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Abstract

Road distress results in high maintenance costs. However, increased understandings of
asphalt behaviour and properties coupled with technological developments have allowed
paving technologists to examine the benefits of introducing additives and modifiers. As a
result, polymers have become extremely popular as modifiers to improve the performance
of the asphalt mix. This study investigates the performance characteristics of epoxidized
natural rubber (ENR)-modified hot-mix asphalt. Tests were conducted using ENR—asphalt
mixes prepared using the wet process. Mechanical testing on the ENR—asphalt mixes
showed that the resilient modulus of the mixes was greatly affected by testing temperature
and frequency. On the other hand, although rutting performance decreased at high tempera-
tures because of the increased elasticity of the ENR—asphalt mixes, fatigue performance
improved at intermediate temperatures as compared to the base mix. However, durability
tests indicated that the ENR—asphalt mixes were slightly susceptible to the presence of
moisture. In conclusion, the performance of asphalt pavement can be enhanced by incorpo-
rating ENR as a modifier to counter major road distress.

Introduction

Asphalt is one of the most widely used materials in road construction because of its mechani-
cal, viscoelastic, adhesive, and waterproofing properties [1]. The largest use of asphalt is in the
production of hot-mix asphalt (HMA), which is primarily used in the construction of flexible
pavements. Durable pavements with long service life and low maintenance and rehabilitation
costs are preferred; hence, the demand for high-quality asphalt is growing. Consequently, new
materials with increased performance such as polymer-modified asphalt (PMA) are being
researched and developed. On the other hand, the need for suitable testing methods that can
forecast the performance of materials not only during laying but also over the entire working
life of the pavement is becoming increasingly important.
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Over the past decade, numerous studies have been conducted to modify asphalt and asphalt
mixes [2]. Potentially, polymer-modified asphalt (PMA) can significantly improve the perfor-
mance of HMAs and substantially increase the service life of highway surfaces [2]. Specifically,
the addition of polymers significantly improves various properties of asphalt such as elasticity,
cohesion, stiffness, and adhesion. This leads to a substantial improvement in the performance
and quality of asphalt pavement containing HMA, making the pavement more stable at
warmer temperatures and more flexible at colder temperatures. In addition to rutting resis-
tance, a premium polymer can provide a degree of flexibility or elasticity to HMA, thereby
improving the fatigue and thermal cracking characteristics of the asphalt mix.

One of the most well-known and widely used categories of polymers is thermoplastic elasto-
mers (TEs). TEs are polymers that exhibit both thermoplastic and elastomeric properties [3].
These polymers derive their strength and elasticity from the physical cross-linking of mole-
cules within a three-dimensional network. Styrene-butadiene-styrene (SBS), the most com-
monly known TE, can improve the rheological properties of asphalt [4]. Furthermore, SBS
increases binder elasticity at high temperatures and improves flexibility at low temperatures.
This improvement in turn leads to increased resistance to asphalt rutting at high temperatures
and decreased cracking at low temperatures [5]. Styrene-butadiene-rubber (SBR) is another
example of an elastomer polymer that increases the ductility of asphalt pavements, which thus
becomes more flexible and crack-resistant at low temperatures [6]. Other types of TE additives
have also been used as modifiers, such as styrene isoprene styrene (SIS), styrene ethylene buta-
diene styrene (SEBS), ethylene-propylene-diene-terpolymer (EPDM), isobutene-isoprene-
copolymer (IIP), crumb rubber, polybutadiene (PBD), polyisoprene, and natural rubber (NR)
[2, 7]. However, it has been proved that the three major types of styrenic block copolymers
(SBCs)—SBS, SIS, and hydrogenated styrenic block copolymers (HSBCs)—have the best mod-
ifying potential when blended with asphalt [8-10].

In some cases, vulcanized rubber has been used, e.g., crumb rubber. However, obtaining a
uniform dispersion within the asphalt poses severe difficulties. Non-uniform dispersion
requires high temperatures and long mixing times and can yield a heterogeneous binder, with
the rubber acting mainly as a flexible filler [2]. However, crumb rubber is essentially a combi-
nation of natural rubber, which improves elasticity, carbon black, and synthetic rubber, both
of which improve thermal stability. In addition, crumb rubber has been found to increase rut-
ting resistance and decrease reflective cracking [11]. Nevertheless, it was found that natural
rubber showed superior reactivity as compared to crumb rubber and that the reacted particles
became tacky, which improved adhesion [12]. The strong cohesion between aggregates is one
of the benefits of using natural rubber to modify asphalt [13]. Natural rubber increases the
stiffness of the binder at high temperatures, thereby enhancing the latter’s performance, but it
renders the binder brittle at low temperatures [14]. Remarkably, natural rubber displays high
mechanical strength, outstanding resilience, and excellent elasticity. However, it is also known
to exhibit poor wet grip properties and poor weather resistance [15].

