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Abstract

Background

Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main

mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38αMAPK

in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development

and aging.

Methods

Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and

old) were used.

Results

We show that p38αMAPK deficiency induces actin disassembly upon aging and also cytoki-

nesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1

in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M

transition- was significantly overexpressed in p38α knock out mice. Our findings suggest

that hepatocytes do enter into S phase but they do not complete cell division upon p38α defi-

ciency leading to cytokinesis failure and binucleation. Moreover, old liver-specific p38α
MAPK knock out mice exhibited reduced F-actin polymerization and a dramatic loss of actin

cytoskeleton. This was associated with abnormal hyperactivation of RhoA and Cdc42

GTPases. Long-term p38α deficiency drives to inactivation of HSP27, which seems to

account for the impairment in actin cytoskeleton as Hsp27-silencing decreased the number

and length of actin filaments in isolated hepatocytes.
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Conclusions

p38αMAPK is essential for actin dynamics with age in hepatocytes.

Introduction

Polyploid cells contain more than two complete sets of chromosomes and they are very

common in liver tissue [1–3]. Hepatocyte poliploidization is considered an age dependent-

process that occurs mainly during liver development and postnatal maturation. However, poli-

ploidization changes can take place also in adult liver as a result of increasing age or cellular

stresses such as surgical resection, toxic exposure or viral infections [3]. In any case, the poli-

ploidization process generates tetraploid or octoploid hepatocytes with one (mononucleated

hepatocytes) or two nuclei (binucleated hepatocytes) [2, 3]. Although several mechanisms of

polyploid cell formation have been reported in mammals, including endoreduplication, endo-

mitosis and mitotic slippage, incomplete cytokinesis is the main mechanism of polyploid hepa-

tocyte formation in the liver [1–4]. Physiological failure of cytokinesis in the liver occurs after

the end of the suckling (weaning), associated with insulin signaling via the phosphatidylinosi-

tide 3 kinase—protein kinase B (PI3K-AKT) pathway [5] and increases progressively with age

[6, 7]. Therefore, most hepatocytes are diploid in young individuals, while more than half are

polyploid in adults [8].

The cleavage of the mother cell into two daughter cells during cytokinesis, the last step of

cell division, implies re-organization of the actin cytoskeleton to assembly the myosin and

actin contractile ring that allows the formation of the cleavage furrow [9–14]. Formation of the

cleavage furrow is a critical structure for successful cytokinesis execution and must be regu-

lated properly to ensure that chromosomes and organelles are distributed equally to each

daughter cell [15]. Filamentous actin (F-actin) together with additional structural and regula-

tory proteins plays an important role in the cleavage furrow formation. Localized activation of

the small GTPases Ras homolog (Rho) family, including RhoA, Cdc42 and Rac1 are essential

for furrow formation in animal cells promoting actin polymerization and stimulating myosin

activity [16–19]. Insufficient activation of this pathway could perturb proper initiation of cyto-

kinesis and could induce cytokinesis failure. On the other hand, the role of cofilin in actin

depolymerization to maintain actin dynamics is essential for cytokinesis completion [18, 19].

Cytokinesis failure results in the formation of genetically unstable polyploid cells so under-

standing the mechanisms of cytokinesis is a central problem in cell biology with potential rele-

vance in tumorigenesis [12]. Paradoxically, during postnatal development of the liver, polyploid

hepatocytes may be generated physiologically as a result of failures either in the cytoskeleton

reorganization or in activation of molecular signals essential for hepatocyte cleavage [3].

The binucleation ratio of the liver seems to be directly connected with the proliferative

capacity of hepatocytes. During postnatal liver growth, when poliploidization is established,

hepatocytes exhibit lower ability to proliferate. This occurs because many hepatocytes manage

to finish karyokinesis, but most of them fail to complete cytokinesis thus generating binuclear

cells [2, 3]. Interestingly, hepatocytes are able to change from polyploid to diploid, and from

binucleated to mononucleated during organism’s life by a phenomenon called somatic ‘reduc-

tive mitoses’, thanks to multipolar mitotic spindles [20]. In fact, ploidy reversal is a useful tool

to enhance hepatocyte proliferation, which is especially beneficial after liver hepatectomy

when a rapid liver tissue growth is required [3] [21].

