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Abstract

Noninvasive prenatal testing (NIPT) using whole genome and targeted sequencing has

become increasingly accepted for clinical detection of Trisomy 21 and sex chromosome

aneuploidies. Few studies have shown that sub-chromosomal deletions or duplications

associated with genetic syndromes can also be detected in the fetus noninvasively. There

are still limitations on these methodologies such as the detection of variants of unknown clin-

ical significance, high number of false positives, and difficulties to detect small aberrations.

We utilized a recently developed targeted sequencing approach for the development of a

NIPT assay, for large and small size deletions/duplications, which overcomes these existing

limitations. Artificial pregnancies with microdeletion/microduplication syndromes were cre-

ated by spiking DNA from affected samples into cell free DNA (cfDNA) from non-pregnant

samples. Unaffected spiked samples and normal pregnancies were used as controls. Tar-

get Capture Sequences (TACS) for seven syndromes were designed and utilized for tar-

geted capture enrichment followed by sequencing. Data was analyzed using a statistical

pipeline to identify deletions or duplications on targeted regions. Following the assay devel-

opment a proof of concept study using 33 normal pregnancies, 21 artificial affected and 17

artificial unaffected pregnancies was carried out to test the sensitivity and specificity of the

assay. All 21 abnormal spiked-in samples were correctly classified as subchromosomal

aneuploidies while the 33 normal pregnancies or 17 normal spiked-in samples resulted in a

false positive result. We have developed an NIPT assay for the detection of sub-chromo-

somal deletions and duplications using the targeted capture enrichment technology. This

assay demonstrates high accuracy, high read depth of the genomic region of interest, and

can identify deletions/duplications as small as 0.5 Mb. NIPT of fetal microdeletion/microdu-

plication syndromes can be of enormous benefit in the management of pregnancies at risk

both for prospective parents and health care providers.
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Introduction

Large and small size sub-chromosomal deletions and duplications are associated with genetic

disorders and syndromes [1]. This group of clinically recognizable disorders is characterized

by diverse phenotypes including intellectual disability (ID), autism and other neurodevelop-

mental disorders (NDD) [2]. Chromosomal abnormalities can result from genomic structural

changes, such as copy number changes, leading to abnormal gene dosage with a dramatic

impact on gene expression and phenotype [1].

Currently prenatal diagnosis of large sub-chromosomal deletions and duplications relies on

invasive testing of fetal genetic material through chorionic villus sampling (CVS) or amniocen-

tesis using karyotyping as the preferred method of analysis [3]. The evolution of whole genome

microarray technologies has also enabled the detection of smaller pathogenic genomic rear-

rangements, which cannot be detected by conventional karyotyping [4–6]. However, invasive

prenatal testing entails a modest, but significant risk of miscarriage of about 0.1–0.2% [7]. Pre-

natal screening, can now identify about 95% of pregnancies with Trisomy 21 [8]. Despite the

fact that detection rates using the first-trimester combined test are relatively high for chromo-

somal aneuploidies, microdeletion and microduplication syndromes cannot be easily detected

early in pregnancy [9]. Only certain ultrasound findings, such as large nuchal translucency

(NT), and fetal cardiac defects are associated with increased risk of such conditions [10, 11].

The majority of clinically relevant deletions and duplications occur de novo and their com-

bined incidence is high in the general population [6]. The most common microdeletion is

22q11.2 deletion syndrome also known as DiGeorge syndrome, with an incidence of 1 in 992

pregnancies in the low-risk population [12]. This incidence rate is higher than both Edwards

(trisomy 18) and Patau (trisomy 13) syndromes’ [13]. Noninvasive prenatal screening and

early detection of these sub-chromosomal imbalances is important, as it will help identify

high risk pregnancies and offer the possibility of a confirmatory invasive diagnostic test after

counseling. Such knowledge can offer better clinical management during pregnancy and after

birth, where early intervention can potentially improve the quality of life of the newborn

[14, 15].

