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Abstract

Target fishing often relies on the use of reverse docking to identify potential target proteins

of ligands from protein database. The limitation of reverse docking is the accuracy of current

scoring funtions used to distinguish true target from non-target proteins. Many contempo-

rary scoring functions are designed for the virtual screening of small molecules without spe-

cial optimization for reverse docking, which would be easily influenced by the properties of

protein pockets, resulting in scoring bias to the proteins with certain properties. This bias

would cause lots of false positives in reverse docking, interferring the identification of true

targets. In this paper, we have conducted a large-scale reverse docking (5000 molecules to

100 proteins) to study the scoring bias in reverse docking by DOCK, Glide, and AutoDock

Vina. And we found that there were actually some frequency hits, namely interference pro-

teins in all three docking procedures. After analyzing the differences of pocket properties

between these interference proteins and the others, we speculated that the interference pro-

teins have larger contact area (related to the size and shape of protein pockets) with ligands

(for all three docking programs) or higher hydrophobicity (for Glide), which could be the

causes of scoring bias. Then we applied the score normalization method to eliminate this

scoring bias, which was effective to make docking score more balanced between different

proteins in the reverse docking of benchmark dataset. Later, the Astex Diver Set was utilized

to validate the effect of score normalization on actual cases of reverse docking, showing

that the accuracy of target prediction significantly increased by 21.5% in the reverse docking

by Glide after score normalization, though there was no obvious change in the reverse dock-

ing by DOCK and AutoDock Vina. Our results demonstrate the effectiveness of score nor-

malization to eliminate the scoring bias and improve the accuracy of target prediction in

reverse docking. Moreover, the properties of protein pockets causing scoring bias to certain

proteins we found here can provide the theory basis to further optimize the scoring functions

of docking programs for future research.
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Introduction

Small molecule drugs are rarely selective enough to interact solely with their designated tar-

gets. Known drugs have, on average, six molecular targets on which they exhibit activity[1, 2],

usually resulting in unexpected side effects or toxicity[3–6]. On the other hand, the ability of

small molecules to interact with multiple proteins also provides the basis to develop multitar-

get drugs[7, 8]. Thus, it is a critical step to identify all target proteins of small molecule drugs

in drug discovery. Protein target prediction, also known as target fishing, helps to identify the

potential targets of a query molecule. It may reveal targets of drugs with so far unknown mech-

anisms-of-action[9], contribute to rationally designing of less toxic or multitarget drugs[10–

13], and reveal hidden opportunities in drug repurposing projects[14–16].

Target fishing includes experimental and computational approaches[17, 18]. Since the

experimental target fishing is expensive and time-consuming, it is hard to predict all the possi-

ble targets from such a broad range of proteins in a short time. With the development of com-

puting resources, computational target fishing has drawn more and more attentions in recent

years[19]. Generally, computational target fishing can be classified as ligand-based methods

and target-based methods[20]. Ligand-based methods simplify the problem to a similarity

searching problem, and only use ligand information to predict target [21–23]. Target-based

methods use the information of target proteins, which includes reverse docking, similarity

comparison of protein sequences or binding pockets, and so on [24, 25]. Compared with other

methods, reverse docking utilizes 3D protein structures and active site information to predict

the binding mode as well as the binding energy of a ligand, which is a major advantage. With

the rapid growth of the number of available 3D structures of proteins, reverse docking is be-

coming increasingly important in target fishing [26–30]. This approach has been demon-

strated to be useful in target identification and some of the predicted results have been verified

by bioassays and crystallographic studies. For example, a reverse docking study by Chen et al.

used INVDOCK to identify therapeutic targets of medicinal herbal ingredients as well as syn-

thetic chemicals and the majority of identified therapeutic targets have been confirmed[31]. In

2012, Eric et al. used Tarfisdock to conduct reverse docking against a pool of protein targets

and identified the potential targets to rationalize the cytotoxic effects of aryl-aminopyridines

and their derivatives[30]. These successful cases show that reverse docking has been playing an

important role in protein target predictions of small molecules.

Although significant successes have been made in reverse docking, there are still some prac-

tical limitations for this method, such as the choice of an appropriate scoring function and the

high false positive rate[32]. Especially, the scoring functions of current docking programs are

designed for the virtual screening of small molecules, few of which is specifically optimized for

reverse docking. As a result, the scoring functions would have scoring bias to some proteins

with extreme properties, which accounts for the incomparability of docking scores for differ-

ent proteins[33, 34]. In recent years, several attempts have been made to improve the accuracy

of docking scores in reverse docking [32, 33, 35]. For example, Kellenberger et al. incorporated

the topological molecular interaction fingerprint (IFP) into GOLD fitness score, improving

the recall rate of true targets[35]. An evaluation of Glide in reverse docking on the Astex

Diverse Set by Wang et al. showed the “interprotein scoring noise” of Glide scoring function

and used a correction term containing the protein property “balance” to improve the accuracy

rate of target predictions[33]. Thus, the docking score or the scoring function of current dock-

ing programs should be rationalized to suit the reverse docking for target fishing.

