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Abstract

The Turing instability in the reaction-diffusion system is a widely recognized mechanism of

the morphogen gradient self-organization during the embryonic development. One of the

essential conditions for such self-organization is sharp difference in the diffusion rates of the

reacting substances (morphogens). In classical models this condition is satisfied only for

significantly different values of diffusion coefficients which cannot hold for morphogens of

similar molecular size. One of the most realistic explanations of the difference in diffusion

rate is the difference between adsorption of morphogens to the extracellular matrix (ECM).

Basing on this assumption we develop a novel mathematical model and demonstrate its

effectiveness in describing several well-known examples of biological patterning. Our model

consisting of three reaction-diffusion equations has the Turing-type instability and includes

two elements with equal diffusivity and immobile binding sites as the third reaction sub-

stance. The model is an extension of the classical Gierer-Meinhardt two-components model

and can be reduced to it under certain conditions. Incorporation of ECM in the model system

allows us to validate the model for available experimental parameters. According to our

model introduction of binding sites gradient, which is frequently observed in embryonic tis-

sues, allows one to generate more types of different spatial patterns than can be obtained

with two-components models. Thus, besides providing an essential condition for the Turing

instability for the system of morphogen with close values of the diffusion coefficients, the

morphogen adsorption on ECM may be important as a factor that increases the variability of

self-organizing structures.
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Introduction

Nonequilibrium (dissipative) or dynamic self-organization is supposed to play a central role in

the embryonic patterning [1–3]. Such self-organization leads to the formation of large-scale

dynamic structures of different nature that regulates cell differentiation within the developing

embryo [4]. The most generally accepted idea is that special secreted proteins, the morpho-

gens, play critical role in the establishment of these spatial structures. In the simplest case, the

concentration gradients of morphogens organize patterning of the embryo in the way that dif-

ferent threshold concentrations of a given morphogen switch on different sets of genes [5–7].

As a result, a specific spatial pattern of different cell differentiation types is formed along the

morphogen gradient [6].

Self-organizing processes can be described by discrete models based on cellular automata

approach [8] or by continuous models based on reaction-diffusion partial differential equa-

tions (PDE) approach. The latter can describe self-organisation by PDEs that have spatially

non-homogenous solitions. When these solutions are formed spontaneously and remain tem-

porally stable, one says that PDE has ‘Turing instability’. Regardless of specific mechanism,

two conditions are critical for self-organization of the large-scale spatial structures in the ini-

tially homogeneous system [9]. First, there should be nonlinear relationships between sub-

stances responsible for the formation of the pattern. Second, the system must involve at least

two agents and one of them must diffuse slower than the other. The most simple models,

which demonstrate Turing instability, consist of two reaction-diffusion differential equations

and describe the formation of stable gradients of two hypothetical substances called “activator”

and “inhibitor”. These substances have nonlinear interactions with each other and diffuse with

sharply different rates: the activator slowly and the inhibitor fast. One of the most well-known

models of this kind, which was proposed to describe the formation of stable gradients in bio-

logical objects, is the Gierer and Meinhardt model (GM) [7, 10]. The first necessary condition

for the Turing-type self-organization, namely the nonlinear interaction between the inhibitor

and the activator, holds due to the nonlinear response of the gene network encoding the pro-

teins that play roles of the inhibitor and the activator [11, 12]. However, the second condition,

i.e. a sharp difference in the diffusion rates, seems to be difficult to achieve unless diffusing

protein morphogens have great differences in size. Meanwhile, most of the known morpho-

gens have approximately the same size around 20–30 kDa and thus must demonstrate quite

similar rates of free diffusion. Hence, the question of how a sharp difference in the diffusion

rates between the activator and the inhibitor could be achieved in real embryo remains open.

Besides the protein size, a significant factor that may influence the morphogens’ diffusion

within the multicellular embryo is the morphogen’s interaction with the components of the

extracellular matrix (ECM). In particular, a retardation of the diffusion can result from the

adsorption of morphogens on negatively charged ECM components, such as heparan sulfate

proteoglycans (HSPG) [13]. The influence of HSPG on the morphogens’ activity was described

previously [14, 15]. In support of this, we have shown recently that the interaction of secreted

morphogens with HSPG in the intercellular space (IS) of the Xenopus laevis embryos can sig-

nificantly retard the diffusion [16, 17]. As a result, depending on the morphogens’ affinity to

ECM, there may appear greater than an order of magnitude difference in the effective diffusion

rate between different morphogens within IS [16]. To our knowledge, there are no published

works, in which the adsorption of morphogens on HSPG is taken into account when modeling

the process of the embryonic self-organization. In the present work we demonstrate how the

adsorption could be incorporated to the simple two-component model.

We develop a mathematical model of morphogenesis consisting of three reaction-diffusion

equations. Taking as the basis the classical Gierer-Meinhardt model we extend it introducing
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interaction of activator with ECM. Such modification allows us to obtain stable dissipative

structures for morphogens with similar diffusion coefficients. We demonstrate how to apply

our modified model to well known Wnt-DKK hair follicle patterning system identifying addi-

tional physically relevant parameters. Furthermore, in the spectrum of possible patterns pro-

vided in our model appears to be much wider than that of classical two-equation models. For

instance, spots that change size gradually can be easily simulated by this model. In particular,

we demonstrate how our model can describe pear-like shape of the neural anlage on the base

of known adsorption gradient in Xenopus gastrula.

Finally, theoretical analysis of the model allows us to determined conditions, under which

our extended model can be reduced to only two equations, equivalent to those used in the clas-

sical GM model.