With the recent discovery of cell-free fetal DNA (cffDNA) in maternal circulation, new pos-

sibilities of noninvasive prenatal testing (NIPT) became available. In an important study, Lun

et al., showed that during the first trimester of pregnancy approximately 10% cffDNA is pres-

ent in maternal plasma [16]. Sequencing of cffDNA can be used to identify the genetic and

mutational profile of the fetus [17]. Cell free DNA (cfDNA) testing using whole genome,

and targeted sequencing technologies [18, 19] and epigenetic based approaches [20, 21] has

become increasingly accepted for routine clinical detection of Trisomy 21, single gene disor-

ders, and X-linked conditions [22–26]. Since 2011, the American College of Obstetricians and

Gynecologists and the Society for Maternal-Fetal Medicine recommends cfDNA testing as a

highly accurate screening option for women at increased risk of fetal aneuploidy [27].

Several groups utilized whole genome sequencing of maternal plasma DNA and showed the

high potential of this technology to detect fetal microdeletion syndromes [28–30]. Transloca-

tions and microduplications have also been detected across the fetal genome using next gener-

ation sequencing (NGS) [31]. More recently, a study published by Zhao et al., using low-

coverage whole genome sequencing reported the detection of deletions ranging from 3 to

40Mb [32]. Undoubtedly whole genome sequencing based NIPT methodologies can reveal

deletions or duplications with unknown clinical significance and a high number of false posi-

tive results, mainly due to the very low read depth of whole genome sequencing and the non-

targeted nature of the test [33]. Furthermore, targeted sequencing based NIPT approaches

have used SNPs for the detection of large deletions that underlie common syndromes [34]. A
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recent clinical evaluation study of the proposed SNP-based NIPT assay for 22q11.2 deletion

syndrome reported high false positive rates suggesting the need of a reflex test (i.e. deep

sequencing) in high-risk samples [35].

There is great need for the development of an accurate non-invasive prenatal test that can

identify sub-chromosomal deletions and duplications. In this study we have developed and

assessed a highly accurate and cost effective NIPT assay for the detection of sub-chromosomal

small and large size deletions and duplications using targeted capture enrichment technology.

This assay exhibits very high read depth in genomic regions of interest and allows the robust

and accurate detection of sub-chromosomal aberrations as small as 0.5Mb in size.

Materials and methods

Ethics statement

The study has been approved by the Cyprus National Bioethics Committee. All samples were

collected anonymously following written informed consent.

Sample collection and cfDNA extraction

Peripheral venous blood (8mL), in EDTA-containing tubes, from women with singleton euploid

pregnancies and samples from non-pregnant women were obtained from the Translation

Genetics Team biobank of the Cyprus Institute of Neurology and Genetics. Plasma samples

were obtained from pregnancies between 11th-14th weeks of gestation, carrying fetuses of either

gender. Within 4 hours after venipuncture, blood samples were subjected to centrifugation at

1,600 X g for 10 min at 4˚C. The separated plasma portion was obtained and was re-centrifuged

at 16,000 X g for 10 min at room temperature. Following this, plasma samples were stored at

-80˚C until further processing. Circulating cfDNA was extracted from 4 mL plasma using the

QIAsymphony SP instrument and the QIAsymphony DSP Virus/Pathogen Midi Kit (Qiagen,

Hilden, Germany) following the manufacturer’s instructions (QIAsymphony DSP Virus/Patho-

gen Midi Kit Handbook). Affected samples were generated using samples from individuals diag-

nosed with Wolf-Hirschhorn, and Potocki-Lupski syndrome (17p11.2 duplication syndrome)

that were obtained from the Coriell Cell Repositories (Camden, NJ). Affected spiked-in samples

were also generated for 1p36 deletion, Smith-Magenis, Miller-Dieker (MDS) 22q11.2 deletion

syndrome and NF1 microdeletion syndromes using DNA samples acquired from the Cyprus

Institute of Neurology and Genetics biobank (Table 1).

Preparation of artificial affected/unaffected plasma samples and fetal

fraction estimation

Due to the low prevalence of detected pregnancies with the syndromes of interest, affected

plasma samples were constructed in vitro. DNA from the affected individual, with known

Table 1. Affected samples used to create artificial plasma pregnancies with deletion or duplication syndromes.

