-pool resource in a spa-

tial environment. The spatial environment is composed of a grid of square sites, on which

resource grows and diffuses, and on which agents live (Fig 5). Every time-step, each agent

estimates the amounts of resource and observes the number of agents on its present location

and the four neighbouring sites. Based on this information, it decides whether to harvest on

its present site, to move to a neighbouring site, or to stay inactive. These decisions are sto-

chastic, but the probabilities are influenced by the agent’s own (decreasing) internal energy

state (‘hunger’) as well as the state of the local surroundings, including the presence of

resources (‘food availability’) and other agents (‘crowding’). Harvesting or moving costs

energy, in addition to the energy consumed by basic maintenance every time-step. There are

thus trade-offs between harvesting, moving, and remaining inactive, which form the basis of

the agent’s decision-making process. At the end of each time-step, all agents have a probabil-

ity of dying and of reproducing, based on their internal energy state. Low values for the inter-

nal energy increase the probability of dying, whereas high values increase the probability of

reproducing.

Each agent has two agent parameters that affect its decisions to harvest or move: wharvest

and wmove. Besides these parameters, the probabilities of harvesting or moving also depend

on the weighted average of a few factors, including the agent’s internal energy, the resource

on its site and the resource on its neighbouring sites. This average, multiplied by wharvest or

wmove, is input to a function that determines the probability. If wharvest = 0 the agent will

choose to harvest with probability 1. Similarly, if wmove = 0 the agent will choose to move

with probability 1. Larger parameter values decrease the probabilities. For the initial agent

population, the values of these parameters are drawn from a uniform probability distribu-

tion. The values remain constant over the lifetime of an agent. Upon reproduction, an agent

passes on its values of wharvest and wmove to its offspring, with a small random deviation. The

distribution of the parameter values across the population may thus change over time

through a process of natural selection. Since the probability of reproducing is higher for

agents with a high internal energy, agents that are successful at gathering energy are also

more likely to reproduce and pass on their characteristics. Agents that are not successful at

gathering energy, in contrast, are more likely to die without reproducing. Parameter values

Resilience through adaptation
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that increase an agent’s success at gathering energy are thus passed on more frequently,

whereas parameter values that decrease its success tend to disappear from the population.

Over time, the distribution across the population of the parameters values will thus move

towards values that increase success at gathering energy. This change in the distribution rep-

resents the process of the population adapting to its environment.

To obtain a non-adaptive version of the ABM, we disable the inheritance of agent charac-

teristics. In the non-adaptive version, when a new agent is added to the system, its values of

wharvest and wmove are chosen according to the same probability distribution that is used for the

initial agent population. Thus, in this version there are no long-term changes in the distribu-

tion of wharvest and wmove across the agent population.

Fig 4. Model flow chart. The dashed boxes indicate loops over all sites or all agents. For detailed

explanation we refer to [16].

doi:10.1371/journal.pone.0171833.g004
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Fig 5. Snapshot of a typical simulation run of the ABM test-case. The ABM is composed of a square grid of sites. Dark colours indicate sites with high

resource densities, while light colours indicate low densities. The red arrows show the current locations of agents.

doi:10.1371/journal.pone.0171833.g005
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Results

Non-adaptive ABM

In the following sections, we will consider the agent population size n as the central model out-

put. Following the scheme in Fig 3, we estimate the output histogram of the ABM without

adaptation in the default parameter setting. Detailed results of the statistical tests are given in

S3 Appendix. Model runs in the default parameter setting show that the output initially oscil-

lates, but stabilises around t = 1000. Between t = 1000 and t = 2000, the mean of the output

across replicates is nearly constant on average, with short-term fluctuations. Due to these fluc-

tuations, stationarity tests show that the output is not stationary. To test whether there are any

long-term trends, we average the output over short time-windows and test whether the series

of window means is stationary [31]. These tests indicate that between t = 1000 and t = 2000 the

window means are stationary.

To test the ergodicity we compare the histogram Pb of the output over replicate runs at

t = 1000, to the histogram of a single model run, ranging from t = 1000 to t = 100,000. The test

confirms that the ABM without adaptation is ergodic, indicating that it shows no long-term

change even on simulation times up to 100,000 time-steps (Fig 6a). The histogram over repli-

cate runs at t = 1000 and the time-averaged histogram thus both estimate the stationary pdf of

the ABM without adaptation, and describe the behaviour of this ABM on long time-scales.