Analysis and simulation of reaction-diffusion models

What can we figure out through linear analysis of the Turing-type

models?

The reaction-diffusion system of equations can be qualitatively studied using “linear analysis”

(or “eigenvalue analysis”), that can show whether the Turing-type instability is possible for the

given parameter values and provide important information on the behavior of Turing-type

systems. However, linear analysis is often omitted in recent studies (e.g. [18, 19]). In the cur-

rent work we perform linear analysis of both classical and extended GM models in the corre-

sponding parametric spaces.

To understand the idea of the method let us consider a reaction-diffusion system, that mod-

els dynamic of concentration of some substance c(x, t). Let us also suppose that corresponding

kinetics equations possess a stable stationary point. Then, near the corresponding homoge-

neous steady state (HSS) evolution of the considered concentration is given by the expression:

cðx; tÞ ¼
X1

k¼0

Ck cos ðkxÞe
lðkÞt;

where k are wave numbers and λ(k) are Lyapunov coefficients that reflect temporal instability

of the corresponding wave near HSS. It means that in the complicated space pattern, every

wave evolves independently and its growth rate is controlled by parameter λ, which is different

for different wave numbers. If the stationary pattern is formed as a result of system evolution

then there exists the range of wave numbers ki1,. . .,kin such that Re λ(kij)> 0 for j = 1,. . .,n.

Thus, function {max Re λ(k)} called dispersion curve gives information about existence of

nonuniform stationary patterns and predicts their possible periodicity. The main concept of

the linear analysis of Turing-type systems is summarized in Fig 1. The spectrum of instable

wave numbers is quantized for the reaction volume considered limited. As the homogenous

state should be stable without diffusion, i.e. Re λ(0) < 0, the curve at the figure starts from the

negative half-space. At the right panel of the figure we drew round spots as an example of the

shape of resulting structures, which can not be determined by linear analysis and depends on

many factors including space dimensionality. On the contrary, the possible period of initial

unstable wavelengths does not depend on reactor dimensionality and can be precisely deter-

mined by 1D linear analysis.

In practice the situation is more complicated, as linear analysis has some restrictions.

Firstly, to be rigorous we should write Turing conditions for several λ (number of λ equals

number of equations in the system), so that in the range of instable wavenumbers one λ should

have positive real part and another—negative. Importantly, Turing-type instability (stationary
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inhomogenity) should be distinguished from wave-type instability (fluctuating inhomogenity),

that occurs in three-component system when two λ’s real parts become positive [20], and from

combinations of these instability-types, possible in complex systems [21]. Since these scenarios

are rarely used for modeling biological morphogenesis, we do not consider them in our work.

Second restriction of the linear analysis concerns the period of the stable spatial structure

formed. The system’s behavior depends strongly on the exact form of the nonlinear terms and

on the shape and size of the reaction volume, so the period of the structure can not be deter-

mined percisely, but only as a range, depending on on the initial conditions. The system

behavior strongly depends on the exact form of the nonlinear terms and on the shape and size

of the reaction volume.

Finally, the sufficient conditions for the Turing-type instability are difficult to formulate

accurately for the systems of more than two equations. Detailed description of the analysis in

general form can be found in the recent study [22], however in this work there is no acurate

consideration of the wave-type instability case.

Computational approaches for integrating the reaction-diffusion

equations

Simulation of the dynamic system based on the equations with partial derivatives implies

simultaneous integration over space and time. Computational methods used for numerical

solution of these equations are well known but are rarely mentioned in context of pattern’s for-

mation simulation. Here, in order to fill this gap, we provide the complete description of the

algorithm, as well as the source code based on it.

For a numerical solution the method of splitting with respect to physical processes is used.

The kinetic equations are solved by the Runge-Kutta method, while the diffusion equations

are solved using alternating directions implicit (ADI) method. In case when the kinetic rate

Fig 1. Common shape of the dispersion curve. In the stationary state spatial structures (right pane) have a period which in many cases

can be approximately predicted from the dispersion curve (left pane). Self-exited and damping spatial waves are shown with red and dashed

lines, respectively.

doi:10.1371/journal.pone.0171212.g001
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constants are big (systems 3 and 4 in Fig 8b) the following Rosenbrock stiff scheme is used

instead of Runge-Kutta method:

E � atJ � bt2J2
� �~xnþ1 � ~xn

t
¼~f ~xn þ ct~f ð~xnÞ
� �

;

where J is the Jackobian of the vector-function f and a, b, c are parameters set to 1.077, -0.372,

-0.577 respectively [23, 24].

Two-dimensional diffusion problem was reduced to two one-dimensional problems by

ADI and then was solved using the so-called “flux sweeping” method (see S2 Appendix) [25].

All algorithms are implemented as C++ functions and were run at high performance

machines. All concentration distributions, as well as other plots are built with python using

libraries numpy, scipy andmatplotlib.

Ethics statement and biological illustrative material

Xenopus laevis embryos were obtained by artificial fertilization and staged according to [26].

Synodontis multipunctatus fries were purchased in a pet shop. The whole-mount in situ hybrid-

ization was done as described in [27] with dig-labeled probe synthesized by T3 polymerase

from pCS2-Sox2 (gift of T. Sasai) cut by BamHI.

Animal experiments performed in this study were specifically approved by Shemyakin-

Ovchinnikov Institute of Bioorganic Chemistry (Moscow, Russia) Animal Committee in

accordance with the guidelines and handled in accordance with the Animals (Scientific Proce-

dures) Act 1986 and Helsinki Declaration.