Sample ID Location Identified Method Disorder Type Size (Mb) OMIM (#)

NA23053 arr17p13.1p11.1(11096921–22159777)x3 aCGH Potocki-Lupski Dup 11.06 610883

NA22601 arr4p16.3p15.2(55665–25591051)x1 aCGH Wolf-Hirschhorn Del 25.53 194190

C100 arr1p36.33p36.22(554298–11122093)x1 aCGH 1p36 deletion Del 10.56 607872

C101 arr17p13.3(48569–2002395)x1 aCGH Miller-Dieker Del 1.95 247200

C102 arr22q11.21(18706023–21505380)x1 aCGH 22q11.2 deletion syndrome Del 2.79 188400

C103 arr17p11.2(16704279–20270654)x1 aCGH Smith-Magenis Del 3.56 182290

C104 arr17q11.2(28999864–30374607)x1 aCGH NF1 microdeletion Del 1.37 613675

doi:10.1371/journal.pone.0171319.t001
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deletion or duplication syndrome, was spiked in isolated plasma DNA of non-pregnant

women at concentrations of 20%, 10%, and 5%. Unaffected samples were generated following

the same principle using normal genomic DNA. Before mixing, affected genomic DNA was

sheared using sonication (Diagenode) at an average size of 200bp to simulate cell free fetal

DNA in maternal plasma [36].

The concentration of spiked-in DNA into plasma cfDNA was measured following the prep-

aration of the samples. Real-time PCR was performed using Taqman probes targeting the

DYS14 and beta-globin loci as previously described [37]. A statistical model that utilizes allelic

counts at heterozygous loci in maternal plasma was used for fetal fraction estimation in all 33

normal pregnancy samples in the proof of concept study [23].

Library preparation

We used DNA from artificially affected pregnancies and actual pregnancies to generate librar-

ies for the Illumina NGS platform as described in Mayer and Kircher [38]. Each library was

barcoded using unique adaptor sequences to allow subsequent discrimination after sequenc-

ing. Negative controls were used to monitor potential contamination introduced during the

preparation of samples. Barcodes were added to the samples using Herculase II Fusion Poly-

merase (Agilent Technologies) and were purified using the Qiaquick PCR Purification Kit

(Qiagen, Hilden, Germany) [39].

Design and construction of Target Capture Sequences (TACS)

Target Capture Sequences (TACS) were used to enrich regions of interest from the already pre-

pared Illumina libraries using in solution hybridization. Primers were designed to amplify

unique genomic loci that span the critical region of each syndrome as defined by the DECI-

PHER Database [40]. Additional primers were designed to amplify unique regions on autosomal

chromosomes to be used as a reference for sub-chromosomal deletion/duplication detection

(Table 2). Primers for each target region were designed using Geneious 6.1.8, [41] to yield ampli-

con sizes of 250bp with similar GC% content. Genomic regions that include repetitive elements

were excluded. For the preparation of TACS, polymerase chain reaction was performed using

MyTag polymerase (Bioline, London, UK) followed by purification, as previously described

[23]. TACS were quantified using NanoDrop-ND8000 (Thermo Scientific, Wilmington, DE,

USA) and were pooled equimolarly. The final mix was blunt-ended using the Quick Blunting

kit (New England Biolabs) and was biotinylated by ligating a Bio-T/B adapter. Biotinylated

TACS were purified using the MinElute kit (Qiagen) and were immobilized on streptavidin-

coated magnetic beads (Invitrogen) as described in Maricic et al., [42].

Table 2. Number of TACS designed on critical microdeletion/microduplication regions and on reference chromosomes.