In this study, we conducted the reverse docking of 5000 small molecules to 100 proteins of

DUD-E[36] using three common docking programs and found that there were some highly

scored frequency hits in 100 proteins resulting from the scoring bias. After analyzing the
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binding pockets of these proteins, we found that they mostly had large protein-ligand contact

area or high hydrophobicity. Then we proposed a score normalization strategy to eliminate

this scoring bias in reverse docking. The score normalization strategy was validated with the

Astex Diverse Set[37] containing 85 diverse protein-ligand complexes. The accuracy rate of

reverse docking by Glide[38] was significantly improved after score normalization, demon-

strating that the score normalization strategy is an effective approach to improve the success

rate of target fishing. However, the accuracy rate of reverse docking by DOCK[39] and Auto-

dockVina[40] had no obvious increase, because there might be other scoring defects in these

two docking programs besides scoring bias. The research here would help to promote the

application and development of reverse docking in target fishing.

Materials and methods

Dataset preparations

Standard protein dataset. Directory of useful decoys-enhanced (DUD-E)[36] is a bench-

marking set that includes diverse targets such as GPCRs and ion channels, totaling 102 pro-

teins with 22886 clustered decoys drawn from ChEMBL, each with 50 property-matched

decoys drawn from ZINC. DUD-E is usually used to evaluate retrospective performance of

classic docking-based virtual screening. Here, 100 proteins from DUD-E were chosen as stan-

dard protein dataset to study reverse docking, removing two highly homologous isoforms. The

native ligands and water molecules of crystal protein structures were removed. Then all the

proteins were prepared by the Protein Preparation module of Pipeline Pilot 7.5[41], which

included adding hydrogens, protonation and repairing the missing or wrong residues.

Benchmark dataset. Available chemicals directory (ACD)[42] contains more than 8, 000,

000 compounds collected from more than 800 vendors, which covers almost all chemical space

of exist compounds. We selected 5000 molecules randomly from ACD as benchmark dataset,

which has the similar distribution of heavy atom number with ACD (S1 Fig in the Supporting

Information). Thus, the benchmark dataset contains most molecular sizes of exist compounds,

representing reverse docking cases of different molecular sizes. The benchmark dataset was

prepared by the Ligprep[43] module of Schrödinger software, including adding hydrogens,

ionization, generating isomers and energy minimization.

Astex Diverse Set

Astex Diverse Set[37] is a diverse and high-quality test set containing 85 diverse and relevant

protein-ligand complexes for the validation of protein-ligand docking performance. Here,

Astex Diverse Set was selected as the validation dataset of docking score correction. The native

ligands were extracted from crystal complexes and prepared by the Ligprep module of Schrö-

dinger software like benchmark dataset. And 85 proteins were prepared by Protein Prepara-

tion module of Pipline Pilot 7.5 like standard protein dataset.

Scoring functions of docking programs

The three docking programs (DOCK, Glide and AutoDock Vina) we chose here implement

three different scoring functions, which could be used to study and compare their scoring abil-

ity in reverse docking. Since these three docking programs are popular in the field of molecular

design, we aim to study the scoring performance in reverse docking by these three docking

programs.

Grid score. The grid-based energy scoring function in DOCK is used as the docking score

of receptors and ligands. The energy scoring component of DOCK is a type of force field

The scoring bias in reverse docking
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scoring[39]. Force field scores are approximate molecular mechanics interaction energies, con-

sisting of van der Waals and electrostatic components:

E ¼
Xlig

i¼1

Xrec

j¼1

Aij

raij
�

Bij

rbij
þ 332

qiqj

Drij

 !

; ð1Þ

Where each term is a double sum over ligand atoms i and receptor atoms j, Aij and Bij are van

der Waals repulsion and attraction parameters, rij is the distance between atoms i and j, qi and

qj are the point charges on atoms i and j, D is the dielectric function, and 332 is a factor that

converts the electrostatic energy into kilocalories per mole.