Results

Turing-type instability conditions for the classical Gierer-Meinhardt

model

The classical GM model in its simplest form is formulated as follows [10]:

@u
@t
¼ r

u2

v
� muuþ DuDu;

@v
@t
¼ ru2 � mvv þ DvDv:

ð1Þ

8
>><

>>:

Here u demonstrates autocatalytic behavior and is called “activator”, while v hinders the

activator autocatalysis and is called “inhibitor”. Du, Dv are diffusion coefficients, ρ is produc-

tion rate, μu, μv are degradation rates.

In Fig 2a we indicate the range of wave numbers that can provide formation of stable

homogeneous structures for different values of the inhibitor degradation rate (μv). Red curve

corresponds to the minimal value of μv when the Turing instability does not occur. In the case

of red curve reaction part is unstable (Re λ(0)> 0); this is another type of instablitiy which

does not follow to pattern formation. Increasing μv we obtain a wide range of wave numbers

with positive real parts corresponding to possibility of pattern formation (yellow curve). This

range is narrowing with further increase of μv and finally damps (cyan curve). Thus, the regime

of stable pattern formation in system (1) can be controlled by changing the value of the inhibi-

tor degradation rate. If we then fix all the reaction constants and focus on the diffusion terms

one can notice that variation of the activator diffusivity also affects the possibility of pattern

formation. Indeed, while we observe a wide range of unstable waves for small values of Du (Fig

Morphogene adsorption as a possible Turing instability regulator

PLOS ONE | DOI:10.1371/journal.pone.0171212 February 7, 2017 5 / 22



2b, red curve), increase of its value leads to increase of the pattern periodicity until finally the

Turing instability disappears (Fig 2, blue and cyan curves).

The analytical necessary and sufficient conditions of the Turing instability in system (1) are

relatively simple and have already been formulated in several papers [28, 29]. They have a

form of two inequalities, which link the diffusion and the degradation parameters (see S1.2 for

derivation):

mv > mu;

Dv

Du
>

mv
mu

1

3 � 2
ffiffiffi
2
p :

8
<

:
ð2Þ

Thus, Turing instability in classical GM models arises only for particular range of both dif-

fusion and reaction rates (Fig 2). Furthermore, as it follows from Eq (2) even small difference

between μv and μu implies sixfold difference between the diffusion coefficients. The conven-

tional condition of the Turing-type instability in system (1) is a sharp difference in the diffu-

sion coefficient values: Du<< Dv. However, proteins involved in morphogenesis in embryo

have approximately the same molecular size and thus very close coefficients of free diffusion.

As the result, pattern formation for such system cannot be described with classical GM model.

In the next section we propose an alternative mechanism of pattern formation for the case of

close diffusion coefficients of reactants.

Fig 2. Dispersion curves for various inhibitor degradation rates (a) and for various activator diffusion rates (b) in classical GM

model. Dispersion curves are plotted using formula obtained in Eq (S1.2.6). Following parameters are used in both panels: μu = 1, Dv = 0.1.

In panel (a): Du = 0.001 and μv = 0.5, 5.4, 10.3, 15.3, 20.0 (colored by rainbow from red to cyan). In panel (b): μv = 5 and Du = 0.001, 0.0018,

0.0032, 0.0056, 0.01 (colored in the same way).

doi:10.1371/journal.pone.0171212.g002
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Introduction of the morphogen adsorption into the two-component model

Let us consider a system of two morphogens u and vwith same value of diffusion coefficients:

Du = Dv = D. In order to take into account adsorption of morphogens on ECM we add the fol-

lowing reaction between the activator and the virtual binding centers of HSPG,W:

U þW⇆B

Then, our extension of model (1) can be written as follows:

@u
@t

¼ r
ðbþ uÞ2

v
� muu � k1wuþ k� 1bþ DDu;

@v
@t
¼ rðbþ uÞ2 � mvv þ DDv;

@w
@t

¼ � k1wuþ ðk� 1 þ muÞb:

8
>>>>>>>>><

>>>>>>>>>:

ð3Þ

Here u and v are concentrations of free morphogens playing roles of activator and inhibitor

respectively, w is the concentration of the available binding sites on ECM. Parameters ρ,D and

μu, μv retain their meaning from Eq (1), k1 is the rate of adsorption of activator on ECM and

k−1 is the rate of inverse reaction. b = w0−w is the concentration of morphogen-activator

adsorbed to ECM, where w0 = w(x, 0).

In our model morphogen-activator supports autocatalysis and activates morphogen-inhibi-

tor (v) in both free (u) and adsorbed (b) states. We assume that the rate of degradation of mor-

phogen-activator in adsorbed state as the same as for free activator and equals μu. As a result,

free binding sites appear due to both desorbtion of morphogen (k−1b) and its degradation in

adsorbed state (μub). All the reactions considered in GM model (1) and in our extension of

GM model (3) are summarized in (Fig 3) with arrows having the same color as corresponding

reaction terms.

Let us then compare the conditions on stable pattern formation in system (1) and in

system (3) in case of homogeneous distribution of binding centers.