We have already observed that binucleation reversal after biliary cirrhosis was reduced

upon p38α deficiency showing the key role of p38α in hepatocyte proliferation [22]. The p38
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MAPK family consists of 4 members: p38α, p38β, p38γ (SAPK (stress-activated protein kinase)

3, and p38δ (SAPK4) [23], being p38α ubiquitously expressed at high levels in most cell types

[24]. p38 MAPKs are activated by environmental and genotoxic stress and play key roles in the

control of cell proliferation, differentiation and survival, as well as in the regulation of the

inflammatory response [25],[22]. In fact, p38 MAPKs participate in inflammatory diseases

such as rheumatoid arthritis [26], Crohn’s disease [27], asthma [28] and chronic obstructive

pulmonary disease [29], as well as in other pathological conditions like cardiovascular diseases

[30, 31], cancer [32, 33], or pain [34, 35]. Accordingly, p38 MAPK inhibitors have demon-

strated adequate properties to treat inflammatory diseases and other conditions. Several p38

MAPK inhibitors, most of which have reached phase 2 clinical studies, have been developed

[36, 37] [38–42]. However, many of them have been discontinued due to adverse effects such

as gastrointestinal disorders, liver anomalies and ALT elevations, among others [35] [40, 41].

Regarding the regulation of hepatocyte proliferation by p38α, it is known that p38α regu-

lates the G1/S and G2/M cell-cycle checkpoints prior to DNA synthesis and cell division,

respectively [43–45]. So far increased proliferation and impaired differentiation have been

considered hallmarks of p38α-deficient cells [46]. Thus, mice with liver-specific deletion of

p38α exhibited enhanced hepatocyte proliferation after partial hepatectomy [47] and devel-

oped more liver tumors with increased number of proliferative tumor cells [48]. Accordingly,

activation of p38 MAPK resulted in hepatocyte growth arrest and inhibition of DNA synthesis

in cultured fetal rat hepatocytes [43]. In addition, inhibition of p38 MAPK in vivo is sufficient

to trigger a marked increase in the number of proliferating hepatocytes [43]. Nevertheless, par-

adoxically we recently found that liver-specific p38α deficiency lowered hepatocyte prolifera-

tion and enhanced hepatocyte binucleation in biliary cirrhosis [22], which suggested that p38α
might influence the last step of mitosis. Therefore, in the present manuscript we have explored

in more depth the role of p38α in the regulation of cytokinesis progression and actin cytoskele-

ton in hepatocytes during development and aging.

Materials and methods

Animals

p38α was specifically down-regulated in the hepatocytes by using mice carrying p38α floxed

alleles1 and the Afp-Cre transgene that expresses Cre under the control of the α-fetoprotein

promoter, which is active during embryonic hepatic development. The liver-specific p38α
knock out (KO) mice were kept in a C57BL/6 genetic background [49]. We performed experi-

ments with wild type and p38α knock out mice at three different ages: after weaning (4 weeks-

old), adults (10–12 weeks-old) and old (18–24 months-old). Four to six animals were used for

each experimental group.

All mice were cared for in accordance with the criteria outlined in the Guide for the Care

and Use of Laboratory Animals (NIH publication 86–23 revised 1985) and they were cared

under controlled conditions of temperature (23±1˚C), relative humidity (50–60%) and light/

dark cycles (12h/12h) with food and water ad libitum. Mice were anesthetized with isoflurane

3–5% and once they were unconscious they were exsanguinated. Death was confirmed by cer-

vical dislocation. The study was approved by the Ethics Committee of Animal Experimenta-

tion and Welfare of the University of Valencia (Valencia, Spain).

Primary hepatocyte cell culture

Primary mouse hepatocytes were isolated from non-fasting male C57BL/6 mice (3–4 months)

by a two-step collagenase perfusion as previously described [50]. Briefly, cells were seeded on

collagen-coated 12-well plate (Corning, Inc.) and cultured at density of 350,000 cells/well in 1
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ml medium containing Dulbecco’s modified Eagle’s medium and Ham’s F-12medium (1:1)

supplemented with 10% FBS, 2 mM glutamine, 100 units/ml penicillin, 100 μg/ml streptomy-

cin, and 1 mM sodium pyruvate (attachment medium) and maintained under a humidity con-

ditions in 95% air and 5% CO2 at 37˚C for 24 h before siRNA transfection. For cell staining

experiments, collaged-coated coverslips were used.

Genes knockdown by siRNA

Cells were transfected with 25 nM siRNAs or with a scrambled siRNA, used as control, follow-

ing DharmaFECT General Transfection Protocol (Dharmacon) to knock down mouse p38α
and Hsp27 expression. Cells were used 48 h later for experiments. DharmaFECT siRNA Trans-
fection Reagent, p38α siRNA (SMARTpool: ON-TARGETplus Mapk14 siRNA L-040125-00-

0005 5 nmol), Hsp27 siRNA (SMARTpool: ON-TARGETplus Mouse Hspb1 siRNA L-045651-

00-0005 5 nmol) and scramble siRNA were obtained from Dharmacon.