Syndrome/Overlapping Syndrome Chr. Location (GRch37) Critical Region Size* (Mb) No. TACS

1p36 microdeletion Syndrome 1 10001–12840259 12.83 176

Wolf-Hirschhorn Syndrome 4 1569197–2110236 0.54 70

Miller-Dieker Syndrome 17 1–2588909 2.59 138

Smith-Magenis Syndrome/ Potocki-Lupski Syndrome 17 16773072–20222149 3.45 132

NF1 microdeletion Syndrome 17 29107097–30263321 1.4 99

22q11.2 deletion Syndrome (Velocardiofacial, DiGeorge syndrome) 22 19009792–21452445 2.44 140

Total Number of TACS on syndromic regions 755

Total Number of TACS used as Reference Chr1-Chr12 490

* according to DECIPHER Database.

doi:10.1371/journal.pone.0171319.t002
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In solution hybridization enrichment

Each library was mixed with Agilent 2X hybridization buffer (Agilent Santa Clara, CA), Agi-

lent 10X blocking agent (Agilent), blocking oligonucleotides, Cot-1 DNA (Invitrogen) and

salmon sperm DNA (Invitrogen) [23, 42]. The mix was heated to 95˚C for 3 min to separate

the DNA strands and was incubated at 37˚C for 30 min before addition to the biotinylated

TACS. The mixture was then incubated at 65˚C for 48h. After hybridization, unbound DNA

was washed away and captured sequences were eluted by heating as previously described [39].

Enriched sequences were amplified using outer-bound primers and samples were sequenced

on a HiSeq 2500 sequencing platform (Illumina, San Diego, USA).

Bioinformatics analysis

Sequencing reads were aligned to the human genome reference sequence (GRCh37/hg19)

using the BWA-MEM aligner [43]. Initially, we used cutadapt to remove adapter sequences

and performed quality control to the sequences before the alignment using FastQC [44]. Post

alignment, Picard was used to sort the resulting BAM files and remove duplicate reads. Local

realignment and base recalibration was performed using GATK and the read depth of each tar-

get region was retrieved using SAMtools [45, 46].

Statistical testing for classification

Testing for microdeletions/microduplications is equivalent to testing for statistically signifi-

cant differences between the read depth of the TACS in tested region (i.e. the part of the critical

region covered by the TACS) and the read depth of the reference TACS. In the assay develop-

ment part of our study we evaluated the importance of having an increased number of TACS

in the reference region. To this end, we considered two methods that are essentially different

in the number of TACS used in the reference region. In the first method, the reference region

comprised of the TACS designed on the critical regions other than the tested region and on an

additional 490 TACS designed on chromosomes 1–12. In the second method the 490 addi-

tional TACS are excluded thus leaving only 755 TACS (Table 2) in total (for both reference

and test regions). Only the second method, which included 755 TACS, was used in the proof

of concept study. Irrespective of the number of TACS used, a paired t-test was applied between

the read depth of the TACS in the testing region and the median read depth of the TACS in

the reference region. Due to the large number of TACS the corresponding scores from the test

are asymptotically normal and thus can be considered as Z-scores. These scores were further

normalized, both regarding location as well as scale. The former was achieved by removing the

median score across all samples while the latter was achieved by dividing by the empirical stan-

dard deviation of each syndrome. The location normalization was applied on a sequencing run

basis in order to additionally alleviate discrepancies between sequencing runs. The empirical

standard deviation was estimated from the scores of the normal samples in our study. In more

detail, let t1
k,t2

k,..,tn(k)
k denote the t-test statistics obtained by applying the paired t-test in the n

(k) samples of run k. We defined run median, Mk, as the median value of t1
k,t2

k,..,tn(k)
k. The

empirical standard deviation, SDnorm, is calculated as the sample deviation of the t-test statis-

tics that correspond to normal samples (i.e., without subchromosomal aneuploidies) across all

runs. Location normalization refers to the subtraction of Mk from all t-test statistics of run k

and scale normalization refers to the division of all t-test statistics, irrespective of run, by

SDnorm. Thus, the normalized z-score, zi
k, is obtained using the formula zi

k = (ti
k-Mk)/SDnorm.

Raw scores of spiked samples and normal pregnancies are provided in the supporting infor-

mation (S1 Appendix). The threshold was set to -3 for microdeletion testing and 3 for

Targeted NIPT for microdeletion/duplication syndromes
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microduplication testing. After scale normalization, this corresponds to a threshold of 3 stan-

dard deviations.