Turing-type instability conditions in the extended model

One can demonstrate that Turing-type instability arises in system (3) if and only if the follow-

ing conditions are satisfied (see S1.3 for their derivation):

mv > mu;

l1 2 R; l1 > 0;

Rel2;3 < 0;

8
>>><

>>>:

ð4Þ

where λ1,2,3 are eigenvalues of the matrix:

A ¼

mu � k2D � m2
u=r � k2D

2rmv=mu � mv � k2D 0

� k1 �w 0 � k� 1 � k1ð�u þ �wÞ � mu

0

B
B
B
@

1

C
C
C
A
;

where �u; �w are stationary solutions of the kinetic system and k is wave number. Note, that con-

dition on the degradation rates in Eq (4) is the same as the condition derived for the classical

Morphogene adsorption as a possible Turing instability regulator
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GM model (2). Below we demonstrate that in general extended GM model (3) retains many

features of the classical GM model (1).

In order to compare behavior of system (3) with that of system (1) let us divide model

parameters into two groups: the “reaction” parameters that have the same sense in both sys-

tems (ρ,D, μu and μv), and the “adsorption” parameters used only in the extended model

(w0, k1 and k−1). Influence of the inhibitor degradation rate (μv) on the dispersion curve behav-

ior is very similar for both classical GM (Fig 2a) and extended (Fig 4a) models. In system (3)

Turing instability occurs for the values of μv in the interval (μ�, μ��) (Fig 4a).

Let us then consider the role of adsorption parameters in model (3). Affinity of activator

to the surface is stronger with increase of w0 or k1 and decrease in k−1. Kinetic adsorption

parameters (k1, k−1) are determined for particular molecules, whereas w0 can vary depending

on the expression level of the corresponding molecules in embryo. Consequently, w0 must

crucially affect the process of pattern formation in system (3). The effect is observed in Fig

4b and is in accordance with the behavior of classical GM model. Indeed, in system (1) the

necessary condition on Turing-type instability implies significant difference in the values of

diffusion coefficients. Parameter w0 in system (3) regulates “adsorption strength” and thus

provides the necessary difference for the rates of effective diffusion. As the result, in the

extended GM model Turing-type instability appears for densities of binding sites above the

critical value w�
0

that corresponds to the abscissa of the vertex of the level line max Re λ = 0

(Fig 4b, red line).

We show below that the Turing instability appears when the measure
k1w0

muþk� 1
(which stands

for an effective diffusion coefficient of the activator) reaches the threshold value.

Fig 3. The derivation of the extended Gierer-Meinhardt model. Kinetic scheme for the classical (a) and the extended (b) GM models are

presented on the left side; the corresponding equations are on the right. Arrows indicating interactions between reactants have the same

color as the reaction terms in corresponding equations: green for autocatalytic terms, red for inhibition of activator by inhibitor, gray for

degradation terms and orange for the adsorption and the desorption terms.

doi:10.1371/journal.pone.0171212.g003

Morphogene adsorption as a possible Turing instability regulator
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Application of the extended GM model to natural systems

Validation of patterning schemes obtained in dynamic systems with Turing-type instability is

restricted by the number of the model parameters available from the experiment. Since reac-

tion rates are determined for the fixed reagents, formation of stable patterns is controlled by

the coefficients of effective diffusion. As it was mentioned above, in the particular case of pat-

tern formation in morphogenesis, coefficients of free diffusion of activator and inhibitor are

estimated to be very close and thus the difference in effective diffusion rates must result from

other system properties. While such behavior cannot be reproduced using classical GM model,

our extended GM model operates biologically relevant parameters that can affect effective dif-

fusion rate: adsorption/desorption rates and binding sites’ density. Each of these parameters

can be determined and regulated separately in experiments. Below, we present three examples

of different patterning events and demonstrate how our extended model can be used to analyze

these processes.

WNT/DKK hair follicle patterning. According to the recent study [30], during the folli-

cle pattering, WNT and DKK act as activator-inhibitor system (WNT acts as activator, and

DKK acts as inhibitor). The role of the base level of DKK expression in this process was esti-

mated by comparison of follicle patterns in wild-type mice and in transgenic mice with the

additional Dkk gene under skin-specific promotor. The similar effect of expression levels of

DKK on pattern formation was reproduced in the mathematical model. However, in the origi-

nal paper model parameters were chosen arbitrary and thus do not correspond to the experi-

mentally measured constants. In particular, 40-fold difference in the values of diffusion

coefficients for WNT and DKK introduced by the authors is hardly relevant. According to

Fig 4. Turing instability for different values of w0 and μv. Level lines of {max Re λ(k)} for different values of parameters and wave

number (see supplementary equation (S1.3.9) for details). By definition, any vertical cross-section of the map gives a dispersion curve

(similar to Fig 2). Dashed area indicates parameter values for which real parts of Lyapunov coefficients are positive and thus Turing

instability can occur. The following model parameters were used for the development of the maps: k1 = 1, k−1 = 0.1, D = 0.1, ρ = 0.6, μu =

0.05 and w0 = 7 (a) or μv = 0.08 (b).

doi:10.1371/journal.pone.0171212.g004
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approximate equations based on WNT and DKK protein sizes [31], the value of diffusion coef-

ficient of WNT is only about 20% lower than that of DKK. This discrepancy can be avoided is

one takes into account adsorption of Wnt protein on ECM. Below we use our model (3) to

reproduce WNT patterning and fit the parameters with physically consistent constants. Addi-

tional base production of the inhibitor was added to the second equation as ρv. Increasing this

parameter we imitates increase of constant expression of DKK in transgenic mice. Structures

with high level of WNT after simulation along 5 minutes are shown at Fig 5c–5e. As we can

see the density of structures is decreased with increase of base DKK expression as it was shown

in the experiment (Fig 5a and 5b). Thus, our model can reproduce results of author’s experi-

ments and modeling. At the same time using our model we are able to address almost every

parameter value.