Western blotting

For total liver homogenates, protein was extracted with Heidolph (RZR 2021) homogenizer in

Hepes lysis buffer pH 7.4 with 1mM DTT, 1mM sodium ortovanadate, 50mM sodium fluo-

ride, 30mM sodium pyrophosphate, 1% Igepal, 10% glycerol and protease inhibitor cocktail

(Sigma Aldrich). To obtain total cell lysates, attached cells were scraped off and incubated for

10 min on ice with lysis buffer. Homogenates and cell lysates were centrifuged during 15 min

at 15000 rpm, 4˚C. In case of nuclei isolation, a slight modification of the nuclei isolation

method described by [51] was used. Chemiluminescence was detected with a charge-coupled

device camera (Biorad ChemiDoc XRS+ Molecular Imager and LAS-3000, Fujifilm) using the

ECL system (Luminata Classico, Millipore). Antibodies used were as follows: AKT (Genscript

A00301); α tubulin (Sigma Aldrich T6074); cyclin B1 (sc-245), cyclin D1 (sc-20044), GSK3β
(sc-9166), HSP27 (sc-59562), MK2 (sc-7871), p21 (sc-6246), p38 alpha (sc-535), p-GSK3β
(BS4084) from Santa Cruz Biotechnology; tata binding protein (abcam, 818); MNK1 (Novus

biological, H00008569-M14); p-AKT (Ser473) (4058), β catenin (9562), p-cofilin (Ser 3) (3313),

cofilin (5175), p-HSP27 (Ser82)(2401), p-H3 (Ser10) (3377), H3 (4499), p-MKK3/6 (Ser189/

207) (9231), p-MKK4 (Ser257/Thr261) (9156), p-MK2 (Thr334) (3007), p-MK2 (Thr222)

(3316), p-p38 (Thr 180/Tyr188) (4511XP), p-MNK1(Thr197/202) (2111), p27 (2552), from Cell

Signaling Technology. Secondary antibodies were from Jackson Inmunoresearch: Donkey anti

rabbit (711-035-152), donkey anti mouse (715-035-151) and donkey anti goat (715-035-151).

F-actin polymerization assay

Frozen livers were used for this assay, as no differences were found between fresh and frozen

livers. This technique was performed as indicated by manufacturer (BK003 Cytoskeleton).

Briefly, after stabilizing actin using the buffer provided by the manufacturer, the liver tissue

was homogenized and the proteins extracted as described above. The lysate was centrifuged at

350 g for 5 minutes at room temperature. Then, the supernatant was centrifuged at 100,000 g,

1 h at 37˚C to obtain F-actin/G-actin fractions which were quantified by Western blotting.

GTPase activity measurement for RhoA, Cdc42, Rac1

The measurement was performed as described by the manufacturer (BK036, BK034, and

BK035 respectively). Frozen livers were homogenized and total lysates were centrifuged at

10000g, 1min, 4˚C, as preclearing. Once bead titration was accomplished, immunoprecipita-

tion was performed with 15uL of beads and 1mg/mL of liver lysate in the case of Rhotekin
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RBD beads and 10uL of beads and 0.5mg/mL of liver lysate in the case of PAK-PBD beads. All

of them required 1mL final volume.

Immunohistochemistry and cell staining

Formalin-fixed, paraffin embedded sections of liver tissue were deparaffinised using Histo-

Clear1 (National Diagnostics). As an alternative for xylene and antigen retrieval, tissue sec-

tions were autoclaved in citrate buffer pH 6 for β-catenin staining or digested with proteinase

K in TE buffer at 37˚C, in the case of filamentous actin (F-actin). Slides were blocked with 5%

BSA in PBS. Antibodies used in immunofluorescence were β-catenin (Cell Signaling Technol-

ogy, 9562) and F-actin (Acris antibodys, SM1349P). Nuclei were stained with DAPI (Life

Technologies, D1306). For binucleation rate (percentage of binucleated cells/ total number of

cells) and number of nuclei per field, 50–60 slides from all different animals were blindly

scored.

For in vitro assays, primary hepatocytes seeded on collagen-coated glass coverslips (10 mm)

in 12-well plates were fixed with 4% paraformaldehyde for 6 min, washed with PBS and per-

meabilised with 0,1% Triton X-100 during 5 min. Actin was detected by incubating cells for 1

h with Texas Red1-X phalloidin (ThermoFisher) and nuclei were stained with DAPI. An

OLYMPUS FV1000MPE confocal microscope was used for image acquisition.

TUNEL assay

Formalin-fixed, paraffin embedded sections were deparaffinised using xylene and then, anti-

gen retrieval was performed by citrate buffer (37˚C, 15 minutes). Nucleotide labelling and

detection were performed as described following manufacturer’s instructions (In Situ Cell

Death Detection Kit 11 684 817 910, Roche).

Statistical analysis

Results are given as mean ± standard deviation (s.d.). Significant differences were assessed by

one-way analysis of variance (ANOVA) followed by a Tukey’s post-hoc test. Differences were

considered statistically significant at p<0.05.