Results

Optimization of common microdeletions and Potocki-Lupski syndrome

detection using artificial pregnancies

To test the performance of the current targeted capture enrichment approach for detecting

common microdeletions and the Potocki-Lupski syndrome in plasma, we generated artificially

affected plasma samples for each microdeletion or microduplication syndrome. The assay

development of the study was performed using 21 artificially affected plasma samples and 18

artificially unaffected plasma samples. All samples underwent enrichment using a pool of 490

TACS on reference chromosomes (chr1-chr12) and 755 TACS on syndromic regions. In total

37 out of 39 spiked samples were analyzed. Two samples were excluded from analysis due to

low coverage (<10x) (Table 3). Analysis was performed using the two approaches, described

in Statistical Testing for classification, to determine the optimal approach for accurate dele-

tion/duplication detection. The results from the two methods are summarized in Table 3 and

can be seen in the supporting information (S1 and S2 Figs).

In order to confirm the 20%, 10% and 5% simulated fetal fraction of each spiked sample, we

performed qPCR as previously described [37, 47]. The concentration of the spiked-in DNA

was estimated using Y-chromosome sequences. The observed fetal fraction ranged from 4% to

26%.

Analytical proof of concept of fetal microdeletions and Potocki-Lupski

syndrome detection

Following the initial design study for the development of the assay, a blind proof of concept

study was performed to assess the sensitivity and specificity of the assay. A set of affected

spiked samples, and plasma samples from normal pregnancies were used. Twenty one plasma

samples spiked-in with DNA from microdeletions or the Potocki-Lupski duplication syn-

dromes, 17 plasma samples spiked with normal DNA, and 33 normal pregnancy samples were

tested using the Z-score based statistical analysis that included the 755 optimal TACS. Micro-

deletions or the selected duplication syndrome were clearly detected in all abnormal spiked

samples without any false negative events (Fig 1) (Table 4). All 33 samples from normal preg-

nancies and the 17 plasma samples spiked with unaffected DNA were classified as normal for

Table 3. Assay development analysis 1 using 1245 TACS and analysis 2 using 755 TACS.

Assay Development Analysis 1 (TACS = 1245) Assay Development Analysis 2 (TACS = 755)

Syndrome Tested True

Positives

False

Positives

True

Negatives

False

Negatives

True

Positives

False

Positives

True

Negatives

False

Negatives

1p36 deletion 3 0 18 0 3 0 18 0

Wolf-Hirschhorn 2* 0 18 0 2 0 18 0

Miller-Dieker 3 0 18 0 3 0 18 0

Smith-Magenis 3 0 18 0 3 0 18 0

Potocki-Lupski 3 0 18 0 3 0 18 0

NF1-microdeletion 3 0 18 0 3 0 18 0

22q11.2 deletion

syndrome

2* 0 18 0 2 0 18 0

* Two spiked samples (10% of Wolf-Hirschhorn and 10% of 22q11.2 deletion syndromes) were excluded from analysis due to low sequencing coverage.

doi:10.1371/journal.pone.0171319.t003
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all syndromes (Fig 1). Fetal fraction estimation for the 33 normal pregnancy samples, ranged

from 2% to 22.5% with mean fetal fraction of 11.6% (std.dev = 0.05). All fetal fraction estimates

can be found in supplementary table (S1 Table).

Discussion

Non-invasive prenatal testing has focused mainly on whole chromosome aneuploidies and has

advanced rapidly in clinical practice. Recent microarray studies showed that clinically relevant

deletions or duplications are found in 1.7% of pregnancies with clinical indications for prena-

tal diagnosis [6]. Whole genome sequencing and targeted sequencing of cffDNA found in

maternal circulation has enabled the detection of fetal sub-chromosomal events avoiding the

risk of miscarriage [28, 29, 32].