We set free diffusion coefficient D to 100 μm2/s that is close to hydrodynamic estimates for

both WNT and DKK proteins [31]. Values of adsorption and desorption rate constants of

WNT were never measured. At the same time, it is known that WNT adsorbtion on cell sur-

face is increased due to the presence of palmitoyl group [32] and due to the ability of WNT to

bind HSPG [33]. Thus, we choose Kd = 0.025 μM that is less than Kd constants for other hepa-

rin-binding proteins (0.1–1 μM [17, 34]). Direct and reverse rate constants were selected to fit

an equation k1/k−1 = Kd.
Clearance rate constants μu, μv were measured in embryos only once for Lefty/Nodal pro-

teins [28]. Authors obtained constants of order 10−4 s−1 however they did not take into account

Fig 5. Simulation of follicle formation by using the extended GM model. WNT activation pattern in wild type (a) and DKK+ transgenic

mice (b) redrawn from [30]. Turing structures formed from homogenious noise in 5 minutes (internal time) with different levels of base DKK

expression: 0.1, 0.15 and 0.2 μM/s (c-d). Other parameters used are shown in Table 1.

doi:10.1371/journal.pone.0171212.g005

Morphogene adsorption as a possible Turing instability regulator
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possible protein inactivation. Here we used constants of order 10−3 s−1 that is also consistent

value. It means that average protein lifetime in the intercellular space is about several minutes.

The density of binding sites was also never measured in experiment. However, for the par-

ticular system concentration of binding sites can be converted to surface density if one knows

the thickness of intercellular space. Indeed, in vivo reaction takes place in thin layers of inter-

cellular spaces of about 0.2 μm. Hence, we can assume that w0 = 10 μM corresponds the den-

sity of 6 sites per 100×100 nm square. The estimate seems to be consistent and does not

contradict current data on ECM.

Finally the working range of concentrations along the patterning reaction are in micromo-

lar range. Recently we have demonstrated that proteins may be concentrated at micromolar

level [16] in the intercellular spaces of Xenopus ectoderm, thus our estimate is also consistent.

The simulation parameters as well as the resulting concentration ranges are summarized in

Table 1.

Patterns with spatially-graded spot size. The choice of non-homogeneous distribution

of binding site density (w0) in the extended model (3) allows us to reproduce patterning types

that occur in nature. Here we take as an example establishment of the cuckoo catfish Synodon-
tis multipunctatus coloring pattern. Cuckoo catfish juveniles are colored with spots of the

increasing size from head to tail (Fig 6a). Let us consider this type of pattern in terms of model

(3). For each w0 greater than w�
0

Turing instability occurs for the range of wave numbers (kL,
kR), where kL and kR are left and right critical wave numbers respectively (Fig 4b). Left critical

wave number regulates the average period of the spotty pattern, whereas right critical wave

number determines the size of a single spot. In our model increase of w0 leads to increase of

kR, while almost does not affect kL (Fig 4b). Thus, considering w0(x) to have smooth gradient

form (Fig 6b) in model (3) we can reproduce pattering scheme with increasing spot size close

to the skin pattern of the catfish juvenile (Fig 6c).

In contrast to zebrafish, catfish’s spot-patterning is formed due to difference in size of mela-

nocytes [35], which in turn can be regulated by secreted substances: melanin-concentrating

and melanocyte-stimulating hormones. It is shown that melanin-concentrating and alpha-

melanocyte stimulating hormones have an antagonistic behavior on skin patterning in teleost

[36]. Unfortunately, the mobility of these factors and their interactions with matrix are studied

Table 1. Parameters of the extended GM model and their values fitted for reproducing Wnt/DKK hair

follicle patterning.

Notation Value Explanation [measure units]

ρ 0.05 Empirical parameter characterizing strength of Wnt-induced Wnt and DKK

production [a.u.].

μu 0.003 Wnt degradation rate [s−1]

μv 0.008 DKK degradation rate [s−1]

D 100 Free diffusion coefficient [μm2 � s−1]

k1 7.8 Adsorption rate constant [μM−1 � s−1]

k−1 0.2 Desorption rate constant [s−1]

w0 10 Volume binding site density [μM]

u(t) 0–0.1 Non-bonded WNT fraction [μM]

u(t) + w0 − w

(t)

0–50 Total WNT fraction [μM]

v(t) 0–50 DKK concentration [μM]

ρv 0.02–

0.03

Permanent independent production of DKK [μM � s−1]

doi:10.1371/journal.pone.0171212.t001
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Fig 6. Spot patterning with gradient of spot sizes. Spots of various size are common for fish patterning, e.g.

juvenile of Synodontis multipunctatus, that has spots of increasing size from tail to head (a). We have

reproduced this pattern using model (3) with corresponding function w0(x) (b). The resulting pattern formed by u

is given in (c) for t = 8000. Model parameters are: k1 = 0.97, k−1 = 0.1, ρ = 0.6, μu = 0.03, μv = 0.08, D = 0.1.

doi:10.1371/journal.pone.0171212.g006
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insufficiently, which makes our hypothesis impossible to be proved with any quantitative esti-

mations at present time.

Pear shape of the neural anlage. Let us consider another pattern that can be reproduced

using model (3). In X. laevis, neural plate has a shape of a pear with wide and narrow parts in

the anterior and posterior regions respectively (Fig 7a). The size of the neural plate is sensitive

to changes in the overall ectoderm size (till the late neurula) [37], hence the system is robust. It

is known that the robustness to parameters, concentrations and volume fluctuations is very

common feature for Turing structures [38]. Thus, formation of pear-shaped neural anlage

may be considered as the result of Turing structure formation.

