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Abstract

Background

Many classification methods have been proposed based on magnetic resonance images.

Most methods rely on measures such as volume, the cerebral cortical thickness and grey

matter density. These measures are susceptible to the performance of registration and lim-

ited in representation of anatomical structure. This paper proposes a two-stage local feature

fusion method, in which deformable registration is not desired and anatomical information is

represented from moderate scale.

Methods

Keypoints are firstly extracted from scale-space to represent anatomical structure. Then,

two kinds of local features are calculated around the keypoints, one for correspondence and

the other for representation. Scores are assigned for keypoints to quantify their effect in

classification. The sum of scores for all effective keypoints is used to determine which group

the test subject belongs to.

Results

We apply this method to magnetic resonance images of Alzheimer’s disease and Parkin-

son’s disease. The advantage of local feature in correspondence and representation con-

tributes to the final classification. With the help of local feature (Scale Invariant Feature

Transform, SIFT) in correspondence, the performance becomes better. Local feature (His-

togram of Oriented Gradient, HOG) extracted from 16×16 cell block obtains better results

compared with 4×4 and 8×8 cell block.

Discussion

This paper presents a method which combines the effect of SIFT descriptor in correspon-

dence and the representation ability of HOG descriptor in anatomical structure. This method

has the potential in distinguishing patients with brain disease from controls.
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Introduction

Magnetic resonance imaging (MRI) is a powerful technique which provides rich information

about anatomical structure [1]. As a non-invasive medical imaging technique, MR images

have been widely used in neuroscience and brain disease research [2]. Growing interest has

been focused on the accurate classification of brain disease using MR images.

Many MRI measurements have been used as features and combined with classification

methods to aid the diagnosis of brain disease. The traditional measures extracted from the

structural MR images include: 1) Voxel-wise density [3–16]; 2) Cortical thickness [17–22]; 3)

Volume [17,19,23–31]; 4) Deformation information [32,33]. However, there are several con-

straints in such MRI measures: 1) A fundamental assumption underlying these statistical mea-

sures is that inter-subject registration is capable of achieving one-to-one correspondence [35–

37]. As the knowledge of correspondence is ambiguous or non-existent, this assumption may

be potentially unrealistic [37,38]. 2) To extract these measures precisely, the brains require

nonlinear alignments to a template. For the lack of ground truth, it’s hard to evaluate the per-

formance of inter-subject registration [39]. There is the risk of misalignment or over-align-

ment, and the differences caused by disease may be removed in the registration process

[37,40]. 3) The cortical thickness and volume information are usually averaged from some pre-

defined region of interest (ROI). These ROIs rely on manual or semi-automatic segmentation,

which is time consuming and prone to errors [36].

To overcome the above limitations, many researches attempt to represent MR images using

local features instead of MRI measures. Local features calculated independently from individ-

ual subject images help to identify the same anatomical structure among different subjects.

Local features are combined with feature-based morphometry (FBM) and bag of words

(BOW) to represent MR images in some recent studies. In FBM, the anatomical characteristics

are represented by Scale Invariant Feature Transform (SIFT) features, and group-related ana-

tomical differences are expressed in terms of feature/group co-occurrence statistics [37]. After-

wards, many extensions of FBM are proposed. Such as Mwangi et al. [12] propose to combine

FBM with voxel-based morphometry (VBM), and obtain a good classification results. Chen

et al. [40] propose a novel MR analysis method based on FBM and support vector machine

(SVM). BOW is originally applied in document categorization, and is gradually used to analyze

MR images recently. The basic idea of this method is to represent the image visual content as a

probability distribution (histogram) of local features (visual words) and collect a knowledge

based from a set of images previously labeled [41]. Local features such as SIFT features [42],

Laguerre Circular Harmonic Functions coefficients [35,43] are combined with BOW in the

classification of brain diseases.

However, there still have several constraints in the aforementioned FBM-based and BoW-

based algorithms:

1. The location information of local features is ignored in BoW, thus the local features from

different anatomical structure are substituted by the same visual word in the bag. The effect

of local feature in correspondence would be weakened.

2. In FBM, some significant features come from few subjects. In practical, as the number of

sample is limited, some significant features may be unrepresentative in a larger dataset.

