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Abstract

Identifying Alzheimer’s disease (AD) at its early stage is of major interest in AD research.

Previous studies have suggested that abnormalities in regional sulcal width and global

sulcal index (g-SI) are characteristics of patients with early-stage AD. In this study, we inves-

tigated sulcal width and three other common neuroimaging morphological measures (corti-

cal thickness, cortical volume, and subcortical volume) to identify early-stage AD. These

measures were evaluated in 150 participants, including 75 normal controls (NC) and 75

patients with early-stage AD. The global sulcal index (g-SI) and the width of five individual

sulci (the superior frontal, intra-parietal, superior temporal, central, and Sylvian fissure)

were extracted from 3D T1-weighted images. The discriminative performances of the other

three traditional neuroimaging morphological measures were also examined. Information

Gain (IG) was used to select a subset of features to provide significant information for sepa-

rating NC and early-stage AD subjects. Based on the four modalities of the individual mea-

sures, i.e., sulcal measures, cortical thickness, cortical volume, subcortical volume, and

combinations of these individual measures, three types of classifiers (Naïve Bayes, Logistic

Regression and Support Vector Machine) were applied to compare the classification perfor-

mances. We observed that sulcal measures were either superior than or equal to the other

measures used for classification. Specifically, the g-SI and the width of the Sylvian fissure

were two of the most sensitive sulcal measures and could be useful neuroanatomical mark-

ers for detecting early-stage AD. There were no significant differences between the three

classifiers that we tested when using the same neuroanatomical features.
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Introduction

Alzheimer’s disease (AD) is the most common cause of dementia, with typical characteristics

of progressive cognitive decline such as memory impairment and the degeneration of reason-

ing ability [1,2]. The onset of AD is insidious, and the decline in cognition may not manifest

until effective interventions become difficult [1,3]. A previous study showed that facilitating

intervention at an early stage could effectively alleviate the symptoms of the disease [4]. There-

fore, early diagnosis of AD will benefit patients, families and society as a whole.

In the last twenty years, magnetic resonance imaging (MRI) has been widely used to study

the neuroanatomical abnormalities of AD. MRI-based methods mainly examine brain vol-

umes, focusing on certain particular regions of interest (ROIs) that are said to be adversely

affected in the disease progression [5–7]. The commonly used methods include voxel-based

morphometry (VBM) [8–10], which examines the whole brain on a voxel basis, and cortical

thickness [11–13], which examines the vertices on the cortical surface to evaluate the thickness

of the cortex of the whole brain or cortical ROIs. These methods investigate the atrophy mani-

fested by AD pathology in the whole brain or regions of the brain.

Numerous neuroanatomical measures have been proposed for early AD detection [14].

However, early diagnosis of AD is still challenging [15–17]. Studies have found that sulcal

changes are associated with normal aging [18,19] as well as cognitive decline [20]. Specifically,

sulci in mild cognitive impairment (MCI) and AD brains were found to have less curvature,

which sulcal widening observed decrease in normal controls; and less in depth, which sulcal

depth observed reducing when comparing those of controls [20,21]. One of our own studies

demonstrated that the global sulcal index decreased along with the increasing severity of AD,

and the widths of nearly all individual sulci we investigated were larger in mild AD than in

controls [22]. These results suggested that abnormalities in the global sulcal index and sulcal

widths are potentially excellent features for the early diagnosis of patients with very mild AD.

To our knowledge, very few studies have employed sulci for distinguishing between subjects in

an early stage of AD and NC. Among the few studies that have used sulcal measures, Park and

colleagues carried out a classification between AD and MCI using cortical thickness and sulcal

depth [6,23]. They reduced the dimensions of feature space by applying principal component

analysis (PCA), but this approach may come with two drawbacks: first, the principal compo-

nents are linear combinations of all the original predictors rather than a representative subset

of these predictors; the second is that most relevant components are selected regardless of the

outcome of interest [24]. Recently, Hamelin and colleagues investigated the utility of sulcal

width measurements in the diagnosis of Alzheimer’s disease. They demonstrated that sulcal

width measurements were better markers than the hippocampal volume for identifying pro-

dromal AD in patients aged younger than 65 years [25]. However, how well the sulci measures

would contribute to the classification of the early-stage AD diagnosis with additional discrimi-

native information was not clear. Furthermore, how each particular sulcus would assist in the

detection of early-stage AD was even more difficult to determine.

Machine learning methods have recently become widely used for the classification of AD

patients vs. normal controls by analyzing MRI scans [26–28]. Machine learning methods have

shown potential for decoding high dimensional MRI data for discriminating AD from healthy

brains and predicting the progression of the disease. Cui et al. used Support Vector Machine

(SVM) as the classifier to predict the transition from normal cognition to mild cognitive

impairment in two years and found that the prediction performance was better when using a

combination of neuropsychological scores and morphological measures than using either of

these two modalities alone [29]. Park and colleagues used SVM to separate normal controls

from subjects with Alzheimer’s disease and mild cognitive impairment and achieved an
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accuracy of 94% [23]. Ota and colleagues used Logistic Regression to predict the progression

to AD in amnestic mild cognitive impairment, and their findings suggested that the stratifica-

tion of imaging biomarkers in amnestic MCI could be a good approach for improving predic-

tion performance [30]. However, among neuroimaging studies of early-stage AD, there are

very few studies that have compared the performance of different classification methods [31],

and whether there are significant differences in performance between diverse classifiers

trained on the same MRI dataset has yet to be explored.