The process of tissue self-organization implies complex interplay between many secreted

proteins. In case of X. laevis neural plate, key role is played by Bone Morphogenetic Protein

(BMP) that forms a ventral to dorsal gradient. Formation of neural tissue appears as the result

of BMP inhibtion by antagonists such as Chordin and Noggin [39–41], that propagate from

the dorsal midline through IS and via the Brachet’s cleft [42]. In the absence of Chordin and

Noggin all the embryonic ectoderm differentiates to epidermis under action of BMP. Thus,

spatial distribution of concentration of Chordin and Noggin determines the shape of the neu-

ral plate.

Chordin is known to increase its own secretion through the inhibition of BMP cascade

[39], which also leads to the increased expression of anti-dorsalizing morphogenic protein

(ADMP). ADMP in turn inhibits Chordin expression through the activation of BMP cascade

[43]. Thus, one can consider interaction of Chordin and ADMP as activator-inhibitor system

as it was done in models of X. laevis dorso-ventral patterning [2, 19].

Let us consider model (3) with u being concentration of Chordin constantly produced from

the dorsal midline and v being concentration of ADMP. Chordin has heparin binding motifs

Fig 7. Modeling of the neural plate’s shape in the early Xenopus laevis gastrula. The neural plate at the X. laevis midneurula visualized

by the whole-mount in situ hybrydization with dig-labeled probe to the pan-neural marker, Sox2 (a). Distribution of HSPG sites in ECM used

as w0(x) for simulation of model (3) (b). Level curves for stable structures formed by activator (Chordin) in the simulation of model (3) for

t = 1000 (c). Model parameters are: k1 = 1.0, k−1 = 0.01, ρ = 0.6, μu = 0.01, μv = 0.05, D = 0.1.

doi:10.1371/journal.pone.0171212.g007
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and thus its diffusion is retarded by its intercation with HSPG of ECM [16]. According to our

recent study, concentration of HSPG within the ectoderm of the X. laevis embryo during gas-

trulation and neurulation forms a gradient with maximum at the dorsal posterior (presump-

tive tail) and minimum at the anterior (presumptive head) region [17]. Using corresponding

distribution of binding sites w0(x) (Fig 7b) in our model (3), we obtain stable non-homoge-

neous distribution of activator that resembles a real pear-like shape of the neural plate (Fig 7c).

Transformation of the extended model to the classical one: Effective

diffusion concept

Both classical and extended GM models can be applied for the description of patter formation

in activator-inhibitor system. Extended model (3) is appropriate for the description of pattern

formation in case of similar size of reactants and significant role of adsorbtion of activator on

some immobile substance. As we have demonstrated above, these features are common for dif-

ferent systems regulating the process of morphogenesis. However, for some biological systems

of that type the use of extended model is not reasonable and it can be reduced to the classical

GM model. Here we describe reduction of system (3) to system (1) using quasi-steady state

approximation and the formalism of effective diffusion.

Fig 8. Reduction of the three-component model to the two-component one. A: Dispersion curves of the extended model (solid lines)

and the conformable classical model (dashed line). Eq (7) were used for the classical model. For each curve parameters of adsorption are

presented under corresponding images B. Other parameters are fixed for both extended and classical models: ρ = 0.6, μv = 0.08, μu = 0.03.

Reaction space of 20×20 space units and Neumann boundary conditions were used. Size of the reactor was set as 20 units. B:

Concentration of activator as visualized after 4000 time units of the simulation with the above mentioned parameters.

doi:10.1371/journal.pone.0171212.g008
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Necessary conditions for model reduction. First, adsorbtion of activator on ECM can be

neglected only if the diffusion process is slower than the binding process. In term of our mod-

els, this condition can be formulated as follows:

1

w0k1

<<
1

k2D
;

1

k� 1

<<
1

k2D
:

The second condition concerns adsorption mechanism. Binary adsorption is commonly

described by Langmuir isotherm: θ = KC/(KC+1), where θ is the ratio of bound and unbound

centers, K is association constant and C is concentration of the adsorbate. When concentration

of adsorbate is small with respect to the concentration of adsorbent, we can use the linear iso-

therm: θ = KC. Thus, the second condition requires isotherm to be linear and, consequently,

the density of binding sites to be large:

w0 >> 0 :

These conditions describe so called “effective diffusion behavior” (the terminology sug-

gested by S. McNally [44]). This behavior was introduced by J. Crank in chapter “Instanta-

neous reaction” of his well-known book [45]. If the binding reaction affects the overall process

in the same way as a decrease in the diffusion coefficient does, then “the effective diffusion

coefficient” could be used and calculated as following:

Deff ¼
D

1þ
k1w0

k� 1

:
ð5Þ

Accordingly, in our case very close estimation of the effective diffusion coefficient can be

formulated.