3. In FBM, the SIFT features whose occurrence frequency are close in different groups provide

little information for the final classification. As SIFT features are invariant to rotation and

scale, two points which are similar with each other in SIFT descriptors may be different in

the same scale.
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To address the above constraints, in this paper, we aim to integrate the advantage of SIFT

features in correspondence and the advantage of Histogram of Oriented Gradient (HOG) fea-

tures in representation. Thus we propose a two-stage local feature fusion method. In corre-

spondence stage, we extract keypoints and SIFT descriptor from scale-space in MR images.

SIFT descriptors are used to correspond same anatomical structure among different subjects.

The representative keypoints which exist in most of sample are reserved for they are more

likely to appear in the test subjects. In representation stage, HOG descriptors will be calculated

to demonstrate the local character around the representative keypoints from the same scale.

The difference in HOG descriptors between two groups is used to weight the effect of the rep-

resentative keypoints. SVM classifier is constructed for a representative keypoint in terms of

HOG descriptors. For a new subject to be classified, we firstly identify matches of the represen-

tative keypoints, and then assign scores for the matches based on trained SVM classifier. The

final classification result depends on the total score.

The contributions of this paper are as follows: 1) A two-stage local feature fusion method is

proposed, in which SIFT features are used for correspondence and HOG features are used to

character anatomical structure. 2) To reduce the calculation complexity and construct a stan-

dard keypoint set, the template brain is used as reference. 3) A quantification of representative

effect of keypoints is adopted.

The rest of this paper is organized as follows. Firstly, the whole framework of classification

via two-stage local feature fusion is introduced in Section 2. Then the experiments and results

are presented in Section 3. Finally, the discussion and conclusion of this paper are followed in

Section 4.

Method

The overall flow of proposed framework is illustrated in Fig 1. This framework can be broke

up into four steps, which is summarized as follows: preprocessing, correspondence, represen-

tation, and classification.

Preprocessing

The proposed method in this study is evaluated on public datasets in Open Access Series of

Imaging Studies (OASIS) [44] for Alzheimer’s disease (AD) and Parkinson’s Progression

Markers Initiative (PPMI) [45] for Parkinson’s disease (PD).

OASIS dataset. OASIS contains 98 normal control (NC) subjects and 99 probable AD

subjects aged 60–96. For the later comparison, these subjects are subdivided into two subsets

according to their ages and dementia statuses measured by Clinical Dementia Rating (CDR):

1. AD-86: 86 subjects aged 60–80 years are chosen, including 20 patients with mild AD

(CDR = 1) and 66 healthy subjects (CDR = 0) [40];

2. AD-126: 126 subjects aged 60–96 years are chosen, including 28 patients with mild AD

(CDR = 1) and 98 healthy subjects (CDR = 0) [40].

Scans in OASIS subjects are first averaged and gain-field corrected in advance to improve

signal/noise ratio, and then registered to Talairach space via affine transform and the skull are

masked out. Marcus et al [44] present the detailed description of the preprocessing steps for

this dataset. These subjects are subdivided into two subsets according to their ages and demen-

tia statuses measured by Clinical Dementia Rating.

PPMI dataset. The PPMI cohort comprises more than 400 Parkinson’s disease (PD) sub-

jects and more than 200 healthy subjects acquired from 21 clinical sites with different scanner

parameters [45]. We use T1-weighted MP-RAGE images whose slice thickness is 1.0mm and
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acquisition plane is sagittal. We found 67 NC subjects and 145 PD subjects. These subsets will

be used to evaluate the usability of this method. These subjects are subdivided into two subsets

according to their ages and depression statuses measured by Geriatric Depression Scale

(GDS):

1. PD-46: 46 subjects aged 50–65 years are chosen, including 20 healthy subjects (GDS<4)

and 26 PD subjects (GDS>4).

2. PD-212: 212 subjects aged 30–85 years are chosen, including 67 healthy subjects and 145

PD subjects.

Correspondence

We extract maxima and minima of scale-normalized Laplacian of Gaussian [46]. These extre-

mal points are considered as keypoints in this paper, which stand for anatomical structures.

SIFT features are widely used in registration for its invariance to image scale and rotation. In

this paper, we use SIFT features to correspond same anatomical structure (keypoint) among

different subjects.