The potential of using epoxidized natural rubber (ENR) as a modifier was discovered in the
1980s [15]. ENR is a chemically modified natural rubber created by reacting natural rubber
with proxy formic acid [15]. This material exhibits good mechanical properties, offers high
strength owing to its ability to bear strain crystallization, and has a high glass transition tem-
perature. These properties in turn facilitate increased oil resistance, enhanced adhesion, damp-
ing, and reduced gas permeation [16, 17]. Previous studies also report that ENR increased the
viscosity and stiffness and decreased the temperature susceptibility of the binder [18-20].

This study presents an experimental performance evaluation of a base asphalt mix (HMA-
0) and an asphalt mix modified with 3% (HMA-3), 6% (HMA-6), 9% (HMA-9), and 12%
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(HMA-12) ENR (as a percentage of asphalt by weight) in terms of indirect tensile resilient
modulus, dynamic creep, rutting, fatigue, and its susceptibility to moisture.

Materials and methods
Materials

The asphalt used in this study was 80/100 penetration grade supplied by the asphalt factory at
Port Klang, Malaysia. The ENR was obtained from the Malaysian Rubber Board under the
trade name of ENR 50, with 53% epoxidation. It was passed through a 2.36 mm mesh sieve
(before shearing). The physical properties of the asphalt and ENR used are shown in Table 1.
The aggregate used for preparing the mixed samples was obtained from Negeri Roadstone
Sdn. Bhd., Malaysia.

Preparation of the binder

ENR-modified asphalts were produced by mixing 3, 6, 9, and 12% ENR (by weight of asphalt)
with the base asphalt using a high shear mixer at 160°C (+1°C) under 4000 rpm for 60, 62, 66,
and 66 min, respectively [21]. ENR was added to the asphalt after temperature stabilization at
160°C.

Asphalt mix preparation

The asphalt mix design was based on the Superpave volumetric mix design. The design equiva-
lent single-axle loads (ESALs) for this study were assumed to be less than 10. This categorises
the design in the 3 x 10° to 1 x 10" ESALs (80 KN/ESAL) category or traffic level 4 [22]. Traffic
levels are used to determine design requirements, such as the number of design gyrations for
compaction, the physical properties of the aggregate, and the volumetric requirements of the
mix. The traffic level also determines the level of mix design required. For traffic levels of less
than 107 ESALS, a level 2 mix design is recommended [22]. The mix in this study had a nomi-
nal maximum particle size aggregate of 19.0 mm. However, six stockpiles of the aggregate con-
sisted of three coarse and three fine aggregates.

Asphalt mix performance tests

Performance tests were used to relate the laboratory mix design to actual field performance.
The following section focuses on laboratory tests done on asphalt mixes.

Indirect tensile resilient modulus test. Sample preparation and testing procedures for
the indirect tensile resilient modulus test were based on the ASTM-D4123 [23] standard and
were carried out using a universal testing machine (UTM) (S1 Fig). The resilient modulus
(Mg) is one of the most fundamental and important parameters used among researchers to
determine the mechanical properties of asphalt mixes, which is then used in the mechanistic
design of pavement structures. It is a non-destructive test and can be defined as the ratio of
applied stress to recoverable strain at a particular temperature for a given load.

In this study, three replicate samples (100 mm in diameter and 63.5 + 2.5 mm in height) for
each type of mix were compacted at 4% air voids using a gyratory compactor. Prior to testing,
all the samples and test equipment were conditioned at 5, 25, and 40°C in an environmental
chamber for a minimum of 2 h. The preconditioned samples were set with a haversine wave
pattern with five conditioning pulses followed by five loading pulses during testing, after
which the data were recorded.

In addition, the pulse width of the load was set at 100 ms with a pulse repetition period
ranging from 300 to 1000 ms. With respect to the pavement, Tayfur et al. [24] suggested a
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Table 1. Materials and properties of base Asphalt and ENR.