Adaptive ABM

The stationarity test for the adaptive ABM shows similar results as the ABM without adapta-

tion. The model output has stabilised around t = 1000 and appears to be stationary between

t = 1000 and t = 2000. The output histogram corresponding to the stationary state is approxi-

mately equal to the histogram of the ABM without adaptation.

Fig 6. Time-averaged histograms of the number of agents (n). The blue histograms are measured over 10,000 replicate runs at

t = 1000, and the green histograms over the time-steps of a single model run between t = 1000 and t = 100,000. All parameters are at

their default values. Fig 6a indicates that the ABM without adaptation is ergodic, and Fig 6b indicates that the ABM with adaptation is not

ergodic.

doi:10.1371/journal.pone.0171833.g006
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Although the stationarity test does not reveal any effects of adaptation, it is possible that

adaptation proceeds so slowly that the time period between t = 1000 and t = 2000 is too short

to observe its effects. We use an ergodicity test to explore the behaviour of the ABM with adap-

tation on longer time-scales. The results reveal that the model output is indeed affected by

adaptation on simulation times between t = 1000 and t = 100,000. The time-averaged histo-

gram of a model run with a long simulation time differs significantly (S3 Appendix) from the

histogram over replicate runs at t = 1000 (Fig 6b). Over time the agent population gradually

adapts, causing a significant increase in the population size. So we observe that, while the sys-

tem remains in the same stability domain on long time-scales, adaptation causes the shape of

this stability domain to gradually change over time, whereas without adaptation the shape of

the stability domain remains constant.

Effects of adaptation

To estimate the effects of adaptation we compute Q between the estimated time-dependent

pdfs Pa and Pb. We use a total simulation time of 100,000 time-steps, and record the output

every Δt = 100 time-steps. Fig 7a shows that the distance between the pdfs increases on long

time-scales. The corresponding values of Q (Fig 7b) show that the distance between the pdfs

initially increases, but then decreases approximately between t = 5,000 and t = 15,000, after

which it increases again. The initial increase of Q is caused by a small decrease in the output of

the ABM with adaptation. After this initial decrease in the output, the output starts to increase,

first moving towards the ABM without adaptation, and then becoming larger. The initial

decrease of the number of agents in the adaptive ABM is caused by increased competition

between the agents, which tend to harvest more often. On longer time-scales, the agents adapt

to move less often, and wait at the same location to let the resource grow before harvesting.

Since agents mostly stay in their location, there is a decreased competition between the agents,

which leads to an increase in the number of agents on longer time-scales. This learning process

continues until the simulation is stopped at t = 100,000 as is shown by the values of Q and Q0.
To demonstrate why we prefer the earth-mover’s distance over some other measures, we

have reproduced Fig 7b using two other commonly used measures for the difference between

Fig 7. Effects of adaptation. (a): Means of the pdfs Pa(green) and Pb (blue) at the default parameter settings.

The thinner lines show the mean plus or minus one standard deviation. Both the mean and standard deviation

were estimated based on 1000 replicate runs. (b): Plot of Q between the pdfs Pa and Pb, as functions of time. The

plot shows that on long time-scales the effects of adaptation increase. (c): Comparison between the earth-

mover’s distance de (black), the Jensen-Shannon divergence dJ (red), and the Euclidian distance dE (orange). To

fit in the same graph, we plot de divided by its maximimum value. For large values of t, dJ and du become

insensitive to changes in the pdfs when there is no longer overlap between the pdfs. In contrast, de continues to

increase.

doi:10.1371/journal.pone.0171833.g007
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pdfs, namely the Euclidian distance

du ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j

jPaðjÞPbðjÞj
2

s

ð7Þ

and the Jensen-Shannon divergence

dJ ¼
1

2

X

j

PaðjÞln
2PaðjÞ

PaðjÞ þ PbðjÞ

� �

þ PbðjÞln
2PbðjÞ

PaðjÞ þ PbðjÞ

� �� �

: ð8Þ

Similar to de both measures initially measure an increasing difference between the pdfs (Fig

7c). For larger values of t this increase flattens off because the measures reach a maximum

when there is no overlap between the pdfs. The earth mover’s distance de, in contrast, contin-

ues to increase because the distance between the means of the pdfs is still increasing.

Resilience

As shown in [16], the model contains tipping points where the population collapses and goes

extinct. For example, Fig 8 shows that a tipping point is crossed by decreasing the harvest

parameter Eh. Low values of Eh enable agents to obtain more energy within the same time

interval and procreate faster. This leads to oscillations in the population size, as the population

rapidly increases beyond what the environment can support. As Eh decreases, the amplitude of

these oscillations increases, eventually destabilising the system and causing extinction. In the

following we consider a parameter change in the value of Eh as a pressure to the system and we

consider the resilience of the system against this pressure, and how this resilience is affected by

adaptation.