Glide score. Glide score SP is used as the docking score of receptors and ligands by Glide,

which is extended by the empirically based ChemScore function[38]. The scoring function of

Glide score SP is as follows:

DGbind ¼ Clipo� lipo

X
f ðrlrÞ þ Chbond� neut� neut

X
gðDrÞhðDaÞ þ Chbond� neut� charged

X
gðDrÞhðDaÞ

þ Chbond� charged� charged

X
gðDrÞhðDaÞ þ Cmax� metal� ion

X
f ðrlmÞ þ CrotbHrotb

þ Cpolar� phobVpolar� phob þ CcoulEcoul þ CvdWEvdW þ solvation terms; ð2Þ

The lipophilic-lipophilic term is defined as in ChemScore, which extends over all ligand-

atom/receptor-atom pairs. In Eq 2, f, g, and h are functions that give a full score (1.00) for dis-

tances or angles that lie within nominal limits and a partial score (1.00–0.00) for distances or

angles that lie outside those limits but inside larger threshold values. The hydrogen-bonding

term also uses the ChemScore form but is separated into differently weighted components that

depend on whether the donor and acceptor are both neutral, one is neutral and the other is

charged, or both are charged. The fifth term is metal-ligand interaction term, and the seventh

term rewards instances in which a polar but non-hydrogen-bonding atom is found in a hydro-

phobic region. The second major component of Eq 2 is the incorporation of contributions

from the Coulomb and vdW interaction energies between the ligand and the receptor. And

the last term of Eq 2 is the introduction of a solvation model. Compared with other scoring

functions, GlideScore SP combines the empirical-based and force-field-based scoring function

to make the score more accuracy.

AutoDock Vina score. The general functional form of the conformation-dependent part

of the scoring function AutoDock Vina is designed to work with is

c ¼
X

i<j
ftitjðrijÞ; ð3Þ

where the summation is over all of the pairs of atoms that can move relative to each other, nor-

mally including 1–4 interactions, i.e., atoms separated by three consecutive covalent bonds.

Here, each atom i is assigned a type ti, and a symmetric set of interaction function ftitj of the

interatomic distance rij should be defined. The derivation of AutoDock Vina scoring function

combines certain advantages of knowledge-based potentials and empirical scoring funcitons:

it extracts empirical information from both the conformational preferences of the receptor-

ligand complexes and the experimental affinity measurements[40].

Reverse docking procedure

The benchmark dataset and Astex Diverse Set defined 5000 and 85 reverse docking cases,

respectively. In each case of benchmark dataset, one ligand was docked to 100 proteins of stan-

dard protein dataset. In each case of Astex Diverse Set, one ligand was docked to 85 proteins of

Astex Diverse Set.

The scoring bias in reverse docking
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DOCK. All proteins of standard protein dataset and Astex Diverse Set were prepared by

Dockprep module of Chimera 1.9[44] with default parameters before DOCK docking. The

Sphgen module of DOCK 6.6[39] was used to generate the molecular surface of proteins and

the spheres surrounding the proteins. The binding sites were selected based on the native

X-ray ligands and the boxes with size of 10 Å × 10 Å ×10 Å at the binding sites were created.

Preparation of the docking grids was then performed. Maximum iterations and maximum

conformations were both set as 100. The docking calculation was performed and the top-10

scored conformations of each ligand were reserved. The best scored conformation was selected

as the binding conformation of the ligand.

Glide. All the proteins of standard protein dataset and Astex Diverse Set were prepared by

the Protein Preparation Wizard module of Schrödinger with OPLS_2005 force field. The

receptor grid was generated for each protein as follows. The binding site of each protein was

defined based on the native X-ray ligand and the enclosing box with the size limit of 8 Å was

created. Other parameters used in the receptor grid generation were set to their defaults.

Finally, ligands were docked to proteins using the “standard precision” mode of Glide[38]. For

each ligand-protein pair, Glide reported 10 best binding conformations, and the conformation

with lowest binding energy was selected.

AutoDock Vina. All the proteins of standard protein dataset and Astex Diverse Set as well

as all the ligands were prepared by MGL Tools. The native X-ray ligand was set as the center of

the enclosing box with the size of 22.5 Å × 22.5 Å × 22.5 Å. Docking calculations were per-

formed using the default parameters implemented in AutoDock Vina 1.1.2[40]. Similarly, each

ligand output 10 best binding conformations, and the conformation with lowest binding

energy was selected.

Protein pocket properties calculation

The properties of each protein binding pocket were calculated by the Sitemap[45] module of

Schrödinger, including size, volume, exposure, enclosure, contact, phobic (representing

hydrophobicity), philic (representing hydrophilicity), balance (representing the ratio of hydro-

phobicity and hydrophilicity) and don/acc (representing the ratio of hydrogen-bond donor

and acceptor). In the research of our group, we have found that the contact area of protein-

ligand complex is correlated with docking score. The contact area is defined as follows:

Scontact ¼ ðSprotein þ Sligand � ScomplexÞ=2; ð4Þ

Scontact, Sprotein, Sligand, and Scomplex represent the surface area of contact, protein, ligand and

complex, respectively.