Materials Properties Value Specification
Asphalt 80/100 Specific Gravity 1.03 ASTM D70
Penetration @ 25°C 82 ASTM D5
Softening point (°C) 45.7 ASTM D36
Viscosity @ 80°C (Pas) 12.6 ASTM D4402
Ductility (cm) @ 10°C and 5 cm/min 20 ASTM D113
Ductility (cm) @ 25°C and 5 cm/min >100
ENR Size (before shearing) 2.36 mm -
Specific gravity 0.94 -

doi:10.1371/journal.pone.0171648.t1001

pulse repetition period of 1000, 2000, and 3000 ms in order to simulate high, intermediate,
and low traffic volume, respectively.

Dynamic creep test. The dynamic creep test, which can also be performed using the
UTM (52 Fig), determines the permanent deformation of the asphalt mix in a laboratory set-
ting. In this study, the dynamic creep test under a haversine load pulse was conducted for the
base asphalt mix and the ENR-modified mixes according to the protocols developed by the
NCHRP 9-19 Superpave Model [25]. Each category of ENR mix consisted of three replicate
samples, which were compacted at 4% air voids, with a diameter of 100 mm and a height of
150 mm. The samples were preconditioned in the environmental chamber at 40°C for at least
4 h before testing commenced. During the initial stages of testing, samples were pre-loaded
with a conditioning stress of 10 kPa for 120 s to ensure the platen was flat against the sample.
Subsequently, a haversine wave load cycle was applied, which consisted of a 100 kPa stress
pulse with a 100 ms pulse width, followed by a 900 ms rest period. The test was terminated
when the accumulative strain reached 10,000 micro-strains or until 10,000 cycles were com-
pleted, whichever came first.

Rutting test. This test simulates wheel passes on pavement. The procedure followed is as
described in BS-598-110 [26]. A Wessex wheel-tracking device was used to perform this test
on a laboratory scale. Wheel-tracking test samples were produced for each mix once the
respective design aggregate and optimum binder content (OBC) was known (S3 Fig). In this
study, one mould was used to hold the rut sample in the wheel-tracking machine. The height
of the mould exactly matched the original slab mould of the Wessex wheel-tracking device.
Approximately 3,700 gm of mix was compacted to 7 + 0.5% air voids to obtain a sample with
an area of 300 x 300 mm and a height of 65 £ 1 mm. The samples were allowed to cool for 24 h
at room temperature after compaction before calculating the air voids content as per test
requirements. The rut test was conducted at 50°C. Before testing, the samples were condi-
tioned for at least 4 h at the test temperature. The test was conducted only in dry conditions.
The samples were subjected to simulated traffic with a simple harmonic motion by applying
520 N loads for 1 h.

Flexural fatigue test. The flexural fatigue test is conducted to evaluate the fatigue charac-
teristics of the mixes. However, fatigue cracking of pavement is considered to be more of a
structural problem than simply a material problem. A repeated load flexure testing machine
was developed to perform controlled strain flexure fatigue tests on asphalt mix beams. Sym-
metrical four-point loading produced a constant bending moment over the middle third of a
375-mm-long beam sample that was 50 mm deep and 62.5 mm wide (S4 Fig). The test was
conducted in accordance with AASHTO [27]. Particularly, repeated haversine loads were
applied to the third point of the sample, which was placed inside the environmental chamber
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Table 2. Aggregate property test results.
Aggregate properties
Gy, Of coarse aggregate
Gy, Of fine aggregate
Flakiness (%)
Fine aggregate angularity (%)
Elongation (%)
Sand equivalent test
Los Angeles test (%)
Soundness test (%)
Deleterious materials (%)

doi:10.1371/journal.pone.0171648.t002

to maintain the temperature at 20°C during the test. In the constant strain beam fatigue test, a
constant strain was maintained on the sample, but the magnitude of the load was allowed to
decrease with increasing load cycles. With this method, the samples did not break during the
test. Instead, failure was defined as 50% loss in initial beam stiffness.

Moisture susceptibility. It is very important to evaluate the moisture sensitivity of the
design mix. This step is accomplished by performing the AASHTO method on the design aggre-
gate structure to determine the design asphalt binder content [28]. Base asphalt and ENR-modi-
fied asphalt samples with diameters of 100 mm and heights of 63.5 + 2.5 mm were compacted to
approximately 7% air voids. One subset of the three samples was defined as the control subset
and the rest were defined as the conditioned subset. The conditioned subset was subjected to
partial vacuum saturation followed by an optional freeze cycle and a 24 h thaw cycle at 60°C. All
samples were tested to determine their indirect tensile strength. The moisture sensitivity was
defined as the ratio of the tensile strength of the conditioned subset to the tensile strength of the
dry (control) subset. The minimum criteria for tensile strength ratio was 80% [28].