In correspondence part, firstly, we extract keypoints from scale-space and calculate SIFT

descriptors for them in train subjects and template brain ICBM_152. Secondly, for a keypoint

in template brain, we locate matches in training subjects. The last but not the least, keypoints

which find matching points in few subjects are filtered out.

Extracting keypoints and SIFT descriptors. After transforming 3-D brain images to 2-D

slices as shown in Fig 2, package vlFeat [47] is used to extract keypoints and SIFT descriptors

from these slices. The SIFT descriptor is described by 128 numbers which characterize the

image appearance around the keypoint in more detail. A keypoint corresponds to a slice

Fig 1. Flow diagram of proposed approach. The overall process contains the following steps: (1) the

training MR images are aligned to template brain; (2) keypoints are extracted for every subject and matched

among different subjects; (3) HOG descriptors are calculated for keypoints, and differences in terms of HOG

is quantified. The effect of keypoint in classification is represented through assigning scores for them. (4)

based on keypoints and their scores, testing subject is classified.

doi:10.1371/journal.pone.0171749.g001
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orientation (coronal, axial or sagittal), a slice order of the 2-D slice from which the keypoint is

extracted, an orientation, a central location. We extract keypoints and SIFT descriptors for every

subject in patient group, normal control group and the template brain ICBM_152. To be noted,

the appearance matrix is stretched into vector, and the vector is normalized to unit length.

Here, an individual feature is denoted as fi = {di, li, xi, oi, ai} where di and li are the slice ori-

entation and slice order of the 2-D slice respectively, and xi is the center location of keypoint,

and ai is a vector of image measurements representing the image appearance around keypoint.

Let Fp,m(m 2 [1, M]), Fc,n(n 2 [1, N]) and Ft represent all keypoints extracted from the mth sub-

ject in patient group, the nth subject in control group and the template brain ICBM_152.

Where M is the total number of patient subjects, and N is the total number of nomal control

subjects. To illustrate this method more clearly, keypoint is expressed in different ways. In this

paper, the keypoint in template brain is still called "keypoint", and the keypoint in training and

testing subjects is called "candidate point". For a keypoint in template, the correspondence

found in training and testing subjects is called "matching point".

Locating matching points. To locate matching point in training subjects, a common

method is clustering. However, two or more candidate points of one subject may be assigned

into one cluster due to noise or clustering algorithm. In this work, we propose a concise

method to accomplish this goal via template brain. We assume that the candidate points which

appear in training and testing subjects can all be covered by keypoints extracted from template

brain ICBM_152.

The matching algorithm is performed between one image in template brain and the image

in training subjects which shares the same slice orientation and slice order. For example, sup-

pose fi is a keypoint extracted from the brain template, and we plan to locate the matching

point in the mth subject of patient group. The matching algorithm can be subdivided into

three steps:

Firstly, from Fp,m, we retrieve the candidate points which share the same slice orientation

and slice order with fi,

Ftemp ¼ ffjjfj 2 Fp;m ^ dj ¼ di ^ lj ¼ lig ð1Þ

Fig 2. 3D volume is represented by 2D features. The brain is sliced along 3 orientations to obtain 2D

images, and SIFT features are extracted from 2D images.

doi:10.1371/journal.pone.0171749.g002
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Secondly, we calculate the Euclidean distance for the invariant descriptor vector between fi
and keypoint fj in Ftemp.

Thirdly, we compare the Euclidean distance of the closest neighbor to that of the second-

closest neighbor. If this distance ratio is smaller than εmatch, we believe that we find the match-

ing point in the mth subject of patient group.

The idea behind this matching algorithm is that correct matching point should have the

closest neighbor significantly closer than the closest incorrect matching point to achieve reli-

able matching [48]. This matching algorithm is based on Lowe’s work [48]. Specially, if there is

just one candidate point in Ftemp, we don’t believe that we have found the correct matching

point.

Discarding unrepresentative keypoints. For a keypoint fi in template brain, we identify

the matching points in patient group and control group. For keypoint fi, let Si,p and Si,c be the

set of matching keypoints in patient group and normal control group respectively. In this

paper, we aim to find the representative keypoints (anatomical structure) which appear in

most of subjects. Therefore, the keypoints which find matching points in a fraction of subjects

are not what we pursue. Specifically, if |Si,p|< εrate ×M or |Si,c|< εrate ×N, we consider fi a

unrepresentative keypoint, otherwise we believe fi is a effective keypoint. Where |�| is the cardi-

nal number of a set.