To examine the long-term model behaviour for various values of Eh, we approximate time-

averaged pdfs based on a single run of both versions of the ABM. The results for a few selected

values of Eh are shown in Fig 8. For Eh = 0.1, both pdfs are bimodal, with the peaks correspond-

ing to the extrema of the oscillations (Fig 8a). The distance between the peaks is smaller in the

adaptive ABM than in the ABM without adaptation. For Eh = 0.05, both ABMs converge to

extinction, as indicated by the peaks at n = 0 (Fig 8c). For Eh = 0.07, extinction has occurred

Fig 8. Time-averaged histograms of the number of agents n, for selected values of Eh. The peaks at n = 0 correspond to the population

going extinct.

doi:10.1371/journal.pone.0171833.g008
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only in the ABM without adaptation. The adaptive ABM still has a positive population at the

end of the run (Fig 8b).

We use 1000 replicate runs of both ABMs to approximate the pdfs as a function of time.

The resulting histogram of the ABM without adaptation has a peak at n = 0 and the height of

the peak increases over time (Fig 9a). Thus, the probability that a population goes extinct

remains positive over time, resulting in an increasing number of extinct runs as time pro-

gresses. The ABM with adaptation also has a peak at n = 0, but the height of this peak is smaller

and does not increase after the first few-hundred time-steps (Fig 9b). Thus, initially there is a

positive probability of going extinct, but this probability decreases to zero over time. After

some time, no more runs go to extinction. The adaptation measure Q increases, since the num-

ber of runs resulting in extinction increases in the ABM without adaptation (Fig 9c). Around

t = 50,000, all the model runs of the ABM without adaptation have gone to extinction, after

which the adaptation measure no longer varies.

The variation between replicates in the time until the model goes to extinction is caused by

stochasticity. To estimate the spread of this timing, we perform 100 model runs for each value

of Eh and record the value of t where extinction occurs. For Eh = 0.07, the number of runs of

the ABM without adaptation with a positive population decreases approximately exponentially

over time, whereas for the adaptive ABM extinction occurs only in the first few-hundred time-

steps (Fig 10a). If the population does not go extinct during this initial period, then the popula-

tion will adapt to harvest more often (Fig 10b), and move less often (Fig 10c). These adapta-

tions ensure the long-term survival of the population.

To quantify the timing of the tipping point, we fit an exponential decay function to the

number of model runs with a positive population at time t,

NposðtÞ ¼ Npos;0e� lt: ð9Þ

Here Npos(t) is the number of model runs with a positive population at time t, Npos,0 is the total

number of model runs and λ represents the rate of extinction. High values of λ indicate that

model runs rapidly go extinct, whereas λ = 0 indicates that extinction does not occur at all. We

estimate λ by fitting Eq 9 to the simulation output using ordinary least squares. The values of

the mean squared error of the fits show that Eq 9 gives a good approximation of the simulation

output (Table 2). Fig 11 shows that λ decreases as Eh increases. Thus, extinction occurs faster

for lower values of Eh. For all values of Eh, the fitted value of λ is higher in the ABM without

adaptation compared to the ABM with adaptation, indicating that adaptation slows down

extinction. We consistently observe that the tipping point where λ goes to zero occurs at a

Fig 9. Time-dependent histograms at Eh = 0.07. (a): Histogram of the ABM without adaptation. (b): Histogram of the ABM with

adaptation. (c): The value of Q as a function of time. The value of Q increases as without adaptation an increasing number of runs goes to

extinction.

doi:10.1371/journal.pone.0171833.g009
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lower value of Eh for the ABM with adaptation than for the ABM without adaptation. For exam-

ple, at Eh = 0.07, the ABM without adaptation has a positive value of λ, indicating that all model

runs eventually go extinct. On the other hand, in the ABM with adaptation populations survive

on long time-scales. Our results thus show that the capacity of the agent population to adapt to

its surroundings increases its resilience to circumstances that put pressure on the population.