Results and discussion

Performance testing is an area of Superpave that has yet to be implemented widely. The perfor-
mance tests discussed in this study have been used by various researchers. However, as with
asphalt binder characterisation, the challenge in HMA performance testing is to develop physi-
cal tests that can satisfactorily characterise key HMA performance parameters and determine
how these parameters will change throughout the life of a pavement. The key parameters to be
considered are deformation resistance, fatigue life, stiffness, and moisture susceptibility [29].
However, the physical characterisations of the asphalt mix are described in this study. These
descriptions are based on typical laboratory characterisation procedures. The effect of 3, 6, 9,
and 12% ENR content (as a percentage of the base asphalt by weight) on the mechanical per-
formance of the modified mixes was investigated and compared to that of HMA-O0.

The design aggregate structure

The nominal maximum particle size was chosen to be 19.0 mm. However, the six stockpiles of
materials consisted of three coarse and three fine particle sizes. Aggregates were washed, oven
dried and sieved to separate sizes before adding them to the mix to ensure that the gradation
of the Superpave mix design was strictly followed. The following sieve sizes were used in the
gradation: 19.00, 9.50, 4.75, 2.36, 0.30, and 0.075 mm sieves.

To begin with, the bulk specific gravity (Gg,) of the coarse and fine aggregates was calcu-
lated for all sieve sizes and the results are shown in Table 2. The apparent specific gravity (Gs,)

Results Criteria Standard
2.58 - ASTM C 127
2.61 - ASTMC 128
6.00 <20 BS 812: section 105.1: 1989
51.5 >45 AASHTO T33
16.0 <20 BS 812
48.5 >45 AASHTO 176
32.13 <45 ASTM C: 131-81
6.1 <12 ASTM C88
0.5 0.2t0 10 ASTM C142
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Fig 1. Aggregate gradation.
doi:10.1371/journal.pone.0171648.9001

and effective specific gravity (Gs.) were also determined from these tests. Further analysis of
the Superpave system consensus and source aggregate properties was carried out as this was
critical to achieving high-performance HMA pavement. The results confirmed that the aggre-
gates from the quarry complied with the standard specification criteria. Table 2 shows the
results of the aggregate property tests.

In general, the aggregate fulfilled the Superpave mix design requirements and was found
suitable for use as a pavement material. Fig 1 shows the aggregate gradation used in this study.
Aggregate gradation was prepared using 19.0 mm as the nominal maximum size in order to
comply with the Superpave gradation limits.

Binder properties

Material characterisation based on standard and Superpave tests is presented in Table 3 [1,
30]. These results complied with the specifications set by the standard criteria under binder
PG 76.

Volumetric properties of mixes

Asphalt mixes were successfully developed in accordance with the procedures described in the
Superpave mix design standard [22]. In this study, mixes with five different asphalt contents
(4,4.5, 5, 5.5, and 6%) were prepared (N = 3 for all the samples) for each base and modified
HMA. Specimens were prepared by blending mineral aggregates in increments of 0.5% binder
(i.e., 4.0,4.5, 5.0, 5.5 and 6.0%) by weight of aggregate for the base and modified HMA.

The optimum binder content (OBC), which ensured acceptable volumetric properties as
compared to the established mix criteria, was based on the Superpave gyratory compactor
(SGC) specimens with 4% air voids. The volumetric properties consisted of OBC, effective
binder content (Py.), voids in mineral aggregate (VMA), voids filled with asphalt (VFA), and
the ratio of dust to the effective binder content (P0.075/P,,.). The major factors that determine
the stability and durability of Superpave HMA mixes are VMA, VFA, air voids, and dust pro-
portion. Table 4 summarises the volumetric properties of the design mixes corresponding to
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Table 3. Binder properties.