Thus, contact area was calculated by an in-house python script and the median contact area

of each protein with its all ligands was regarded as one of the pocket properties, which is

thought to represent the size and shape of protein pocket.

Protein classification

The benchmark dataset defined 5000 reverse docking cases. In each case, the top-scored pro-

tein was considered as the predicted target of the ligand. The total number of times each pro-

tein was predicted as the target of certain ligand in all the 5000 cases was calculated as the hit

frequence of this protein. And if the hit probability of 100 proteins for each ligand is assumed

equal, which is regarded as the ideal situation, the hit frequence of each protein should be 50

statistically (5000 divided by 100). The proteins of standard protein dataset were classified into

three classes based on hit frequence: the interference proteins with hit frequence more than 50;

the middle proteins with hit frequence more than 0 and less than 50; the underrated proteins

The scoring bias in reverse docking
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with hit frequence equalling 0. The C4.5 decision tree algorithm was used to classify the inter-

ference and underrated proteins based on the 10 descriptors of protein pockets, aiming to find

the simplest tree model which could use the smallest number of descriptors to predict whether

the protein is overrated or underrated.

Results and discussion

Reverse docking score analysis of benchmark

The docking procedure of 5000 benchmark dataset molecules to 100 DUD-E proteins was per-

formed by three docking programs. The docking score distribution of 100 proteins is shown in

Fig 1, which demonstrates that the docking score of different proteins has a different range. In

the docking by DOCK, the proteins which have the biggest difference of score are 1udt and

2am9 (PDB ID). The score range of 1udt and 2am9 is -132.5 to 278.9, -49.8 to 785.2 respec-

tively. And their average score is -43.9 and -24.0. In the docking by Glide, the proteins which

have the biggest difference of score are 1q4x and 1bcd. The score range of 1q4x and 1bcd is

-11.3 to 3.2, -10.3 to 4.3 respectively. And their average score is -7.7 and -3.8. In the docking by

AutoDock Vina, the proteins which have the biggest difference of score are 1d3g and 3kgc.

The score range of 1d3g and 3kgc is -14.4 to 52.3, and -8.9 to -1.5 respectively. And their aver-

age score is –9.1 and -5.5. These results demonstrate that scoring functions may have different

degrees of scoring bias to different proteins, some proteins resulting in a high overall docking

score. In Fig 1D, we can see that some proteins show high hit frequence in 5000 reverse dock-

ing cases. Table 1 shows the proteins with top-10 hit frequence in 5000 reverse docking cases

by three docking programs (The hit frequence of all proteins for three docking programs are

Fig 1. The reverse docking results of 5000 molecules. The probability density curves of (a) DOCK score, (b) Glide score, (c) Vina score of 100

proteins (different colors represent different proteins). (d) The hit frequence, (e) the average rank of 100 proteins in 5000 reverse docking cases.

doi:10.1371/journal.pone.0171433.g001

The scoring bias in reverse docking
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listed in the Supporting Information S1 Table). The highest hit frequences in the reverse dock-

ing by DOCK, Glide and AutoDock Vina are 1607, 823 and 1267, while the corresponding

proteins are 1zw5, 3max and 1d3g, respectively. The frequency hits are not the same in three

docking procedures, which illustrates that the scoring functions of different docking programs

may be sensitive to different properties of protein pockets, resulting in scoring bias to different

proteins. Since the benchmark dataset molecules were chosen randomly from a vast com-

pound library, their probability of binding with certain proteins among these 100 proteins

were thought to be quite low and several actual ligands wouldn’t make a difference to the

result. So they are regarded as decoys or background molecules, and the hit frequence of each

protein for these molecules shouldn’t have a high value. In the ideal situation, the proteins

should have an equal hit frequence of 50, assuming that they statistically have the same proba-

bility of being predicted as the target of one ligand while the activity is unclear. Thus, these

proteins with such high hit frequence are probably false positives in reverse docking. Fig 1E

shows that these 100 proteins have quite different average rank in 5000 reverse docking cases.

The average rank of these proteins has a range of 12 to 91, 14 to 91 and 8 to 90 in the reverse

docking by DOCK, Glide and AutoDock Vina, which means the overall rank of these proteins

are quite different. As is shown in Fig 2, there is a positive correlationship between hit fre-

quence and median docking score. Because average score is easily influenced by some discrete

Table 1. The proteins with top-10 hit frequence in 5000 reverse docking cases.