After discarding unrepresentative keypoints, the total number of keypoints in template

brain is reduced to K. Namely, for every effective keypoint fi in template brain, we have a

patient matching set Si,p and normal control matching set Si,c.

Representation

In representation part, firstly, histogram of oriented gradients (HOG) descriptors is extracted

for matching points. Then, the effect of keypoint in classification is quantified based on the dif-

ference of two groups in HOG descriptor. Finally, a SVM classifier is constructed for every

keypoint.

HOG descriptors. SIFT feature is invariant to scale, which indicates that the appearance

matrix of a keypoint may be calculated in different scales. To demonstrate the differences in

morphology of the same anatomical structure between different groups better, we extract local

features in the same scale (the original image). A local feature similar with HOG descriptor

is used to depict the gradient character of a block around the keypoint. For a matching point

fi = {di, li, xi, oi, ai}, the extraction of local feature can be described as:

1. To make the local feature (HOG) be rotationally invariant, the image from which keypoint

fi is extracted should be rotated relative to the dominant orientation oi in advance.

2. The image gradient magnitudes and orientations are sampled in a 16×16 cell block shown

in Fig 3(a) around the keypoint location xi.

3. Gradient magnitudes are accumulated into orientation histograms summarizing the con-

tents over 4×4 subregions with 8 histogram channels shown in Fig 3(b) and 3(c).

4. The description matrix is converted to a local feature (HOG) vector, and the vector is then

normalized to unit length.

The final local feature (HOG) vector is a geometric description of keypoint. Similar calcula-

tion is done for the matching points in Si,p and Si,c. The local features extracted for Si,p and Si,c
are denoted by Qi,p and Qi,c. The dimensions of matrix Qi,p are H × |Si,p|, and the dimensions

Classification of brain disease in MRI using two-stage local feature fusion
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of matrix Qi,c are H × |Si,c|. Where |�| is the cardinal number of a set, and H is the length of a

HOG feature vector.

Quantification. In this section, we will evaluate the difference in geometry of this anatom-

ical structure between patient group and normal control group. RV coefficient [49] will be

used to implement this difference measure.

For keypoint fi, the local features (HOG) in patient group and normal control are Qi,p and

Qi,c respectively. The RV coefficient for these two set can be described as:

RV ðQi;p;Qi;cÞ ¼
trðQi;pQi;p

TQi;cQi;c
TÞ

trðQi;pQi;p
TQi;pQi;p

TÞ
1
2 � trðQi;cQi;c

TQi;cQi;c
TÞ

1
2

ð2Þ

Where tr(.) is the trace operator of square matrix, QT is the transpose of matrix Q.

The value of RV coefficient ranges from 0 to 1. If RV coefficient is 0, the two sets are inde-

pendent, which means there is no correlation or similarity between the two data sets [50]. If

RV coefficient is 1, the eigen components of data set Qi,p can be derived from Qi,c through a

homothetic transformation, which means that there exists a rotation matrix H and a scaling

factor c such that cQipH = Qic. Namely, larger RV coefficient means more similarity.

The effect of keypoint fi in classification is quantified in terms of the differences in local fea-

ture (HOG). As RV(Qi,p, Qi,c) reflects the similarity between the two data sets Qi,p and Qi,c. We

use 1−RV(Qi,p, Qi,c) to represent the degree of difference between control group and patient

group at keypoint fi. A keypoint is scored according to following expression:

fiscore ¼ ð1 � RV ðQi;p;Qi;cÞÞ ð3Þ

SVM classifier. For a keypoint fi(i 2 [1, K]) in template brain, the local features (HOG) in

patient group and normal control are Qi,p and Qi,c respectively. We train a SVM classifier for

this keypoint to identify a new local feature is healthy feature or patient feature. The input sam-

ples to the SVM are Qi,p and Qi,c. The class labels are -1 and 1 if they are from healthy group

and patient group respectively. A 2-class SVM implementation from libSVM [51] is used. As

the number of feature is in the same order as the number of samples, linear SVM is chosen to

classification. A linear SVM classifier is less prone to overfitting than a non-linear one.