ENR content (by % weight of asphalt)

ENRMA-0 | ENRMA-3 | ENRMA-6 | ENRMA-9 | ENRMA-12
Binder description (and criteria) 0% 3% 6% 9% 12%
Original binder | Penetration at 25°C, 1/10 mm 82 73 64 52 53
Softening point, °C 45.70 50.60 53.80 56.80 57.00
Viscosity @ 135°C (max. 3 Pas), Pa s 0.244 0.469 0.606 0.787 0.694
Flash point (min. 230°C), °C 275 308 329 353 371
Dynamic shear at 10 rad/s (G*/sind), (min. 1 kPa), kPa 0.177 1.382 2.103 1.410 1.680
RTFOT RTFOT weight loss% (max. 1%) 0.36 0.31 0.29 0.26 0.25
Dynamic shear at 10 rad/s (G*/sind), (min. 2.20 kPa), kPa 0.969 2.753 3.826 3.789 3.480
PAV Dynamic shear at 10 rad/s (G*/sind), (max. 5000 kPa), kPa 3962 2291 2414 880 1036

doi:10.1371/journal.pone.0171648.t003

Table 4. Volumetric properties of all mixes.

the OBC of the mix, along with mix design criteria. The results for all the mixes revealed that
their properties satisfied all the criteria set by the Superpave system.

Resilient modulus test results

Resilient modulus is an important variable used to measure pavement response in terms of
dynamic stresses corresponding to strains. However, this test can be used to evaluate low-tem-
perature cracking, fatigue, and permanent deformation of asphalt mixes [31-33]. When elas-
tic-layered system theory is used to design the asphalt mix, the modulus of asphalt is
considered a basic design parameter [34].

During testing, horizontal deformation is measured from both sides of the specimen and
the resilient modulus is calculated accordingly. In this test, the base and modified HMA at 5,
25,and 40°C and at 0.33, 0.5, and 1 Hz were analysed, compared, and characterised. In general,
it was observed that the resilient modulus for all mixes increased inversely with temperature,
regardless of the availability of the modifier. In contrast, some studies have reported a decrease
in the resilient modulus; however, numerous polymers were used as modifiers [24].

At low temperature (5°C), the resilient modulus of the base HMA-0 mix was higher than
that of the modified mixes. This indicates that the elasticity of the mix decreased after the addi-
tion of the polymer modifier, as shown in Fig 2. On the other hand, as the pulse repetition fre-
quency during loading was increased from 0.333 Hz to 1 Hz, the resilient modulus values
decreased. However, at 5°C, HMA-0 showed the highest resilient modulus for low-frequency
loading. At 25 and 40°C, the resilient modulus values increased with increasing ENR content.
This indicates that the elasticity increased after adding the polymer modifier, as shown in Figs
3and 4.

Significantly, for all temperatures, the resilient modulus decreased with increasing loading
frequency. Finally, these results indicated that HMA-0 was more susceptible to cracking at low

Mix Properties HMA-0 HMA-3 HMA-6 HMA-9 HMA-12 Criteria
Binder type ENRMA-0 ENRMA-3 ENRMA-6 ENRMA-9 ENRMA-12

OBC (%) 4.86 4.96 5.08 5.31 5.87 -

Air Voids (%) 4.00 4.00 4.29 4.54 4.69 3-5

VMA (%) 14.44 15.31 17.44 18.99 19.15 >13

VFA (%) 74.14 74.87 75.00 75.00 75.00 65-75
doi:10.1371/journal.pone.0171648.1004

PLOS ONE | DOI:10.1371/journal.pone.0171648 February 9, 2017 7/16



@. PLOS | ONE Characterising ENR modified HMA
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Fig 2. Resilient modulus of HMA mixes at 5°C.
doi:10.1371/journal.pone.0171648.9002

temperature because of the increase in the resilient modulus and to fatigue cracking and per-
manent deformation at intermediate and high temperatures, respectively, because of the
decrease in the resilient modulus.

Tayfur et al. [24] modified various types of polymers and reported that the base asphalt had
a higher resilient modulus as compared to PMA mixes at 5°C, which meant that the base
asphalt had a higher elasticity modulus (stiffness) and hence a lowest cracking resistance.
Loading frequency increased the resilient modulus, especially at 25°C and 40°C. Finally, the
results indicated that the resilient modulus values of the base mixes, especially at 5°C, were
higher than those of the PMA mixes, but at higher temperatures (25°C, 40°C), the values
tended to decrease.