Results

Binucleation rises in hepatocytes from liver-specific p38α knock out mice

In order to explore the role of p38α in the regulation of cytokinesis in hepatocytes during

development and aging, we have determined the binucleation rate by immunohistochemistry

in the three groups of mice analysed after weaning, in adult, and in old stages. We have found

that p38α deficiency enhanced hepatocyte binucleation at all stages when compared with their

corresponding wild type counterparts. The highest binucleation rate (>50%) was found in old

p38α knock out mice. Strikingly, the binucleation rate rose with age in both wild type and

p38α knock out mice (Fig 1A).

In addition, the liver mass ratio (liver weight/ mouse weight x 100) was determined at dif-

ferent ages of wild type and liver-specific p38α knock out mice, and we found that p38α defi-

ciency reduced liver mass in old mice (Fig 1B). Indeed, although no differences were detected

liver mass between after weaning and adult mice, there was a significant decrease in the liver

mass of old p38α knock out mice compared with old wild type mice.

To have an estimation of hepatocyte size, the number of hepatocytes per field was deter-

mined and it was not affected by p38α deficiency. Therefore, a decline in hepatocyte size

p38αMAPK regulates cytokinesis
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should not account for the reduction in liver mass observed in old p38α knock-out animals

(Fig 1A).

Hepatocytes from p38α knock out mice actively enter into mitosis but fail

to complete cytokinesis

In order to assess whether impaired hepatocyte proliferation due to cell cycle blockade could

explain the reduced liver mass upon p38α deficiency and aging, phosphorylated histone 3

(p-H3), cyclin B1 and cyclin D1 were measured in the liver as indexes of proliferative status

and potential mitotic delay or blockade. The proliferative rate was markedly increased in

livers from both groups only after weaning based on p-H3 levels (Fig 1C). In addition, no sig-

nificant differences were found in p38α phosphorylation levels upon aging. We decided to

focus on old animals because they exhibited major differences in binucleation rates and liver

mass. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers

were similar, cyclin B1 was significantly overexpressed in p38α knock out mice (Fig 2A).

On the other hand, the reduced liver mass upon p38α deficiency and aging should not be

ascribed to apoptosis, which was not increased upon p38 deficiency. Indeed, cleaved PARP

and TUNEL positive hepatocytes were not increased in liver from old p38α knock out mice

(Fig 2B and 2C).

p38α is essential for actin polymerization in hepatocytes upon aging

To investigate the possible mechanism underlying the cytokinesis impairment that occurs

upon p38α deficiency in the liver, we studied the actin cytoskeleton by immunohistochemistry

in livers from wild type and liver-specific p38α knock out mice at all ages. Although after

weaning no differences were found, some abnormalities in the cytosolic distribution of actin

filaments in adult mice upon p38α deficiency were observed (Fig 3A). A severe impairment in

the F-actin filamentous structure was found in the liver from old p38α knock out mice (Fig

3A), as evidenced by dramatic loss of actin cytoskeleton. Furthermore, F-actin polymerization

was assessed by separation of F-actin and G-actin fractions, and F-actin was markedly

decreased in old p38α knock out mice leading to an increase in G-actin/F-actin ratio in these

old mice (Fig 3B).

Long-term p38α deficiency triggers hyper-activation of RhoA and Cdc42

GTPases

The Ras homolog (Rho) family plays a central role in organizing the actin cytoskeleton and in

the regulation of cytokinesis [16, 17]. Therefore the GTPase activity of the three major compo-

nents of Rho GTPases—the Ras homolog A (RhoA), Ras-related C3 botulinum toxin substrate

1 (Rac1), and Cdc42- were measured in the liver of old mice both wild type and p38α knock

out. Surprisingly, the activities of RhoA and Cdc42 GTPases increased in old p38α knock out

mice in comparison with old wild type mice. No significant changes were found in Rac1 activ-

ity (Fig 4A).

Fig 1. p38α deficiency induces hepatocyte binucleation. a. Representative image of β-catenin (green) and DAPI (blue)

immunohistochemistry in old wild type and p38α knock out liver mice (Scale bars = 50 μm). Quantification of the binucleation

rate (binucleated hepatocytes /total hepatocytes) with age. Number of hepatocytes per field in old wild type and p38α knock out

mice as an indirect estimation of hepatocyte size in these animals. b. Liver mass ratio with age expressed as the ratio: liver

weight/body weight. c. Wild type and p38α knock out livers were Western blotted for p-p38 (Thr180/Tyr182), p38α, p-H3 (Ser

10) and H3. α-tubulin was used as a loading control. Data are shown as mean ± SD. *P < 0.05, **P < 0.01 WT versus KO;

&&P < 0.01 adult versus after weaning; $P < 0.05, $ $P < 0.01 old versus adult; ##P < 0.01 old versus after weaning.