Dock Glide Vina

Protein Hit Frequence Protein Hit Frequence Protein Hit Frequence

1zw5 1607 3max 823 1d3g 1267

1udt 937 1s3b 395 1e66 1102

1qw6 438 1q4x 342 3chp 607

3eqh 391 1d3g 326 1qw6 460

3hmm 198 2hv5 316 1s3b 402

830c 142 2hzi 266 2hv5 291

3l3m 130 1mv9 261 2hzi 112

2oi0 121 2p2i 226 1q4x 110

3frj 94 3chp 211 3lan 97

1s3b 67 1e66 209 1udt 79

doi:10.1371/journal.pone.0171433.t001

Fig 2. The relationship between median docking score and hit frequence of proteins. The scatter diagrams of (a) median Dock score, (b)

median Glide score, (c) median Vina score of 100 proteins with their hit frequence.

doi:10.1371/journal.pone.0171433.g002

The scoring bias in reverse docking
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points far from average level, the median score is used here instead of average score to repre-

sent the mean level of docking score of each protein. The proteins with high hit frequence are

scored higher to most ligands than those with low hit frequence, which is regarded as scoring

bias in reverse docking. These frequency hits would interfere in the recognition of true targets,

resulting in lots of false positives in target fishing.

Analysis of protein pocket properties

To find out the protein pocket properties that cause the scoring bias to certain proteins, the

proteins were devided into three classes: interference proteins, middle proteins and underrated

proteins. And the properties of these three classes of protein pockets were analyzed (The prop-

erties of all protein pockets are listed in the Supporting Information S2 Table). According to

the classification predictions of interference proteins and underrated proteins by decision

trees (Fig 3), we found that in the reverse docking by DOCK, these two classes of proteins

could be devided easily by median contact area with a high accuracy of 84.0%. And in the

reverse docking by Glide, the two classes of proteins could be devided by phobic with the accu-

racy of 86.0%. In the reverse docking by AutoDock Vina, the two classes of proteins could be

devided by median contact area and exposure with the accuracy of 87.2%. As is shown, median

contact area is the root node of decision trees in the reverse docking by both DOCK and Auto-

Dock Vina, which illustrates that median contact area plays a key role in the distinguishing

of interference proteins and underrated proteins. We can see that the proteins with a large

median contact area are likely to be interference proteins while those with a small median con-

tact area are probably underrated proteins. As we know, median contact area reflects the size

and shape of protein pockets. In other words, the proteins with the size and shape that can eas-

ily form large contact area with ligands are probably interference proteins in reverse docking.

And in the reverse docking by AutoDock Vina, the exposure of protein pockets also helps to

distinguish these two classes of proteins. If median contact area is greater than 345.5, the pro-

teins with exposure greater than 0.424 are probably interference proteins and those with expo-

sure smaller than 0.424 are probably underrated proteins, which means the degree of exposure

involves in the producing of scoring bias. In the reverse docking by Glide, phobic (represent-

ing hydrophobicity) is the root node of decision trees, illustrating that phobic is the main

Fig 3. The property analysis by decision trees prediction. The decision trees analysis of interference proteins and

underrated proteins in the reverse docking by (a) DOCK, (b) Glide, (c) AutoDock Vina.

doi:10.1371/journal.pone.0171433.g003

The scoring bias in reverse docking
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property to cause scoring bias of Glide. If the proteins have pockets with high phobic, they are

likely to be interference proteins in the reverse docking by Glide.

We futher analyzed the correlationship between median docking score and the properties

of protein pockets. It is shown that median contact area and volume have strong negative cor-

relationship with median docking score in the reverse docking by DOCK, which are -0.73 and

-0.50, respectively (Figs 4A, 5A and 5B). And in the reverse docking by Glide, phobic and

median contact area have strong negative correlationship with median docking score, which

are -0.56 and -0.52 (Figs 4B, 5C and 5D). In the reverse docking by AutoDock Vina, median

contact area and size have strong negative correlationship with median docking score, which

are -0.74 and -0.42 (Figs 4C, 5E and 5F). Moreover, Fig 5A, 5C and 5E show that the proteins

with extremely low or high docking score are almost distributed on the corresponding regions

with small or large contact area, which means contact area could be the main reason causing

scoring bias in reverse docking. The distribution of pocket properties which have strong

Fig 4. The correlationship between median docking score and the properties of protein pockets. The reverse docking by (a) DOCK; (b) Glide;

(c) AutoDock Vina.

doi:10.1371/journal.pone.0171433.g004

Fig 5. The relationship between median docking score and the highly relevant protein pocket properties of three classes of

proteins. The scatter diagram of median DOCK score with (a) median contact area, (b) volume of protein pockets. The scatter diagram

of median Glide score with (c) median contact area, (d) phobic of protein pockets. The scatter diagram of median Vina score with (e)

median contact area, (f) size of protein pockets. The fitting lines of scatter points are shown in the diagram.

doi:10.1371/journal.pone.0171433.g005

The scoring bias in reverse docking
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correlationship with median docking score are shown in Fig 6. We can see that the median

contact area distribution of interference proteins is larger than that of middle proteins and

underrated proteins on the whole in the reverse docking by these three programs. Besides, the

overall distribution of volume in the reverse docking by DOCK, the overall distribution of

phobic in the reverse docking by Glide and the overall distribution of size in the reverse dock-

ing by AutoDock Vina also have some differences between these three classes of proteins that

the interference proteins have much bigger volume, phobic and size than middle and under-

rated proteins on the whole. As is known, contact area has positive correlationship with vol-

ume and size. Thus, it is thought that the proteins with large pocket which can form large

contact area with ligands would be likely to be scored high and become interference proteins.