EHMA-0 [AHMA-3 CHMA6 [MHMAS9 BHMA-12

3500

3000

2500

2000

1500

1000

Resilient Modulus (MPa)

500

033 Hz

1Hz

Fig 3. Resilient modulus of HMA mixes at 25°C.
doi:10.1371/journal.pone.0171648.9003
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BHMA-0 FIHMA-3 [HMA-6 B HMA-9 CHMA-12

Resilient Modulus (MPa)

.50 Hz 1Hz

Fig 4. Resilient modulus of HMIA mixes at 40°C.
doi:10.1371/journal.pone.0171648.9004

Dynamic creep test results

The dynamic creep test is used to determine the strength of HMA mixes to plastic deforma-
tion. Fig 5 shows the comparison between the accumulated strain of HMA-0 and the modified
mixes at 40°C and a stress of 100 kPa. The dynamic creep curve consists of three parts: pri-
mary, secondary, and tertiary. The accumulated strain was recorded at each load cycle and the
test was terminated when the numbers of cycles reached 10,000. Because the loading period
was terminated at 10,000 cycles, not all specimens failed before reaching the maximum

3.3 ——HMA-D
3 ——HMA-3 /
———HMA6 /
2.5 HMA-9
——HMA12 /
1.5 //
1 /
0.5

0 T T T T
0 2000 4000 6000 8000 10000

Cycles

Acumulated Strain %
N

Fig 5. Dynamic creep curves for all asphalt mixes.

doi:10.1371/journal.pone.0171648.9005
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number of cycles. Under 10,000 load cycles, all axial strains exhibited a curved relationship
with load cycle in the strain versus load cycle plot.

Extreme permanent deformation was observed in the HMA-0 mix as compared to all modi-
fied mixes, as shown in Fig 5. This behaviour can be attributed to the influence of ENR on the
binder and thus on the mix. The mechanical properties of all modified mixes rely on the prop-
erties of the binder at high temperatures, especially for permanent deformation. Therefore, it
is expected that the resistance to permanent deformation would increase in the modified mix.
Finally, adding ENR to asphalt mixes significantly decreased the asphalt’s susceptibility to per-
manent deformation.

Similar polymer behaviour has been reported [35]; however, in that case, different percent-
ages of styrene butadiene styrene (SBS) were used as the modifier. Khodaii and Mehrara found
that adding SBS to the asphalt increased the asphalt mix’s resistance to permanent deformation
[35]. Fernando and Guirguis [36] indicated that the addition of 4% rubber decreases the creep
compliance of asphalt mix by 42% at 45°C. Eaton et al. [37] reported that the total creep was
higher for the rubber mixes, pointing out the benefits of their performance at lower tempera-
tures, that is, greater elasticity and better resistance to thermal cracking.

Rutting test results

The rutting test is a simulative test, also known as the torture test, conducted using a dry
wheel-tracking device. A test temperature of 50°C was chosen to simulate extreme environ-
mental conditions for the HMA mixes. The wheel passed over the HMA specimens and was
terminated after 45 min. In general, all modified mixes exhibited good rutting resistance as
compared to HMA-0, as shown in Fig 6. Although the HMA-12 mix exhibited the lowest rut-
ting value, HMA-0 exhibited the highest rutting value. Clearly, this indicates the high resis-
tance of the modified mixes to rutting as compared to HMA-0.

The performance improvement of a base asphalt mix with addition of SBS has been
reported [38], which was mainly attributed to the enhanced resistance to rutting imparted to

6.00

5.00

4.00 +

3.00

2.00 +

Rutting depth (mm)

1.00

0'00 B T — e
0 10 20 30 40 50

Time (mintues)

Fig 6. Rutting test results for all asphalt mixes.
doi:10.1371/journal.pone.0171648.9006
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Fig 7. Fatigue results using the initial flexural stiffness for all asphalt mixes.

doi:10.1371/journal.pone.0171648.g007

the pavement by SBS. According to Shih et al. [39], addition of crumb rubber and SBR
increased the rutting resistance of asphalt mixes. The results from laboratory study showed
that the crumb rubber- modified and SBR-modified asphalt had higher stiffness at 60°C than
the base mixes.

Flexural fatigue test

Fig 7 shows the fatigue life and number of cycles to failure, which is defined as the loading
cycle when the flexural stiffness of the mix drops to 50% of its initial value. Fig 8 shows the ini-
tial flexural stiffness for all the mixes.