doi:10.1371/journal.pone.0171738.g001
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Long-term p38α deficiency increases p21 levels and activates nuclear

cofilin

RhoA activity may be inhibited by p27 [52], and additionally the RhoA downstream pathway

may be blocked by p21 or cofilin [53, 54]. Hence, p27 and p21 levels as well as the activation of

Fig 2. p38α deficiency impairs hepatocyte cell cycle progression and does not activate pro-apoptotic pathways in old liver. a. Nuclear fractions

from old wild type and p38α knock out liver were Western blotted for cyclin B1 and cyclin D1. Tata binding protein was used as a loading control and

densitometric quantification of cyclin D1/TBP and cyclin B1/TBP was performed. b. Apoptosis in wild type and p38α knock out old liver sections was

measured by the number of positive nuclei using TUNEL (Scale bars = 100 μm). Apoptotic ratio was calculated as: TUNEL positive nuclei/total nuclei. c.

Old wild type and p38α knock out livers were Western blotted for PARP and cleaved PARP and densitometric quantification of PARP cleavage (cleaved

PARP/PARP) was performed. Data are shown as mean and SD. *P < 0.05 WT versus KO.

doi:10.1371/journal.pone.0171738.g002
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cofilin by phosphorylation were assessed. Nuclear levels of phosphorylated cofilin, but not

cytosolic levels, increased upon p38α deficiency in old mice (Fig 4B and 4C). Cytosolic p27 lev-

els did not change significantly, whereas p21 levels increased in the liver of p38α knock out

mice (Fig 4B).

p38α drives activation of MNK1 in old mice

MAPK-interacting Ser/Thr kinase 1 (MNK1) and MAPK-activated protein kinase 2 (MK2)-

are major downstream targets of the p38α pathway that have been implicated in the regulation

Fig 3. p38α deficiency affects actin polymerization upon aging. a. Representative image of F-actin (green) and DAPI (blue)

immunohistochemistry in after weaning, adult and old wild type and p38α knock out livers (Scale bars = 10 μm). b. F-actin and G-actin

immunoblots obtained by ultracentrifugation in old wild type and p38α knock out livers. Densitometric quantification of the G-actin/F-actin

ratio was performed. Data are shown as mean and SD. *P < 0.05 WT versus KO.

doi:10.1371/journal.pone.0171738.g003
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of cytokinesis and actin dynamics [55–57]. Hence their activation was studied in the liver of

old wild type and p38α knock out mice as the major changes in cytokinesis and actin cytoskel-

eton were found in these mice. MNK1 is activated by phosphorylation and is required for

abscission of the intercellular bridge at the end of cytokinesis [55]. MNK1 phosphorylation

was markedly diminished by p38α deficiency in the liver of old mice (Fig 5B). Hence, MNK1

down-regulation may be involved in the cytokinesis failure that occurs in the liver of these

mice.

Strikingly, MK2 phosphorylation on threonine 334 was completely abrogated in the liver

from p38α knock out mice, but its phosphorylation on threonine 222 was not affected. How-

ever, phospho-AKT (Ser473) and phospho-glycogen synthase kinase 3 beta (GSK3β (Ser9))

did not show significant changes in liver of old p38 knock out old mice (Fig 5B). Thus, AKT

activity is not affected by MK2 inactivation and hence, it seems that the AKT pathway is not

related to the impairment of the actin cytoskeleton in these mice.

Long-term p38α deficiency drives to Hsp27-dependent loss of actin

polymerization

Heat shock protein 27 (HSP27) is another downstream target of p38α than can be also acti-

vated by MK2 and regulates the stability of actin filaments [58]. Phosphorylation of HSP27

was strongly diminished in old p38α knockout mice (Fig 5B), in which the most dramatic F-

actin disassembly was found.

In order to confirm the role of p38α and HSP27 in actin polymerization, these targets were

silenced by siRNA in primary cultures of hepatocytes (Fig 6B). Hsp27 silencing decreases the

number and length of actin filaments in hepatocytes whereas no changes were found when

p38αMAPK was silenced (Fig 6A). Strikingly, phosphorylation levels of HSP27 remained

unchanged in p38α-silenced hepatocytes (Fig 6C). Accordingly, we measured phosphorylation

levels of HSP27 in the liver of WT and p38α knockout mice at all ages. Interestingly, the

decrease in HSP27 phosphorylation was specific for the long-term p38α deficiency, as it was

only found in old mice but not after weaning or adult mice (Fig 7).