Increasing pressure over time

So far, we have considered the effect of adaptation on the ability of the population to cope with

a pressure that is constant over time. In the following we will consider a pressure that increases

over time, in the form of a gradual decrease in the diffusion-coefficient D. For high values of D
the resource spreads quickly from high density areas to low density areas, whereas for low val-

ues this spread is slow. Decreasing values of D put pressure on the agent population, because

agents need to search more actively for resource. Thus, we introduce a change in the value of

D over time,

r ¼ �
dD
dt
: ð10Þ

For positive values of ρ, the diffusion of the resource gradually slows down during a simulation

run, putting pressure on the population. The value of ρ determines the rate at which the pres-

sure increases. We expect that if the pressure increases at a high rate, then adaptation must

also occur at a high rate for the system to remain resilient. In the model, this rate of adaptation

is determined by the random deviation of the agent characteristics upon reproduction. If these

deviations are small, then offspring will be very similar to their parents and adaptation will be

Table 2. Values of the mean squared error (MSE) of the exponential fits to the number of replicate runs with surviving populations (Eq 9).

Eh 0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

MSE ABM without adaptation 2.2 2.0 2.9 2.4 4.9 3.2 3.2 1.9 1.3 4.6 3.5

ABM with adaptation 5.7 3.3 1.6 1.8 2.1 5.8 5.2 9.5 3.2 7.5 3.5

doi:10.1371/journal.pone.0171833.t002

Fig 10. Effect of adaptation on resilience. (a): Plot of the percentage of model runs with a positive population Npos(t) as a function of

time. We used 100 replicate runs at Eh = 0.07, for both versions of the ABM. The dashed lines correspond to exponential fits (Eq 9).

Without adaptation, an increasing number of runs go to extinction, whereas with adaptation there is extinction only on short time-scales.

(b): Mean value of wharvest over the agents of all the 100 replicate runs of the ABMs with adaptation and without adaptation. The upper

and lower lines show the mean plus or minus one standard deviation. (c): The mean value of wmove over the agents of all the 100

replicate runs of the ABMs with and without adaptation. The upper and lower lines show the mean plus or minus one standard deviation.

doi:10.1371/journal.pone.0171833.g010
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slow. If the deviations are larger, the differences between offspring and their parents are larger,

which enables faster adaptation. The model parameter z controls the size of these deviations.

We examine the interaction between the rate of pressure increase and the rate of adaptation by

running the model for different combinations of ρ and z. Each run is initiated with parameter

values of D = 0.1, the energy cost of moving Em = 0.1 and wharvest = wmove = 10 for all agents.

All other parameters are at the nominal setting. During each run, the pressure is increased by

lowering the value of D from D = 0.1 to until D = 0.05. Lower values of D lead to extinction

regardless of adaptations in the population. If adaptation is slow, then the pressure that results

from the decrease of D leads to collapse of the population, but if the adaptation is sufficiently

fast then a positive population is maintained (Fig 12a). The mean value of wmove across this

population shows that agents adapt to move more frequently in search of resource, but that

this adaptation is not fast enough for low values of z (Fig 12b). Runs for various values of z and

ρ show that there is a critical transition where the pressure on the population increases too fast

for adaptations to keep up (Fig 12c). To better understand the resilience of the system to pres-

sure, it is thus important to weigh the rate at which the population is able to adapt against the

rate of changes that put pressure on the system.

Conclusions & discussion

For ABMs to be a useful tool for the assessment of the resilience of social-ecological systems,

suitable methodologies for analysing these ABMs are needed. In this paper, we have proposed

a methodology for analysing effects of agent adaptation in ABMs, and showed how this adapta-

tion affects resilience. We have illustrated the use of this methodology by applying it to an

ABM of consumers competing for a common-pool resource. The method is based on a

Fig 11. Extinction parameter λ as function of Eh. The extinction parameter λ (Eq 9) as function of the

harvest cost Eh. The values were estimated by fitting Eq 9 to the output of 100 replicate runs of the ABMs with

adaptation and without adaptation. The value of Eh where λ reaches zero corresponds to the tipping point

where there is no extinction on long time-scales.

doi:10.1371/journal.pone.0171833.g011
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comparison between the time-averaged pdfs of an adaptive ABM and version of this ABM for

which adaptation has been disabled. We consider the difference between these two pdfs as a

measure for the effects of adaptation on the model output. This difference is quantified using

the earth-mover’s distance [25] as a measure for the adaptation of the system. This measure

differs from previously used sensitivity measures based on pdfs (e.g. [26–28]) in that even

when different model runs do not overlap in terms of output the earth-mover’s distance is still

able to quantify the sensitivity. Note that sensitivity measures quantify the output change or

variation as a function of changes or variations in parameter values. Although Eq 1 measures

the ‘sensitivity’ of the output to adaptation, it is not a sensitivity measure in the conventional

sense because it does not take into account the size of the parameter change. When consider-

ing the sensitivity to a continuous parameter, the derivative of Eq 1 with respect to the parame-

ter could be considered as a sensitivity measure. An advantage of the described method over

most sensitivity analysis methods is that we explicitly consider the presence of tipping points,

and how these tipping points are affected by adaptation. Existing sensitivity analysis methods

do not take into account that the model behaviour may be qualitatively different in different

regions of parameter space.