In addition, the scoring function of Glide also has scoring bias to the proteins with strong-

hydrophobicity pocket. In conclusion, the size, shape and hydrophobicity of protein pockets

are the possible properties that would cause “interprotein scoring noise” in reverse docking.

Reverse docking score normalization

Score normalization strategy. We have observed the scoring bias of three docking pro-

grams in reverse docking. To eliminate this scoring bias, data normalization method was uti-

lized to process the reverse docking score. In statistics, data normalization can transform the

data with different units or dimensions to the canonical form with direct comparability. Here

we used the normalization method to transform the incomparable docking score of different

proteins to the normalized score that was directly comparable between proteins, and opti-

mized the protein ranking in the reverse docking. The normalization procedure was imple-

mented by the median docking score and the standard deviation (SD) of each protein as the

following:

mj ¼ SiðSijÞ=N i ¼ 1; 2; . . . ;N ð5Þ

mj ¼ Mediani ðSijÞ i ¼ 1; 2; 3; . . . ;N ð6Þ

Fig 6. The probability density curves for the highly relevant protein pocket properties of three classes of proteins. The distribution of

(a) median contact area, (b) volume of three classes of protein pockets in the reverse docking by DOCK. The distribution of (c) median contact

area, (d) phobic of three classes of protein pockets in the reverse docking by Glide. The distribution of (e) median contact area, (f) size of three

classes of protein pockets in the reverse docking by AutoDock Vina.

doi:10.1371/journal.pone.0171433.g006
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ðsjÞ
2
¼ SiðSij � mjÞ

2
=ðN � 1Þ i ¼ 1; 2; . . . ;N ð7Þ

Sij
0 ¼ ðSij � mjÞ=sj ð8Þ

Where i, j is the index of each ligand and each protein; N is the sum of ligands; μj, mj, and σj is

the average docking score, the median docking score, and the SD value of each protein; Sij and

Sij0 is the raw docking score and the normalized docking score of each protein with each

ligand.

Score normalizaiton results of benchmark dataset. The docking score of benchmark

dataset molecules to 100 proteins were normalized to eliminate the scoring bias. Fig 7 shows

the normalization results for benchmark dataset. We can see that the average rank of each

Fig 7. Analysis of score normalization results for benchmark dataset. (a) The average rank, (b) the hit

frequence of 100 proteins in 5000 reverse docking cases.

doi:10.1371/journal.pone.0171433.g007
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protein is more balanced (Fig 7A), slightly fluctuating around the ideal value of 50 (the ranges

of average rank in the reverse docking by DOCK, Glide, and AutoDock Vina are 41 to 53, 42

to 53, and 35 to 54, respectively). It is thought that the interprotein scoring noises were elimi-

nated by the score normalization method. Thus the normalized score would be fairer to each

protein and could be directly comparable. It is shown that the hit frequence of each protein is

more balanced as well (Fig 7B). The SD values of hit frequences for 100 proteins were calcu-

lated to reflect the discrete degree. The SD values before score normalization for DOCK,

Glide, and AutoDock Vina are 192, 114, and 193 while they are 60, 70, and 85 after score nor-

malization, which means that the differences of the overall docking score of 100 proteins

declined. And the highest hit frequences for DOCK, Glide, and AutoDock Vina are 334, 602,

and 518, respectively, which are significantly lower than those before score normalization. It

means that the interference degree of the interference proteins is reduced. In other words, the

score normalization may help to decrease the false positives (namely interference proteins) in

reverse docking.

After score normalization, there are still some interference proteins with relative high hit

frequence. The proteins were reclassified into three classes according to the hit frequence after

score normalization. And the previous high-correlationship properties were further analyzed.

In Fig 8, we can see that three classes of proteins have similar distributions of properties for

DOCK, Glide, and AutoDock Vina. The density curves of underrated proteins fluctuate

greatly, for there are few underrated proteins for DOCK. Especially, there is none underrated

proteins in the reverse docking by Glide and AutoDock Vina after score normalization. Thus,

we can assume that the interprotein scoring noises caused by the properties of protein pockets

were basically eliminated. Although there are still interference proteins after score normaliza-

tion, it is not caused by the scoring bias to these protein pocket properties.