Discussion

Polyploidy accompanies late fetal development and postnatal maturation of hepatocytes [4, 5],

reaches a plateau at maturity, and increases later on with aging [1]. This is a physiological fea-

ture of the liver and the increase in polyploidy that occurs with age is to a great extend inde-

pendent of p38α. Nevertheless, in our model, in each group of age studied, the binucleation

rate increases in p38α knock out mice compared with their corresponding wild type counter-

parts, especially upon aging. The lack of p38α leads to decreased liver mass in old mice without

apparent changes in hepatocyte size. Moreover, the TUNEL staining and the cleaved PARP/

PARP ratio remained unaffected upon p38α-deficiency in old mice showing that the reduced

liver mass observed in our model should not be ascribed to apoptosis. Therefore, we

Fig 4. p38α deficiency modulates Rho GTPases. a. Old wild type and p38α knock out livers were Western blotted for

activated and total levels of RhoA, for activated and for total levels of Cdc42 and for activated and total levels of Rac1.

Densitometric quantification of active RhoA/RhoA, active Cdc42/Cdc42, active Rac1/Rac1 was measured. b. Old wild type and

p38α knock out liver cytosolic fractions were Western blotted for phosphorylated cofilin and total levels of cofilin, p27 and p21.

α-tubulin was used as a loading control. Densitometric analysis of p-cofilin(S3)/cofilin, p27/α-tubulin and p21/α-tubulin was

done. c. Old wild type and p38α knock out liver nuclear fractions were Western blotted for phosphorylated and total levels of

cofilin and the densitometric quantification of p-cofilin(S3)/cofilin was performed. Tata binding protein was used as a loading

control. Data are shown as mean ± SD. *P < 0.05 WT versus KO. **P < 0.01 WT versus KO.

doi:10.1371/journal.pone.0171738.g004
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hypothesized that inactivation of p38α should impair hepatocyte proliferation by affecting cell

division in old mice.

It is known that p38α regulates the G1/S and G2/M cell cycle checkpoints prior to DNA syn-

thesis and cell division, respectively [43–45, 59]. Accordingly, we have analyzed these check-

points of the cell cycle. Livers from p38α knock out old mice showed up-regulation of cyclin

B1, but they did not exhibit cyclin D1 overexpression. Cyclin D1 is a marker of the G1/S transi-

tion, whereas cyclin B1 is a marker for G2/M transition [59]. Hence, increased B1 levels suggest

that hepatocytes from p38α knock out mice enter more actively into mitosis. In fact, increased

proliferation have been considered hallmark of p38α-deficient cells [46] and mice with liver-

specific deletion of p38α exhibited enhanced hepatocyte proliferation [47] and developed

Fig 5. p38α-mediated phosphorylation pathways. a. Old wild type and p38α knock out livers were Western blotted for phosphorylated

MKK3/6 and MKK4, for phosphorylated p38 and total levels of p38α. Densitometric quantification of p-MKK3/6 (S189/207)/α-tubulin, p-

MKK4 (S257/T261)/a tubulin were done. b. Old wild type and p38α knock out livers were Western blotted for MNK1 and phosphorylated

MNK1 on Thr197/202, for MK2 and phosphorylated MK2 on Thr334 and Thr222, for AKT and phosphorylated AKT on Ser473, for GSK3β
and phosphorylated GSK3β on serine 9 and for HSP27 and phosphorylated HSP27 on Ser 82. α-tubulin was used as a loading control.

Densitometric quantification of p-MNK-1(T197/202)/MNK1, p-MK2 (T334)/MK2, p-MK2 (T222) /MK2, p-AKT(S473)/AKT, p-GSK3β(S9)/

GSK3β and p-HSP27(S82)/HSP27 were determined. Data are shown as mean ± SD. **P < 0.01 WT versus KO.

doi:10.1371/journal.pone.0171738.g005
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Fig 6. Actin polymerization in isolatedhepatocytesp38αMAPK-silenced and Hsp27-silenced. a. Representative image of actin filaments

staining by phalloidin (red) and DAPI (blue) in isolated hepatocytes treated with scramble, p38αMAPK siRNA and Hsp27 siRNA (Scale bars =

1000 μm). b. Silencing of p38αMAPK and Hsp27 targets by siRNA in isolated hepatocytes. c. Isolated hepatocytes scramble-treated and p38α
MAPK siRNA-treated were Western blotted for p-p38 (Thr180/Tyr182), p38α, p-HSP27 (Ser82) and HSP27.

doi:10.1371/journal.pone.0171738.g006
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more liver tumors [48]. However, the highest binucleation rate observed in our model would

suggest that although hepatocytes from p38α knock out mice enter actively into mitosis, fail to

complete cell division, particularly cytokinesis. Interestingly, although incomplete cytokinesis

is a common phenomenon in hepatocytes explaining the presence of hepatic polyploidy in the

liver [1], under certain circumstances polyploidy is considered a protumoral feature that may

give rise to cancer [60].