However, there are still limitations when using the current methodologies to detect fetal

specific sub-chromosomal deletions and duplications. A major limitation of all the current

methodologies is their inability to detect small-size pathogenic aberrations [32, 33]. Whole

Fig 1. Detection of common microdeletions and Potocki-Lupksi syndrome using affected and unaffected spiked samples and normal

pregnancy samples. Plots display the Z-scores used for status classification. In all plots, red dots indicate affected samples and black dots

unaffected samples. The threshold (grey line) was set to 3 standard deviations after score normalization and was negative for microdeletions and

positive for microduplications. In all syndromes, affected samples passed the threshold, while unaffected did not, resulting in 100% sensitivity and

specificity. PL: normal maternal plasma N: normal spiked sample 1p36: 1p36 deletion spiked sample NF1: NF1 microdeletion spiked sample

POT: Potocki-Lupski spiked sample SMS: Smith-Magenis spiked sample MDS: Miller-Dieker spiked sample WHS: Wolf-Hirschhorn spiked

sample 22q11: 22q11.2 deletion syndrome spiked sample.

doi:10.1371/journal.pone.0171319.g001
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genome approaches require high read depth to achieve statistical significance in their positive

calls. This increases the cost substantially and renders such approaches inappropriate for clini-

cal implementation [31]. Independent studies of the commercially available NIPT assays

revealed a high number of false positive results, and ambiguous interpretation of positive

results due to the identification of variants of unknown clinical significance [48]. Recently, a

novel targeted capture enrichment assay has been developed and has been validated for the

detection of fetal chromosomal aneuploidies [23]. In the present study, we demonstrated that

this methodology could be adapted to accurately detect small and large size sub-chromosomal

fetal deletions/duplications using maternal plasma.

A panel that includes 1p36 deletion, 22q11.2 deletion, Smith-Magenis, Potocki-Lupski,

Miller-Dieker, NF1 microdeletion and Wolf-Hirschhorn syndromes was designed and tested.

The study exhibited highly accurate detection of all 6 common microdeletions and Potocki-

Lupski syndrome using affected and unaffected samples constructed artificially, as well as

cfDNA samples from normal pregnancies. The assay is characterized by very high read depth,

which results in highly accurate deletion/duplication detection. It avoids CNVs of unknown

clinical significance and has the ability to identify deletions or duplications in the fetus smaller

than 1Mb in size.

As previously mentioned, one of the main limitations of existing NIPT methods is the lack

of sensitivity for detecting small size sub-chromosomal events [49]. Wapner et al., reported the

detection of deletions associated with five common syndromes using informative SNPs, how-

ever all syndromes were caused by large deletions [34]. Current NIPT approaches report high

accuracy for detecting deletions/duplications larger than 5Mb while detection rates fall dra-

matically for aberrations which are smaller than 5Mb [30, 33, 48]. The majority of deletions/

duplications in most syndromes are smaller than 5Mb. According to published data, ~96% of

affected individuals with 22q11.2 deletion syndrome have a defined 1.5-3Mb deletion [50]. To

overcome one of the major testing limitations for microdeletion syndromes, we targeted small

size deletions (Table 2). In the case of Wolf-Hirschhorn syndrome, the sample obtained had a

25Mb deletion, encompassing the syndrome’s 0.5Mb critical region. As such, TACS were

designed to target specifically the 0.5Mb critical region, hence, for the purpose of this study this

was the size of the microdeletion under investigation. Based on the results obtained, we have

accurately detected the aforementioned aberration in all affected samples, therefore, it can be

concluded that the assay allows the robust and accurate detection of chromosomal aberrations

as small as 0.5Mb in size. The main factor that impacts the detection of sub-chromosomal

imbalances in our assay is the size and the genomic architecture of the targeted region. TACS

were designed to avoid GC rich regions that can have adverse effects during enrichment and to

avoid repetitive elements that can consume large amounts of sequencing output [32, 51].

Using the same approach we have successfully detected a sub-chromosomal duplication

associated with Potocki-Lupski syndrome in all spiked-in samples. To our knowledge this is

Table 4. Detection rate and false positive rate for microdeletion and microduplication of artificially affected samples.