In this study, we investigated the identification of early-stage AD using three different

classifiers based on four modalities of imaging measures, including sulci, cortical thickness,

cortical volume, and subcortical volume. The Mini-Mental State Examination (MMSE) [32]

score and the composite of the four imaging measures were added to the classification. The

Information Gain (IG) [33] method was used to perform feature selection, and the top 10

ranked feature subsets were generated to improve the accuracy of the classification. Specifi-

cally, we examined the performance of the global sulcal index and the index of the width of

five individual sulci: the superior frontal, intra-parietal, superior temporal, central, and Sylvian

fissure. The first aim of this study was to inspect the potential of sulci as discriminative bio-

markers for the diagnosis of early-stage AD. The second was to examine if there were signifi-

cant performance differences between various classification methods.

Materials and Methods

Ethics statement

For the purpose of this analysis, we used the OASIS database, which was previously collected

under several study protocols at Washington University [34]. All studies were approved by the

University’s Institutional Review Board (IRB). All subjects gave written informed consent at

the time of study participation. The University’s IRB also provided explicit approval for open

sharing of the anonymized data [34].

Participants

Participants were drawn from the Open Access Series of Imaging Studies (OASIS) database

(http://www.oasis-brains.org) [34]. Our investigation was restricted to right-handed partici-

pants who were at least 62 years old, the youngest age at which any individual in the OASIS

database was classified as having early-stage AD. The individuals were classified on the basis of

Clinical Dementia Rating scale (CDR) [35] scores as having normal cognition (CDR = 0, n =

75) or early-stage AD (CDR = 0.75 ± 0.25, n = 75). The age, sex, estimated total intracranial

volume (eTIV), and Mini-Mental State Examination (MMSE) scores for the individuals in

each of these groups were obtained directly from the OASIS database. Demographic character-

istics of the participants are shown in Table 1.

Table 1. Participant demographic characteristics.

Characteristic Normal (n = 75) Early stage AD (n = 75) p

Age (year) 75.41±7.829 76.24±7.573 0.512a

Sex (M/F) 29/46 20/55 0.117b

Education (year) 3.16±1.284 2.85±1.343 0.155a

MMSE 28.89±1.247 24.36±4.006 <0.05a

aResults of two-tailed t-test across two groups.
bChi-square statistic.

doi:10.1371/journal.pone.0170875.t001
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Image acquisition

For each participant, we obtained a single image with a high contrast-to-noise ratio from the

OASIS database. As described by Marcus et al. [34], these images were produced by averaging

across 3 or 4 motion-corrected T1-weighted magnetization-prepared rapid gradient-echo

(MP-RAGE) images, which were acquired on a 1.5T Vision scanner (Siemens, Erlangen, Ger-

many) within a single session during which cushioning and a thermoplastic face mask were

used to minimize head movements. The MP-RAGE parameters were empirically optimized

for gray-white contrast, with repetition time = 9.7 ms, echo time = 4.0 ms, inversion time = 20

ms, delay time = 200 ms, flip angle = 10˚, orientation = sagittal, resolution = 256×256 matrix,

slices = 128, and thickness = 1.25 mm with no gap, yielding 1 × 1 × 1.25 mm3 isotropic voxels.

Image pre-processing

Cortical sulci were extracted from the images via the following three steps. First, we removed

non-brain tissue to produce images containing gray matter (GM), white matter (WM) and

cerebrospinal fluid (CSF) only. This was done by using the SPM5 skull-cleanup tool, warping a

brain mask defined in the standard space back to the raw T1-weighted structural MRI scan.

The brain mask was obtained from an automated skull stripping procedure based on the

SPM5 [36]. Second, we segmented images into GM, WM and CSF using a fuzzy-classifier-

based, anatomical segmentation method using BrainVisa (BV), after applying a field inhomo-

geneity bias correction [37]. Third, individual sulci were identified and extracted using the BV

sulcal identification pipeline (http://brainvisa.info/). The medial surface of the cortical folds

was calculated using a homotopic erosion technique [38], and a crevasse detector was used to

reconstruct the sulcal structure as the medial surface from the two opposing gyral banks that

spanned from the most internal point of the sulcal fold to the convex hull of the cortex [37]. A

sulcal labeling tool incorporating 500 artificial neural network-based pattern classifiers [39]

was used to label sulci. Sulci that were mislabeled by BV were manually corrected.

Morphological measures

For each hemisphere, we calculated the global sulcal index (g-SI) as the ratio between the total

sulcal area and outer cortical area [40]. We calculated the g-SI of each brain with no manual

intervention using BV.