It is known that the increase in ploidy rate and cytokinesis failure that occurs after weaning

was associated with activation of the AKT pathway [5]. Indeed, primary hepatocytes cultured

with PI3K and AKT inhibitors reduced these failed cytokinetic events [61]. The activation of

RhoA at the division site induced by AKT inhibition allowed proper cytoskeleton reorganiza-

tion [62], and thus, successful cytokinetic performance was achieved [61]. In fact, it has been

reported that although the PI3K-AKT pathway is required for G2/M progression, its inactiva-

tion is necessary for mitotic exit [63]. In addition, AKT downstream targets such as mammalian

target of rapamycin complex 2 (mTORC2) and GSK3β have been described as cytoskeleton

Fig 7. Only the in vivo animal model with a long-term p38α deficiency drives to inactivation of HSP27. Wild type and p38α knock

out livers of all groups of age were Western blotted for p-HSP27 (Ser82) and total HSP27. α-tubulin was used as a loading control. Data

are shown as mean ± SD. *P < 0.05 WT versus KO; $ $P < 0.01 old versus adult.

doi:10.1371/journal.pone.0171738.g007
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regulators [56, 57, 64]. However, the p38α-dependent hepatic ploidy should not be ascribed to

stimulation of the AKT pathway because it remained unaffected. Hepatocyte binucleation trig-

gered by p38α-deficiency at all ages could be ascribed to reduced activation of MNK1, which

should affect the final step of cytokinesis, i.e. abscission of the intercellular bridge. Indeed,

MNK1 is activated by phosphorylation directly triggered by p38 MAPK [65] and it is required

for localization of centriolin to the midbody and subsequent abscission [55]. Accordingly, its

silencing induced the formation of multinucleated cells due to cytokinesis failure [55]. Hence,

our results suggest that MNK1 is a critical target of p38α whose inactivation would lead to binu-

cleated cells at all ages, but especially upon aging.

During cytokinesis, actin dynamics play a critical role in animal cells [12]. At the end of

mitosis, the actin network rearranges at the cleavage furrow and composes the contractile ring,

which is essential in the process of cytokinesis [13]. Our results show that the long-term

absence of p38α severely impairs actin cytoskeleton leading to a high presence of binucleated

hepatocytes. The abnormalities in F-actin polymerization start in adult p38α knock out hepa-

tocytes, and become severe in old p38α knock out mice. In fact, in these animals the G-actin/

F-actin ratio was significantly increased. Thus, the severity of damage in actin cytoskeleton in

p38α knock out old mice could explain the higher differences in the binucleation rate in com-

parison with wild type animals upon aging. In young animals, the effect of p38α deletion in

actin cytoskeleton is more moderate and could not explain the differences observed in the

ploidy in this group of age. The main mechanism that explains how the impairment of the

actin cytoskeleton can drive to blockage of cytokinesis execution is related to the cleavage fur-

row formation [66]. The exact structure of the cleavage furrow remains unclear but several

studies have shown how F-actin is required to interact with myosin and other scaffolding pro-

teins such as septins and anillin during furrow formation [66, 67]. Moreover, cytokinesis com-

pletion depends on actin dynamics in the furrow as well as on the preexisting actin filaments

that are nucleated outside the cleavage site [66]. Hence, when stimulation of actin filament

assembly fails and actin dynamics is impaired, blockage of cytokinesis takes place.

Rho family GTPases are essential regulators of actin dynamics during the cell cycle, espe-

cially during cytokinesis [13, 16] organizing the assembly of the contractile ring and triggering

the actomyosin-driven constriction of the cleavage furrow [12, 18, 67]. In fact, significant defi-

ciencies in F-actin polymerization could also be due to inactivation of the RhoA pathway [17].

Rac1 and Cdc42 GTPases may also regulate the assembly or disassembly of filamentous F-

actin and importantly may activate p38 through p21-activated kinase 1 (PAK1) [13]. p38α
MAPK also acts as a downstream target of the Rho family, and particularly of its three major

members RhoA, Rac1, and Cdc42 via mixed lineage kinases (MLKs) [68] (Fig 8). Thus, p38

activation is likely to contribute to the biological effects of Rac and Cdc42 on actin cytoskele-

ton, affecting cell growth and proliferation, and regulating feedback loops [66].