It is obvious that HMA-0 predominantly affected the initial stiffness of the mix as compared
to the modified mixes, although the results from the fatigue life tests show a different aspect,

40000 %
35000 7 %
% 30000 % ? ? ?
< 25000 7, / 7, /
T 20000 é / é /
%15000 7 7 77 Z, 7,
™ 10000 é Z Z ? Z
OO A A

Fig 8. Fatigue results using the number of cycles to failure for all asphalt mixes.
doi:10.1371/journal.pone.0171648.g008

PLOS ONE | DOI:10.1371/journal.pone.0171648 February 9, 2017 11/16



o o
@ PLOS | ONE Characterising ENR modified HMA

i.e., HMA-O0 failed after 18,030 cycles, whereas HMA-12 failed after 41,453 cycles. This indi-
cates that the fatigue life improved after adding the modifier to the base asphalt mix. On the
other hand, a decrease in the initial stiffness of the modified mix indicates a decrease in the
elasticity of the mix. A previous study of an asphalt mix that used SBS as a modifier under a
strain of 600 pe found that SBS also increased the fatigue life of the asphalt mix [40]. Raad and
Saboundjian [41] investigated the fatigue behaviour of the different mixes using controlled-
strain third-point flexural beam tests. Results indicated that the crumb rubber modified
asphalt mixes can enhance their fatigue resistance. The magnitude of improvement appears to
depend on the degree and type of rubber modification. Lundy et al. [42] presented the three
case histories in which ground rubber modification was used in the construction of asphalt
mix. The results showed that the modified material has improved fatigue characteristics com-
pared to the base mix as a result of the thicker asphalt films.

Moisture susceptibility

The indirect tensile strength (ITS) results of each mix under the dry and conditioned cases
were averaged based on the results of three specimens [28]. All the ITS results are shown in
Figs 9 and 10. All mixes tested were prepared such that their air void content was 7 + 0.5%.
The results showed that the ITS values of all the dry specimens decreased when they were con-
ditioned, implying deterioration in the mixes, which affected the strength of the HMA mix.
The tensile strength ratio (TSR) indicates the susceptibility of the HMA mix to moisture
damage. All mixes met the required minimum 80% TSR value as specified in AASHTO T283.
The indirect tensile strength test showed that the modified mixes exhibited higher tensile
strength as compared to HMA-0 before and after conditioning, which proved that HMA-0
was more susceptible to moisture damage. A previous study that used SBS (HMA-SBS)-modi-
fied asphalt also reported a reduction in the susceptibility of HMA to moisture damage [40]. It
was found that the SBS-HMA asphalt samples achieved a higher TSR value (88.9%) than the
base HMA samples (76.7%). On the other side, it was found that adding Elvaloy to the asphalt
mix increased the susceptibility to moisture damage [43]. Coating smooth, rounded, siliceous
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Fig 9. Indirect tensile strength results for all asphalt mixes.
doi:10.1371/journal.pone.0171648.9g009
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Fig 10. Tensile Strength Ratio (TSR) results for all asphalt mixes.
doi:10.1371/journal.pone.0171648.g010

gravel aggregates with cement plus SBR latex for use in asphalt mix increased the resistance to
moisture damage [44].

Conclusions

The primary objective of this study was to investigate the performance characteristics of ENR-
modified asphalt mixes through indirect tensile resilient modulus, dynamic creep, rutting, and
fatigue tests and to investigate the durability of the ENR-modified asphalt mixes when exposed
to moisture. The most important conclusions derived from this study are as follows:

« In terms of the load-bearing capacity, adding ENR decreased the resilient modulus at low
temperatures but increased it at intermediate and high temperatures.

o The permanent deformation of ENR-HMA at 40°C and 50°C was dominated by the ENR
content, where ENR-HMA produced less deformation as compared to base-HMA. This is
attributed to the presence of highly elastic rubber in HMAs at high temperature.

o The ENR modifier improved the HMA in terms of fatigue life, where ENR-HMA showed
greater resistance to fatigue cracking as compared to base-HMA. However, the initial stiff-
ness increased after adding ENR, indicating a decrease in the elasticity of ENR-HMA.

o Moisture damage was reduced after modifying the mixes with ENR, indicating that
ENR-HMA was less susceptible to moisture damage as compared to base-HMA. Although
this improvement was not significant, the results remain within the standard requirements.

Supporting information

S1 Fig. Indirect tensile resilient modulus test instrument.
(TTF)
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S2 Fig. Dynamic creep test instrument.
(TIF)

$3 Fig. Rutted sample from wheel tracking test.
(TIF)

S4 Fig. Flexural fatigue test instrument.
(TTF)
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