Reduction of the equations to none-adsorption model. Suggest adsorption of the activa-

tor tends to infinity (w0, k1, k−1!1) and simultaneously
w0k1

k� 1þmu
¼ const; then the system (3)

can be reduced to Eq (1) with

Dv ¼ D; Du ¼ D � 1þ
w0k1

k� 1 þ mu

� �� 1

;

and

rred ¼ r 1þ
w0k1

k� 1 þ mu

� �3=2

:

Du found by this equation is called “effective diffusion coefficient”. As we follow J. Crank’s

line of evidence [45]. We first should rewrite Eq (3) assuming that the adsorption reaction is

extremely fast and w, u and w0 are in local equilibrium at each point:

@u
@t

¼ r
ðuþ w0 � wÞ

2

v
� muðuþ w0 � wÞ þ

@w
@t
þ DDu;

@v
@t
¼ rðuþ w0 � wÞ

2
� mvv þ DDv;

0 ¼ � k1wuþ ðk� 1 þ muÞðw0 � wÞ:

8
>>>>>>><

>>>>>>>:

ð6Þ
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In our initial approximation w>>u and, thus, the term k1w could be replaced with k1w0.

Consequently:

w0 � w �
k1w0

k� 1 þ mu
u

We denote adsorption coefficient
k1w0

k� 1þmu
as α. Using this equation let us remove w from the

two remaining equations of system (6):

@u
@t

¼ rð1þ aÞ
2 u2

v
� muð1þ aÞu � a

@u
@t
þ DDu;

@v
@t
¼ rð1þ aÞ

2u2 � mvv þ DDv:

8
>>><

>>>:

Finally we replace u = u�/(1+α) and get:

@u�

@t
¼ r

u�2

v
� muu

� þ
D

1þ a
Du;

@v
@t
¼ ru�2 � mvv þ DDv:

8
>>><

>>>:

ð7Þ

Eq (7) has the same form as Eq (1).

As the assertion predicts, dispersion curves of the extended system tend to dispersion

curves of the reduced system (7). Varying α we affect Turing structures of the extended model

in the same way as changing Du affects structures in the classical model (Fig 2b). If we fix the

ratio
k1w0

k� 1þmu
and draw the family of dispersion curves (Fig 8a), then the better similarity between

dispersion curves of the reduced and the extended models is observed under high values of w0

and rate constants k1, k−1 (green and red curves). Although the proximity of dispersion curves

points at the similarity in linear regimes of these two models, the shape and size of the final

Turing structures can be different for the extended and reduced systems. Under unfavourable

conditions (in magenta) Turing structures of the extended system are larger then those in the

reduced one (Fig 8b). In our case Turing structures demonstrate the behavior that corresponds

to the behavior of dispersion curves: under conditions favourable for the reduction (in red)

Turing structures have the same structure in both augmented and reduced systems.

Discussion

Modelling of pattern formation with physically relevant parameters is the subject of many

modern studies on embryogenesis. There are three major studies on early patterning, that con-

sider Xenopus laevis embryo as an example. In the most thorough of them, that describes by

Turing model the left-right patterning [28], the authors measured independently almost each

parameter. Another article with a quite demonstrative base describes dorso-ventral gradient

[18], however the authors were far from measuring every parameter independently. One more

model without substantial proof was suggested earlier by Meinhardt himself [46]. The diffu-

sion coefficients used in all of these works differ from each other not less than an order of mag-

nitude. While the authors of the cited works did not specially explain the latter fact, one may

suppose that such a big difference in diffusivity between morphogens having the comparable

sizes could be explained only by a difference in their adsorption on the cell surface. Thus,

inclusion of the conditiion of the morphogens adsorption on ECM into the equations during

the modeling of embryonic patterning is an important task.

Morphogene adsorption as a possible Turing instability regulator
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In the present work, we have developed a model, which describes self-organization of the

long-range spatial structures in conditions of adsorption of one of the reacting components on

ECM. Many secreted proteins can adsorb on ECM due to electrostatic interactions of special-

ized motifs in their content with heparin moieties in HSPG. For example, heparin-binding

motifs were found in such morphogens as Activin, BMP, Cerberus, Chordin, the member of

EGF and Fgf families, Nodal, Noggin1 and Noggin2. Because of these interactions, the diffusiv-

ity of morphogens in embryonic tissues is usually estimated by values 10–100 less than one

may expect for freely diffusing proteins. Therefore, a consideration of the morphogens adsorp-

tion on ECM as an important factor influencing diffusion seems to be wholly justified when

modeling embryonic patterning.

The extended Gierer-Meinhardt model (as well as any adsorption modified patterning

model) can be applied in biological systems. We probe it on the well known WNT-DKK pat-

terning system describing hair follicle formation. This model fits to the experimental data

using physically considerable parameter values and, thus, describes embryonic patterning at

quantitative level. Moreover, our theory allows us to make preliminary estimations even now

on the base of indirect data. Indeed, according to the literature, the affinity of various organic

polymers, including some protein morphogens, to HSPG varies in a range from 0.1 to 1 μM

[47]. Suggest the effective diffusion coefficients of many morphogens measured in live embry-

onic tissues usually appear in 10–100 times lower than those which could be predicted for the

same morphogens on basis of hydrodynamic laws; then according to the Eq (5), the density of

binding sites may be estimated as 10–100 μM. This indicates that the density of binding sites

in intracellular space is several orders of magnitude larger than maximal concentration of

morphogens, that usually doesn’t exceed several nanomoles. Obviously, special experiments

should be arranged to determine values of all these parameters precisely in each real embry-

onic tissue.