Syndrome Tested True Positives False Positives True Negatives False Negatives

1p36 deletion 3 0 50 0

Wolf-Hirschhorn 3 0 50 0

Miller-Dieker 3 0 50 0

Smith-Magenis 3 0 50 0

Potocki-Lupski 3 0 50 0

NF1- microdeletion 3 0 50 0

22q11.2 deletion syndrome 3 0 50 0

doi:10.1371/journal.pone.0171319.t004

Targeted NIPT for microdeletion/duplication syndromes
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the first study in which detection of microduplication syndrome using a targeted NGS

approach is reported. According to DECIPHER there are 10 known duplication syndromes

including the 22q11.2 duplication syndrome and the 1q21.1 recurrent microduplication syn-

drome associated with intellectual disability and dysmorphic features [40]. In order to expand

the panel to enable the detection of other microduplications, additional TACS can be designed

and incorporated in the pool of TACS.

Fetal fraction estimation in maternal plasma is a very critical parameter, which is associated

with the accuracy of NIPT [52, 53]. We have incorporated in our NIPT assay a previously

developed algorithm that accurately estimates fetal fraction in both male and female samples.

The mean fetal fraction of all maternal plasma samples was 12% and is in agreement with pre-

viously published data from pregnancies at 11–13 weeks of gestation [54]. The use of accurate

fetal fraction estimation enables the identification of pregnancies with low fetal fraction. These

low fetal fraction samples should be excluded from NIPT analysis to minimize the possibility

of false negative results [52]. In our cohort of artificially affected plasma samples, the underly-

ing microdeletions and microduplications were identified in all samples. As expected, the clas-

sification power increases as fetal fraction increases, resulting in higher separation between

normal and abnormal samples (Fig 1). We observed robust detection of microdeletion/micro-

duplication in the 20%, 10%, and 5%ff samples, suggesting that affected fetuses can be identi-

fied as early as in the first trimester of gestation. The assay development and proof of concept

of this methodology was performed using plasma samples from normal pregnancies and serial

dilutions of affected and unaffected DNA due to the lack of maternal plasma samples from

affected pregnancies. We recognize that a validation study is needed using a sufficient number

of high-risk and affected maternal samples to accumulate more data and thoroughly assess the

performance of our method.

Since pathogenic sub-chromosomal deletions and duplications occur de-novo, it is sug-

gested to expand the use of cfDNA testing for microdeletion/microduplication syndromes

from high-risk pregnancies to the general pregnancy population [15]. This would require care-

ful and thorough counseling before testing, and a comprehensive evaluation of all ethical and

socioeconomic aspects. Parental counseling should include the frequency of each syndrome,

the phenotypic consequences, and a thorough explanation of the wide phenotypic heterogene-

ity of each condition, as well as the importance of careful diagnostic follow up [55]. It should

be emphasized that women with a high risk result after NIPT should undergo diagnostic pre-

natal and postnatal testing with high resolution methods to determine the origin and precise

size of the genomic alteration.

Conclusions

We have developed and assessed an accurate and cost-effective assay for the NIPT of sub-chro-

mosomal small and large size deletions and duplications using targeted capture enrichment

technology. The use of TACS on selected syndromic regions offers high multiplex capabilities

reducing the sequencing cost per base for each sample. In addition this approach requires less

time for bioinformatics analysis since it is limited to a specific number of genomic regions.

This assay exhibited very high accuracy, resulting from the inherently very high read depth of

the targeted microdeletion/microduplication genomic regions. Due to its targeted nature, the

assay avoids the detection of CNVs of unknown clinical significance and enables the detection

of deletions or duplications as small as 0.5Mb in size. The analytical performance of the assay

was successfully evaluated using cfDNA samples from normal pregnancies and serial dilutions

of abnormal DNA in plasma. These results indicate that detection of small and large size dele-

tions and duplications is feasible. Additional validations with prospective and retrospective
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studies using affected plasma pregnancies should be performed to obtain diagnostic sensitivity

and specificity rates. Early stage noninvasive identification of microdeletion and microduplica-

tion syndromes is clinically important as it empowers prospective parents to make informed

decisions and enables health professionals to offer optimal pregnancy management, and post-

natal interventions with long term improvements in the health of the newborn.
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