To test the potential of the methodology, we have applied it to a test-case ABM of agents

competing for a common-pool resource. For this test-case, the methodology shows that adap-

tation increases the resilience of the system to pressures. This resilience is defined in terms of

the amount of pressure the system can cope with before it jumps to an alternative domain of

attraction. In our case, this jump corresponds to the tipping point where the agent population

goes extinct. Without adaptation, this tipping points always occurs at certain parameter values.

Agent adaptation is added in the form of a process of natural selection. As a result of this adap-

tation, the location of the tipping point shifts, and the boundaries of the domain of attraction

become wider. This positive contribution of adaptation to the resilience of the test-case

depends on the rate at which adaptation takes place. The analysis of the ABM shows that for a

system to be resilient, the rate of adaptation needs to be sufficiently fast to cope with increasing

pressures or changing conditions.

Other authors have discussed ABMs similar to our test-case [32–34] In [32, 33] the focus is

mostly on the evolution of behavioural strategies for the agents, which are characterised by a

Fig 12. Increasing pressure over time. (a): Number of agents n as function of time for a rate of adaptation z = 1 (blue) and z = 5 (green). In

both plots ρ = 5 × 10−5 Eq (10). (b): Average value of wmove across agents, for the same model runs as in (a). (c): Each point in the figure

corresponds to a run of 60,000 time-steps. Red points indicate that the population has gone extinct, whereas for the green points the

population has remained positive until the end of the simulation. Extinction occurs if the rate of adaptation z is insufficient to cope with the

pressure increase ρ.

doi:10.1371/journal.pone.0171833.g012
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neural net. Both studies find that various strategies evolve, ranging from greedy to cooperative.

In our ABM the range of possible strategies is smaller, because the ABM contains only two

agents parameters that are affected by natural selection. For any given parameter setting the

model seems to converge to a dominant strategy, but it depends on the parameter setting what

this strategy is. For some settings it corresponds to ‘greedy’ agents that harvest as often as pos-

sible, whereas for other settings it corresponds to agents that harvest less frequently in order to

let the resource grow. A possible extension to our model would be to include more agent

parameters, possibly involving direct interactions between agents such as in [32]. For the pres-

ent study, our main aim is to examine how agent behaviour affects the resilience of the system

as a whole. In [34] the resilience of different stability domains of an ABM is considered, but

here the agent behaviour is completely pre-defined, and the system does not contain

adaptation.

In this paper we have considered only adaptation through a process of natural selection.

Adaptation through natural selection typically takes place on long time-scales relative to other

types of adaptation. Furthermore, adaptation through natural selection is reactive in the sense

that it that responds to changes in the environment, but cannot respond to changes that agents

might foresee in the future. In many CAS, individual agents have the ability to learn from past

experiences and to adjust their behaviour according to expected future developments. These

types of adaptation can be expected to operate on much shorter time-scales than natural selec-

tion [35]. Future work will include investigating types of adaptation that operate on faster

time-scales, or in which agents adapt proactively based on foreseen changes. Such fast adapta-

tions might lead to an increase in the resilience of the system as agents are able to quickly

adapt to situations and respond to pressures. Alternatively, however, they might also destabi-

lise the system, for example when agents mispredict trends or overspecialise [36]).

In this paper, we have analysed the effects of adaptation in a simulated CAS. The analysis is

based on a comparison between a non-adaptive and an adaptive ABM. In order to apply this

methodology to a real-life CAS, one thus needs to develop model versions with and without

adaptation. To this end, one needs to assess whether the system is adaptive, and what system

components and interactions are relevant to understanding this adaptation. Qualitative tools

for this kind of assessment are available (e.g. [37]). The methodology in this paper comple-

ments such resilience assessments by quantifying the resilience of the system using ABMs.

Our results imply that for studies that aim to assess or to enhance the resilience of social-

ecological systems, it is relevant to consider the ability of the system to adapt. When com-

bined with suitable methodologies for sensitivity analysis, ABMs can be a helpful tool to test

hypotheses on which factors may contribute to the resilience of social-ecological systems

(e.g., [38–41]).
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