As we shown, the addition of the adsorption term to the Gierer-Meinhardt model, signifi-

cantly extends the spectrum of spatial structures, which potentially can be obtained on the

base of the original model. We can simply form the most interesting extension of the model

keeping values of all other parameters and forms of equations together with varying the con-

centration of the adsorption sites, i.e. by changing the concentration of HSPG in the IS. It

seems logical to suppose that such mechanism of the patterning regulation could be widely uti-

lized during the embryonic development. Indeed, HSPG in IS of the embryonic tissues are fre-

quently distributed unevenly, forming gradients in selected directions. In particular, HSPG

forms the dorsal to ventral gradient with the maximum on the dorsal marginal zone in the

ectoderm and the mesoderm of the Xenopus laevis embryo during gastrulation and neurula-

tion [17]. As a result, a decreased concentration of potential adsorption sites for morphogens

is revealed within the presumptive anterior neural plate comparing to the more posterior pre-

sumptive trunk region. Accordingly, as we have showed, this may result in spreading of the

neural inductors over more broad territory in the anterior region and lead to formation of

the pear-shaped form of the neural plate. Certainly, the patterning of neural anlage involves

greater number of agents than we consider in the model. Nevertheless, we believe that our

approach could be considered as a simple proof of principle of much more complex processes

that underlay the neural plate patterning.

Another example of the transformations of the spatial pattern, which may be explained by

the gradual changes in the concentration of the adsorption sites, can be the spatial changes fre-

quently observed in coloring of fishes. Here, we consider only one example of such coloring

that is implemented in fishes Fig 6a. In different species the size of colored spots and the dis-

tance between adjacent spots are progressively changing either from the dorsal to ventral side,

or from the tail to the head. These patters resemble a lot those shown on Fig 6c, which was
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generated in silico by a virtual gradual decrease of the concentration of adsorption sites along

the corresponding direction.

Earlier, the ventral side spot pattern of catfish Plecostomus have been simulated with simple

two-component Turing-type model [35]. However, while the authors have demonstrated that

Turing-type model well describes spotted pattern, they did not explain the fact of the gradual

increase of the spot size. Our model expands this approach and suggests the mechanism of pat-

terning with spots with gradually increasing size. The detailed study of fish pigmentation with

identification of biological mechanism was performed hitherto only for Danio rario. It was

shown that Danio pigmentation is robust [48] and can be described by Turing-type model of

spatial activation of Delta-Notch pathway [49]. In contrast, catfishes are not being studied

thoroughly and yet they have completely different pigmentation system. We believe that our

work could stimulate further study that will experimentally demonstrate the role of the gradual

changes of the adsorption in the fish coloring.

As we have recently shown, diffusion of a protein in conditions of its adsorption makes it

impossible to use the diffusion coefficient as a single mobility parameter, because in this case

the diffusivity of the protein can vary with protein concentration [16, 17]. That is why some-

times the diffusion coefficient measured by different authors with different techniques appears

to be different. Moreover, researchers can determine different mobility constants for the single

substance depending on the measurement conditions. This happens because the effective dif-

fusion conditions could be satisfied under certain experimental conditions but could not

under other ones. The present research allows us to understand whether the ‘diffusion coeffi-

cient’ makes sense or not. If we operate the effective diffusion constant, then we should be sure

that the corresponding reaction-diffusion-with-adsorption system can be reduced to the reac-

tion-diffusion system as we have shown in Eqs (6) and (7). Importantly, we have demonstrated

that if the adsorption rate is higher than the rate of free diffusion and the number of binding

centers for the protein adsorption is large, then a single constant parameter, the effective diffu-

sion coefficient, can be used again. Thus, in such cases the extended model can be reduced to

the classical form proposed by Gierer and Meinhardt.

For instance WNT-DKK patterning system can be reduced to the two-component model

and single value of diffusion coefficient can be used. For this case the effective diffusion coeffi-

cient calculated by Eq (5) for the presented model is 0.25 μm2/s whereas the same value mea-

sured with FRAP technique in Xenopus ectoderm is 0.08 μm2/s [16] that is very close. In other

cases one have to use three additional parameters in our extended version of Gierer-Meinhardt

model instead of single diffusion coefficient to describe propagation of the activator: direct

and reverse adsorption rate constants and binding site density. Obviously, to understand

which variant of the model, extended or reduced, should be used in the selected case, one has

to know the values of the aforementioned three parameters, namely direct and reverse adsorp-

tion rate constants and binding site density, in real living system. Measurement of these

parameters experimentally become very perspective direction following from our studies.

The inclusion of adsorption as one of initial conditions in the reaction-diffusion system

provides an exciting way for the Turing instability modulation, thereby expanding the possible

specter of self-organizing structures. In our model, we introduced such modulation by varying

binding site density which can vary in the real embryo along the selected direction. In a num-

ber of known models modulation of Turing instability is achieved by different mechanisms.

For example, reaction-diffusion model with chemotaxis was used to simulate snake patterning

and the chemotaxis strength changing along the snake body was used as Turing modulation

parameter [50]. Note, that their model also described patterns with gradual changes in struc-

ture period. One more mechanism of Turing instability modulation was suggested by Sen

[51]. This mechanism is based on varying the delay in delayed PDE. Biological evidences of
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modulating patterning also exist in the literature: for instance, in quail-duck chimera feather

follicle patterning is modulated by concentration of BMP protein [52]. Apparently all these

mechanisms occur in nature and produce all the observable diversity of embryonic patterns.

We believe that further experimental investigations will shed light on biological mechanisms

that underlay proposed models.

Supporting information

S1 Appendix. Linear analysis of Turing instability. Rigorous derivations of Eqs (2) and (4)
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S2 Appendix. Flux sweeping algorithm. In the appendix we perform description of flux

sweeping computational scheme as reproduced from ref. [25] with adaptation to our case.

(PDF)
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