Fig 3. Illustration of the extraction of local feature (HOG). Gradient magnitudes and orientations are

sampled, and then accumulated into orientation histogram with 8 channels. (a) Cell block. (b) 8 histogram

channels. (c) Oriented gradients matrix.

doi:10.1371/journal.pone.0171749.g003
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To be noted, Qi,p and Qi,c are imbalanced, and a simple default strategy of guessing the

majority class would give a nice classification results. To make the classifier more suitable, we

use an over-sampling approach in which the minority class is over-sampled by creating "syn-

thetic" examples [52]. SMOTE arithmetic is used in this paper.

Classification

For a testing subject to be classified, candidate points and SIFT descriptors Ftest are first

extracted. Based on the effective keypoint fi(i 2 [1, K]) in brain template, the keypoint score

fiscore and corresponding SVM classifier, we classify the testing brain in following steps:

1. Locating matching point. For a keypoint fi(i 2 [1, K]) in template brain, we identify whether

this anatomical structure exists in Ftest. The matching algorithm has been presented in

Correspondence.

2. Extracting local features. If there exists a matching point in Ftest for fi(i 2 [1, K]), we extract

HOG descriptor θi at the central location based on method presented in Representation.

3. Assigning scores. For local feature θi, we label it based on the trained SVM classifier:

LSðyiÞ ¼
fiscore patient feature

� 1� fiscore healthy feature

(

ð4Þ

4. Classifying new subject. The final classification result depends on the sum of scores LSsum =

∑iLS(θi) of all matched keypoints. The brain is classified as patient brain if LSsum is larger

than threshold εc and is classified as normal control brain otherwise.

class label ¼¼
Patient LSsum > εc

Control otherwise

(

ð5Þ

Ideally, the threshold is 0, however, the occurrence frequency of keypoints in patient group

and control group is inconsistent. We obtain this threshold similar with Chen et al.’ [40]

method by classifying the training brains and then finding the threshold that minimize the dif-

ference between false negatives and false positives. Finally, we use this threshold to predict new

brains.

Parameter setting

There are several thresholds including matching threshold εm, and RV threshold εrv. Matching

threshold εm is set as 0.8 which follows the suggestion of Lowe’s paper [48]. Rate threshold

εrate is set as 0.5. The size of the cell block also affects the final result. Different sizes of cell

block are tested in the following evaluation.

Ethical standards and patient consent

Datasets AD-86 and AD-126 are obtained from the OASIS database. Written informed con-

sent is obtained from all subjects and the use of these subjects is approved by Washington Uni-

versity (http://www.oasis-brains.org/).

Datasets PD-46 and PD-212 are obtained from the PPMI database. PPMI database is

funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners,
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including Abbvie, Avid, Biogen Idec, Br Bristol-Meyers Squibb, Covance, GE Health care,

Genentech, GlaxoSmithKline, Lilly, Lundback, Merck, Meso Scale Discovery, Pfizer, Piramal,

Roche, Servier, and UCB (www.ppmi-info.org/fundingpartners). Written informed consent is

obtained from all subjects.

Experiment and results

Visualization of keypoints

FBM-based methods and BOW-based methods try to utilize the unbalance of SIFT features

occurrence in different groups. However, our method tries to identify the keypoints which

exist difference in anatomical characteristics from same image scale. To identify the discrimi-

native brain regions, AAL atlas was used to map the keypoints. Examples of 4 keypoints for

OASIS which appear in the same anatomical structure of left brain and right brain with a high

score are shown in Fig 4.

For AD discrimination, the keypoints which have a high score are distributed mainly in

thalamas, temporal lobe, calcarine and cingulum. A number of papers have reported these

four regions [53–56]. Thalamas is responsible for the regulation of consciousness [57]. AD

Fig 4. Illustration of some keypoints with a high score. Four keypoints are listed, which appear in the

same anatomical structure of left brain and right brain with a high score.

doi:10.1371/journal.pone.0171749.g004
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patients are usually loss of motivation and not managing self care [58]. Thalamas may be

related with this symptom. The temporal lobe is very reasonable region with considerations of

its important role in processing sensory input to derived meanings [59]. Temporal lobe is an

import part for the appropriate retention of visual memory, language comprehension and

emotion association, which is associate with the symptom (short-term memory loss, emotion

swing) of AD [58,59]. Cingulum is very important to brain structure connectivity and infor-

mation integration [60]. Damage in this area may result in many mental disorders.