Validation with Astex Diverse Set

Astex Diverse Set refinement. Astex Diverse Set was utilized to validate the effect of score

normalization in the reverse docking by DOCK, Glide, and AutoDock Vina. There are 85

Fig 8. The probability density curves for the properties of three classes of protein pockets after score normalization. The distribution

of (a) median contact area, (b) volume of three classes of protein pockets after score normalization for DOCK. The distribution of (c) median

contact area, (d) phobic of three classes of protein pockets after score normalization for Glide. The distribution of (e) median contact area, (f)

size of three classes of protein pockets after score normalization for AutoDock Vina.

doi:10.1371/journal.pone.0171433.g008
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diverse protein-ligand complexes in Astex Diverse Set. The conformation searching ability

and scoring function of current docking programs are not precise enough to reproduce the

crystal conformation of all ligands. To focus on the scoring effects of docking programs, we

only used the complexes with the root mean square deviation (RMSD) between docking and

crystal conformation of ligand smaller than 2 Å to study the target prediction effect in the

reverse docking by three docking programs. Finally, the refined Astex Diverse Set for DOCK

includes 26 complexes, while the refined Astex Diverse Set for Glide and AutoDock Vina

includes 65 and 45 complexes.

Target prediction effects in reverse docking. In each reverse docking case, every ligand

in the refined Astex Diverse Set was docked to all the proteins in the refined Astex Diverse Set.

Each ligand was taken as a probe to look for the matched target protein. The reverse docking

of each ligand, namely cross docking, resulted in the scoring matrix of 26 × 26, 65 ×65 and

45 × 45. The protein with the best docking score was predicted as the target of probe molecule.

If there is experimental evidence proving the prediction, the prediction of this reverse docking

case is true. As is known, the Astex Diverse Set was built to ensure the greatest diversity of pro-

teins with extremely low similarity between protein sequences. Thus, the ligands in Astex

Diverse Set would be unlikely to bind with other non-cocrystallized proteins due to the simi-

larity of protein pockets. Here we regard the cocrystallized protein as the only target of its

ligand in the reverse docking. We obtained the target prediction accuracy of DOCK, Glide and

AutoDock Vina, namely the percentage of truely predicted targets, which are 30.8%, 38.5%

and 33.3%, respectively (Table 2). It shows that the reverse docking by current popular docking

programs has a relatively low success rate.

The score normalization method was utilized to standardize the docking score of the

refined Astex Diverse Set, aiming at eliminating the scoring bias in the reverse docking. The

median docking score and the SD value of each protein with all 85 ligands were used in the

score normalization. The proteins in each reverse docking case were reranked according to the

normalized score. After score normalization, we retrieved the target prediction accuracy of

DOCK, Glide and AutoDock Vina which are 23.1%, 60.0% and 40.0%, respectively (Table 2).

The target prediction accuracy of Glide significantly increases by 21.5% (14 cases) after score

normalization. To extend the restriction of being predicted as target, we regarded the top-5

scored proteins in each reverse docking case as the predicted targets. And the results of target

prediction before and after the score normalization are shown in Table 2, which demonstrates

the same effect of score normalization. As is seen in Table 2 and Fig 9, the ranking of most

cocrystallized proteins has moved up a lot with 33 cocrystallized proteins moving up and 7

cocrystallized proteins dropping in 65 reverse docking cases for Glide (The ranking and

Table 2. The target prediction results in the reverse docking by DOCK, Glide and AutoDock Vina.

Docking

software

Correct cases with raw

docking score

Accuracy with raw

docking score

Correct cases with normalized

docking score

Accuracy with normalized

docking score

DOCKa 8 30.8% 6 23.1%

DOCKb 18 69.2% 18 69.2%

Glidea 25 38.5% 39 60.0%

Glideb 41 63.1% 55 84.6%

Vinaa 15 33.3% 18 40.0%

Vinab 31 68.9% 33 73.3%

a The protein which ranks first among all proteins is predicted as the target of a ligand.
b The proteins which ranks top-5 among all proteins are predicted as the targets of a ligand.

doi:10.1371/journal.pone.0171433.t002
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Fig 9. Analysis of the rank difference of cocrystallized proteins before and after the score

normalization of the refined Astex Diverse Set. The rank difference of cocrystallized proteins for (a)

DOCK, (b) Glide, and (c) AutoDock Vina.

doi:10.1371/journal.pone.0171433.g009
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docking score of all cocrystallized proteins before and after score normalization for three dock-

ing programs is listed in the Supporting Information S3 Table). This demonstrates that score

normalization is effective to improve the target prediction accuracy in the reverse docking by

Glide. However, the target prediction accuracy of DOCK decreases a little after score normali-

zation with 9 cocrystallized proteins moving up and 11 cocrystallized proteins dropping in 26

reverse docking cases. And the target prediction accuracy of AutoDock Vina only increases

slightly after score normalization with 15 cocrystallized proteins moving up and 21 cocrystal-

lized proteins dropping in 45 reverse docking cases. Thus, the score normalization method has

little effect on the improvement of target prediction accuracy of DOCK and AutoDock Vina.