Our findings show that long-term p38α deficiency triggers abnormal hyperactivation of

both RhoA and Cdc42 GTPases, which is likely to be caused by p38α-dependent blockade

of their downstream pathways. Indeed, RhoA activity triggers proteasome-mediated degrada-

tion of p21, which directly inhibits RhoA kinase (ROCK) [53] (Fig 8). However, p21 levels

markedly increased upon long-term p38α deficiency, which should cause downstream down-

regulation of the RhoA pathway. It has been reported that F-actin disruption stabilizes and

enhances p21 levels [53] and this could explain the observed increase in p21 levels. In any case,

the absence of net p21 degradation indicates that the RhoA pathway is blocked downstream at

certain step because it is unable to trigger p21 degradation. On the other hand, hyperactivation

of Cdc42 and dual specificity mitogen-activated protein kinase kinase 3/6 (MKK3/6) when

p38α is absent would indicate the existence of a positive feedback loop that induces upstream

the pathway Cdc42-PAK1-MKK3/6 that normally would lead to p38 activation [69] (Fig 8).
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Moreover, the hyperactivity of Cdc42 might interfere with cytokinesis since Cdc42 inhibition

is considered necessary for cytokinesis completion [70, 71].

In regard to cofilin, increased phosphorylation in the nucleus would inhibit the actin-depo-

lymerizing activity of nuclear cofilin in old p38α knock out mice [72], thus protecting F-actin

Fig 8. Scheme of the p38α-mediated phosphorylation pathways involved in the regulation of actin cytoskeleton. The Rho family plays a

central role in organizing the actin cytoskeleton and in the regulation of cytokinesis. RhoA activity may be inhibited by p27, and additionally the RhoA

downstream pathway may be blocked by p21 or cofilin. MNK1 and MK2 are major downstream targets of the p38α pathway that have been implicated in

the regulation of cytokinesis and actin dynamics. HSP27 is another downstream target of p38α than can be also activated by MK2 and regulates the

stability of actin filaments.

doi:10.1371/journal.pone.0171738.g008
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polymerization in the nucleus where is implicated in several nucleus processes related with

transcription and gene expression regulation specially during cell cycle [73–77] (Fig 8).

The dramatic loss of actin cytoskeleton in the cytosol associated with severely impaired

actin polymerization upon aging could be ascribed to decreased phosphorylation of HSP27.

HSP27 is a highly conserved oligomeric protein that has a critical function in the equilibrium

between polymerization and depolymerization of actin filaments [58]. HSP27 displays actin-

capping activity that is inhibited by phosphorylation [78], and thus phosphorylation of HSP27

markedly modifies this equilibrium in favor of polymerized actin, contributing to the mainte-

nance of the microfilament network and to formation of the cleavage furrow [58] (Fig 8). In

hepatocarcinoma cells, p38-mediated activation of HSP27 promotes migration and invasion

because of the promotion of actin remodeling [79, 80]. Accordingly, activation of p38 MAPK

in cells exposed to cytochalasin D increased the stability of the actin microfilaments in a

HSP27 phosphorylation-dependent manner [58]. RhoA/Rho kinase pathway can promote

p38α-mediated HSP27 phosphorylation in rabbit facial vein [81], and in in osteoblasts [81–

83]. The association between HSP27 and RhoA was already described in muscle cells [84, 85]

modulating actin-myosin interaction [86]. Nevertheless, in CCl39 cells p38 phosphorylation

and HSP27 phosphorylation occurred independently of the Rho pathway [58]. Our results sug-

gest that upon aging p38α induces HSP27 phosphorylation in order to keep the appropriate F-

actin network for successful cytokinesis, whereas p38α deficiency enhances binucleation with

age. MK2 may mediate p38α-dependent HSP27 phosphorylation [87–89] (Fig 8). MK2 activa-

tion depends on phosphorylation of the activation loop (Thr222) and the regulatory domain

(Thr334), being the latter required for migration of the p38-MK2 complex from the nucleus to

the cytoplasm [90]. As the lack of p38α in liver leads to absence of MK2 phosphorylation on

Thr334 and to an age-dependent decrease of HSP27 phosphorylation, alteration of actin cyto-

skeleton would be expected. p-38 independent redundant mechanisms involved in HSP27

phosphorylation should maintain its normal levels in young and adult mice, but these redun-

dant mechanisms would fail in the liver of old animals. Accordingly, silencing of Hsp27 in

hepatocytes abrogated the actin microfilament network but neither Hsp27 phosphorylation

nor actin cytoskeleton, were affected when p38α was silenced. This result could be explained

because we have employed a transient p38 silencing method. In fact, only the in vivo animal

model with a long-term p38α deficiency drives to inactivation of HSP27 thus disturbing cyto-

skeleton dynamics.

In conclusion, long-term p38α deficiency severely impairs actin cytoskeleton inducing

actin disassembly and cytokinesis failure by reducing both HSP27 phosphorylation and

MNK1 phosphorylation in the liver of old animals. Thus, p38α is essential to maintain in actin

dynamics with age in hepatocytes. In addition, long-term p38α deficiency triggered RhoA and

Cdc42 hyperactivation, but increased p21 levels that may inhibit downstream the RhoA path-

way. The dramatic loss of actin cytoskeleton observed upon p38α deficiency with age should

be taken into account when using p38 inhibitors for chronic therapies in the clinical practice.
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