For PD discrimination, the most significant keypoints are distributed mainly in thalamas,

frontal lobe, occipital lobe which in accord with many papers [61–63]. Thalamas is responsible

for the regulation of consciousness [57]. This is in consist with PD patients’ symptoms such as

sensory and emotional problems [64]. The frontal lobe is an very important part for voluntary

movement which may cause the behavioral problems in PD patients [65].

Evaluation and performance

We perform leave-one-out cross validation for all datasets. One subject is chosen as testing

subject once and the remaining subjects are used for training. The accuracy, sensitivity and

specificity of the classification are computed for all datasets.

Keypoints. Intuitively, we assume that the keypoints which present more difference

between two groups contribute more to the final classification.

In this section, we take the top 25, 50,. . ., 225 keypoints ranking according the difference of

HOG descriptors between groups. The classification results for AD-86, AD-126, PD-46 and

PD-212 are illustrated in Fig 5. For AD-86 and PD-46, as the number of keypoints increases,

the classification accuracy increased at first and then decreased. For AD-126 and PD-212, the

method obtains best performance when taking 75 or 100 keypoints. Then the performance

swings a little. From the curve in Fig 5, we find that classification results in four groups with

100 keypoints are not bad. In this paper, we take the top 100 keypoints ranking according to

the difference of HOG descriptors for the classification of AD-86 and AD-126.

To verify our assumption, we take another test. In this paper, we propose to quantify the

effects of keypoints in terms of the difference in local feature (HOG). The simplest method to

quantify keypoints is assigning same weight for all keypoints. This corresponding to setting

fiscore = 1. Two types of scoring method are compared in this paper.

Type 1 : fiscore ¼ 1 ð6Þ

Type 2 : fiscore ¼ ð1 � RV ðQi;p;Qi;cÞÞ ð7Þ

The comparison is done in group AD-86 and AD-126 shown in Table 1. For AD-86, PD-46

and PD-212, there is an improvement in the classification accuracy when assigning weight for

keypoints in terms of the difference of local feature (HOG). However, for AD-126, assigning

weights for keypoints leads to a lower classification accuracy. This may be due to the effect of

keypoints which have a low score. These keypoints affect the final results.

Cell block for local feature HOG. Local feature (HOG) is extracted from cell blocks. The

size of cell blocks plays an important effect on the final classification. Three types of cell blocks

are compared in this paper, and the performance is displayed in Table 2.

The results in Table 2 suggest that a bigger cell block leads to a better result in general.

HOG descriptor extracted from a larger region may be more likely to demonstrate the detailed

information around the keypoint. The results also suggest that the oriented gradients matrix in

a small region would be hard to describe the detailed structural around the keypoint, and the
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difference between group would be deviated from the reality. In order to balance the speed

and the accuracy, 16×16 cell blocks will be used in this paper.

Different local feature for representation. We try different types of local feature for

representation and analyze which kind of local feature is suitable to demonstrate difference

between healthy control group and patient group. Three kinds of local feature are compared in

this paper: gray value (GV), gray-level co-occurrence matrix (GLCM) and HOG. The perfor-

mance is displayed in Table 3. From the result, we find that classification with GLCM in AD-

86 and AD-126 is very poor, this may due to that sulcus is widespread exists and GLCM is dif-

ficult to describe the difference. The classification results using GLCM and gray value are

Fig 5. Classification accuracy with different numbers of keypoints. As the number of keypoints increases, the classification accuracy changes in

AD-86, AD-126, PD-46 and PD-212.

doi:10.1371/journal.pone.0171749.g005
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similar in PD-46 and PD-212. Though worse than HOG, gray value may be able to provide

effective information for the final classification.

Effect of local feature (SIFT) in Correspondence. To demonstrate the effect of local fea-

ture (SIFT) in correspondence, we compare the classification results with and without the use

of SIFT. With the help of SIFT, we extract local feature (HOG) at the keypoints extracted from

Table 1. Classification results for different score methods.

Type Accuracy(%) Sensitivity(%) Specificity(%)

AD-86 Type 1 84.88 85.00 84.85

Type 2 86.05 85.00 86.36

AD-126 Type 1 76.19 78.57 72.45

Type 2 74.60 75.00 74.49

PD-46 Type 1 73.91 73.08 75.00

Type 2 78.26 76.92 80.00

PD-212 Type 1 65.57 67.16 64.83

Type 2 66.98 70.15 65.52

doi:10.1371/journal.pone.0171749.t001

Table 2. Classification results for different cell block size.