We suppose that DOCK and AutoDock Vina may have some difficulty in prioritizing the

active ligands from inactive ligands of some proteins. Because the score normalization strategy

here just aims to decrease the scoring bias to some proteins in reverse docking, it won’t be

effective if the docking program couldn’t prioritize the active ligands accurately in the general

docking.

Proteins classification analysis. The proteins of the refined Astex Diverse Set were classi-

fied into four classes. The first class of proteins are those which have been truly predicted as

the target of cocrystallized ligand and ever been falsely predicted as the target of other non-

cocrystallized ligand. The second class of proteins are those which have not been truly pre-

dicted as the target of cocrystallized ligand but ever been falsely predicted as the target of other

non-cocrystallized ligand. The third class of proteins are those which have been truly predicted

as the target of cocrystallized ligand but never been falsely predicted as the target of other non-

cocrystallized ligand. The fourth class of proteins are those which have never been predicted as

the target of any ligand. The first and second classes of proteins can be regarded as the interfer-

ence proteins, because these two classes of proteins would both interfere the prediction of true

targets. The average rank of four classes of proteins before and after score normalization was

analyzed in Fig 10. We can see that the median average rank gradually increases in these four

classes of proteins before score normalization, which means that the interference proteins

overall have better average rank than other proteins. Based on the previous results, it is known

that the docking programs have scoring bias to these interference proteins. And after score

normalization, the median average ranks of four classes of proteins are almost at the same

level, which means the interference proteins are not caused by the scoring bias to specific pro-

teins. Thus, scoring normalization could eliminate the scoring bias induced by the differences

of pocket properties, resulting in the fairer docking score of each protein. Though there are

still some interference proteins after scoring normalization, it might be caused by other

Fig 10. Analysis of the average ranks of four classes of proteins before and after the score normalization of the refined Astex Diverse Set. The

boxplot of the average ranks for (a) DOCK, (b) Glide and (c) AutoDock Vina.

doi:10.1371/journal.pone.0171433.g010
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scoring defects, such as the scoring bias to some specific protein-ligand complexes or interac-

tion modes. In conclusion, score normalization could siginificantly increase the accuracy of

the reverse docking by Glide while there is no obvious effect on DOCK and AutoDock Vina. It

is supposed that DOCK and AutoDock Vina may have some difficulty in prioritizing the active

ligands from inactive ligands of some proteins in general docking.

Conclusions

In this work we carried out a large-scale reverse docking with 100 proteins and 5000 molecules

using three popular docking programs: DOCK, Glide, and AutoDock Vina. From the reverse

docking results, we have observed the scoring bias to specific proteins, namely interference

proteins which have achieved high hit frequence. Then we analyzed the difference of pocket

properties between interference proteins and the others. And we found that the interference

proteins had larger contact area (related to the size and the shape of protein pockets) with

ligands (for all three docking programs) or higher hydrophobicity (for Glide), which could be

the possible causes of scoring bias. To eliminate the scoring bias in the reverse docking, we

applied the score normalization method to transform the raw docking score into the more

comparable score between different proteins. The score normalization of benchmark dataset

has achieved quite obvious effect on the eliminating of scoring bias. The overall docking score

of different proteins is more balanced after score normalization, which was followed by the val-

idation of actual cases with Astex Diverse Set. The score normalization method has signifi-

cantly increased the accuracy of reverse docking by 21.5% for Glide, while there were no

obvious effect on the elevating of accuracy for DOCK (-7.7%) and AutoDock Vina (6.7%). We

believe that these three docking programs all have scoring bias to specific proteins in reverse

docking, and this scoring bias could be eliminated through score normalization. However,

there might be other scoring defects in DOCK and AutoDock Vina, making it hard to priori-

tize the active ligands from inactive ligands in general docking of some proteins. Thus, it is not

enough to only eliminate the scoring bias to specific proteins. The scoring functions of DOCK

and AutoDock Vina need to be further optimized to improve the accuracy of reverse docking.

Moreover, for further research the properties of protein pockets which could cause scoring

bias in reverse docking could be utilized to optimize the scoring functions of docking pro-

grams, such as introducing the corresponding correction terms or adjusting the weight of dif-

ferent scoring terms. Therefore, there is still lots of work to improve the success rate of reverse

docking for target fishing.
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