Cell block size Accuracy(%) Sensitivity(%) Specificity(%)

AD-86 4×4 75.58 75.00 75.76

8×8 84.88 85.00 84.85

16×16 86.05 85.00 86.36

AD-126 4×4 67.46 67.86 67.35

8×8 69.05 67.86 69.39

16×16 74.60 75.00 74.49

PD-46 4×4 69.57 69.23 70.00

8×8 76.09 73.08 80.00

16×16 78.26 76.92 80.00

PD-212 4×4 59.43 62.69 57.93

8×8 65.09 65.67 64.83

16×16 66.98 70.15 65.52

doi:10.1371/journal.pone.0171749.t002

Table 3. Classification results for different local feature.

Representation Accuracy(%) Sensitivity(%) Specificity(%)

AD-86 GV 81.40 80.00 81.82

GLCM 76.74 75.00 77.27

HOG 86.05 85.00 86.36

AD-126 GV 70.63 71.43 70.41

GLCM 62.70 64.29 62.24

HOG 74.60 75.00 74.49

PD-46 GV 71.74 69.23 75.00

GLCM 73.91 73.08 75.00

HOG 78.26 76.92 80.00

PD-212 GV 64.62 65.67 64.14

GLCM 63.21 62.69 63.45

HOG 66.98 70.15 65.52

doi:10.1371/journal.pone.0171749.t003
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scale-space in training subjects. Without the use of SIFT, based on the central location of key-

points extracted from the brain template, we extract local feature (HOG) at the same position

in training subjects. The comparison is done in four groups.

The performance of four datasets with and without the effect of local feature (SIFT) in cor-

respondence is shown in Table 4. The results suggest that with the help of local feature (SIFT)

in correspondence, the performance becomes much better. Keypoints extracted from scale-

space help to locate the coordinate and SIFT features help to correspond among different sub-

jects. This improvement supports the idea that local feature help to relieve the constraint in

registration.

Accuracy. For better comparison, we compare with methods which have been tested on

the OASIS dataset. The subjects in this dataset have been preprocessed, avoiding the possible

noise in preprocessing.

Toews et al. [37] propose a feature-based morphometry (FBM), in which group-related ana-

tomical differences are expressed in terms of feature/group co-occurrence statistics. Daliri [42]

proposes to combine BOW with SIFT features, followed by classification with SVM. Chen

et al. [40] propose a MR analysis method based on FBM and SVM. Wang et al. [66] improve

correspondences of localized patterns based on FBM. These four methods are all evaluated on

AD-86 and AD-126. The comparison is summarized in Table 5. Equal Error Rate (EER) accu-

racy is used to evaluate the performance of classification method, so we follow this criterion.

EER accuracy is calculated by first choosing a threshold so that the false positives rate is equal

to false negative rate and then calculating the classification accuracy with the chosen threshold

[37,40].

Discussion

Local features

There are many local features such as SURF [67], LBP [68], Extended LBP [69], WHGO [70],

Multi-view feature [71] and so on, it’s hard to select the best one. In this paper, we mainly

Table 4. Classification results with or without the use of SIFT features.

SIFT features Accuracy(%) Sensitivity(%) Specificity(%)

AD-86 With 86.05 85.00 86.36

Without 81.40 85.00 80.03

AD-126 With 74.60 75.00 74.49

Without 71.43 67.86 72.45

PD-46 With 78.26 76.92 80.00

Without 71.74 73.08 70.00

PD-212 With 66.98 70.15 65.52

Without 66.04 64.18 66.90

doi:10.1371/journal.pone.0171749.t004

Table 5. Classification results in the literature: SIFT-based methods.

AD-86 AD-126

Toews et al.’ method 80 70

Daliri’s method 86 78

Chen et al.’ method 83 71

Wang et al.’ method 80 79

Proposed 88 78

doi:10.1371/journal.pone.0171749.t005
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demonstrate one method which combines the advantage of local feature in correspondence

among different subjects and representation of anatomical structure. In this paper, we choose

SIFT feature for correspondence and choose HOG feature for representation of anatomical

structure.

SIFT features are widely used in registration to compensate the deformation of anatomical

structures and achieve effective alignment among different subjects [72]. We choose SIFT fea-

ture for correspondence mainly due to its robustness and invariance for rotation and scale.

Due to individual difference, same structure in different subjects may have great differences in

the same scale. As SIFT features are invariant to scale, same structure can be robustly corre-

sponded among different subjects. The performance of AD-86, AD-126, PD-46 and PD-212

with and without the effect of local feature (SIFT) in correspondence is displayed in Table 4.

The result shows that SIFT features may help to achieve more precise correspondence among

subjects and help to obtain better classification results.

The other local feature we use in this paper is designed to discriminate different structural

pattern. Three kinds of local feature (GV, GLCM and HOG) are used to depict the texture

around the keypoints and search difference between different groups. The performance in

Table 3 shows that HOG outperforms GV and GV outperforms GLCM. GLCM perform very

poor which beyond our expectation. We find that the numbers in the corners of GLCM are

usually much larger than the numbers in the center of GLCM. This may be due to the structure

of sulcus. Sulcus is so widespread that GLCM is difficult to reflect differences between groups.

The results don’t mean that HOG is the most suitable local feature for representation. The

results reflect that gradient information outperforms gray value adjacency information and

gray value. This may result from the special structural pattern of brain sulcus.

HOG features are finally selected to demonstrate the detailed gradient information of a cell

block. The cell block in which we extract HOG descriptors plays an important role in classifi-

cation as shown in Table 2. Measurements extracted from a small scale are limited in represen-

tation, leading to the bad performance in 4×4 cell block. Our results show that 16×16

outperforms 4×4 and 8×8. Measurements from moderate scale can be effectively useful for the

representation of anatomical characteristics.

Keypoints

The keypoints extracted from MR images are used to represent the anatomical structure. The

representation of 3-D images is greatly simplified via keypoints and template brain. Moreover,

the keypoints extracted from maxima and minima of scale-normalized Laplacian of Gaussian

produce the most stable local image features compared to a range of other points [46]. Some

studies simplify the representation of 3-D images by t-test. For example, Hinrichs et al. [34]

consider each voxel’s intensity value as feature, and t-test is performed to rank the features by

resulting p-values. The top ranked features are seen as a simplification of original 3-D image.

This simplification is based on the assumption that one-to-one correspondence can be

achieved among subjects precisely. As mentioned before, this assumption is ambiguous or

non-existent. Besides, the significant region appears in the form of clusters, which result in

redundancy. In this paper, we simplify MR images via keypoints. On one hand, keypoints can

provide precise correspondence. On the other hand, simplification through keypoints is very

concise, and a 3-D MR image can be represented by only five thousands of voxels.

Scoring methods for keypoint

In this paper, RV coefficient is used to measure the similarity between two sets of local features.

We assume that the keypoints which have little difference in terms of HOG descriptors play
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little effect on the final classification. The results in Fig 5 and Table 1 suggest this assumption

is reasonable. When the RV coefficient is high, we assume that there is no difference between

two local feature groups. The results using this strategy shown in Table 1 perform well in

terms of accuracy.

Limitation and future work

We use a 2-D SIFT algorithm mainly due to its robustness and feasibility, as many 3D SIFT

implementations couldn’t achieve the full orientation invariance respect to 3 degree of rotation

freedom such as the 3DSIFT Matlab package [73]. Besides, for the limitation of computing

capability in our lab, the serial images are down-sampled once to reduce the computation

load. From the results testing on AD-86 and AD-126, we find that RV coefficient is sensitive to

the number of sample. A more suitable quantification method should be studied for the differ-

ence of local features around keypoints in the future work.

Conclusion

We propose a novel framework for the diagnosis of brain diseases from MR images based on

local features. Two kinds of local features are embedded in this frame, one for correspondence

and the other for representation. Keypoints are extracted to represent anatomical structure.

Scores are assigned for keypoints to quantify their effect in classification. The sum of scores for

all keypoints is used to determine which group the test subject belongs to.

The proposed framework is evaluated on public dataset OASIS and PPMI. As shown in

Table 4, the proposed method outperforms four SIFT-based methods in terms of EER accuracy

more or less. The results suggest that the proposed method can be potentially a practical

means to represent anatomical characteristics and aid to diagnose brain diseases from normal

controls.
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