Also, for each hemisphere, we determined the average sulcal width for each of the five sulci:

the superior frontal, intra-parietal, superior temporal, central, and Sylvian fissure. Sulcal width

was defined as the average 3D distance between opposing gyral banks along the normal projec-

tions to the medial sulcal mesh [41,42]. The five sulci investigated in the present study were

chosen because they are present in all individuals, large and relatively easy to identify after

facilitating error detection and correction, and they are located on different cerebral lobes. We

also calculated cortical thickness, cortical volume and subcortical volume. This was done using

FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) based on the atlas including 34 cortical

regions of interest in each hemisphere [43].

Feature selection

The purpose of feature selection was to improve classification performance by using an infor-

mative subset of features. The selected features should be AD specific. We selected features by

using the Information Gain (IG) method, which selected features by considering the informa-

tion gain value of each feature [33,44]. The information gain value is the change in the entropy

of variable X from a prior state to a state that takes some information from the random variable
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T. Entropy of X is defined as follows:

HðXÞ ¼ �
Xn

i¼1

PðxiÞ log2 PðxiÞ

where xi is one of the classes, and n is the number of classes. The entropy of X after observing

information from another variable T is defined:

HðXjTÞ ¼ �
X

j

PðtjÞ
X

i

PðxijtjÞ log2 PðxijtjÞ

where P(xi) is the prior probability for all values of X, and P(xijtj) is the posterior probability of

X given the values of T. The information gain can be calculated by the following formula:

IGðX;TÞ ¼ HðXÞ � HðXjTÞ

According to this measure, given a dataset X and a feature T, xi is the class of normal con-

trols or the class of early-stage AD patients, and P(xi) is the probability of X belonging to class

xi [33,44]. For every feature of the dataset, the information gain was calculated. Feature selec-

tion was conducted in several steps. First, we calculated the information gain value of each fea-

ture. Second, a list of ranked features was generated based on the value of information gain in

a descending order. Third, given a specified ranking number, all of the features with a ranking

order that were higher than this number were selected to form a feature subset. The feature

selection was performed on the training sets that were different combinations of the four mea-

sures (sulcal measures, cortical thickness, cortical volume and subcortical volume). For the

purpose of reducing computational burden and avoiding over-fitting, we finally obtained a

subset of top 10 ranked features for later classification.

Classification and validation

To validate whether different classifiers would result in significant differences, we evaluated

the performances of three different classification algorithms including Naïve Bayes, Logistic

Regression and SVM, which were available in the Waikato Environment for Knowledge Anal-

ysis (WEKA) package [45]. After an optimal feature subset was selected, Monte Carlo cross-

validation was used to evaluate the methods [46]. Monte Carlo cross-validation (MCCV)

works differently from K-folds cross-validation in that it generates more possible partitions

which are done independently for each run. MCCV splits the dataset into training set and test

set by sampling without replacement. In our experiment, the split ratio was set as 7:3, the 70%

of the dataset were selected to form the training set. This process was then repeated 10 times.

During each run, the classifier was trained with the training set and was then validated using

the test set. For each classifier, the final classification results were the average of these 10 inde-

pendent experiments. An overview of the classification procedure is shown in Fig 1.

Fig 1. Overview of the classification procedure using T1-weighted scans and the MMSE score [32].

doi:10.1371/journal.pone.0170875.g001
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The results of the different classifiers were compared using the performance metrics in-

cluding accuracy, sensitivity and specificity. Furthermore, we plotted receiver operating char-

acteristic (ROC) curves, and the areas under the ROC curves (AUC) were also calculated by

averaging the trapezoidal approximations for the curve created by the True Positive Rate

(TPR) and False Positive Rate (FPR).

Results

For all three classifiers, performance characteristics were determined as the average of cross-

validation experiments for each of the 8 approaches to classification: sulcal measures (SM)

alone, cortical thickness (CT) alone, cortical volume (CV) alone, subcortical volume (SV)

alone (Table 2), a combination of all of these measures (Table 3), a combination of all of these

measures plus the MMSE scores (Table 4), and a combination of CT, CV, SV, and MMSE

(Table 5), and, finally, a combination of SM, SV, and MMSE (Table 6).

Performances of using different measures

The results of the classifications using sulcal measures (sulcal width and global sulcal index),

cortical thickness, cortical volume and subcortical volume separately are shown in Table 2.

Table 2. Classification results using sulcal measures, cortical thickness, cortical volume and subcortical volume separately.

Feature Set Classifier Accuracy Sensitivity Specificity AUC

Sulcal Measures Naïve Bayesa 0.682 0.667 0.659 0.663

Logistic Regressionb 0.736 0.733 0.735 0.761

SVMc 0.712 0.711 0.712 0.743

Cortical Volume Naïve Bayes 0.714 0.711 0.708 0.781

Logistic Regression 0.733 0.733 0.732 0.82

SVM 0.756 0.756 0.754 0.755

Cortical Thickness Naïve Bayesa 0.759 0.756 0.752 0.812

Logistic Regressionb 0.733 0.733 0.732 0.775

SVMc 0.735 0.733 0.731 0.732

Subcortical Volume Naïve Bayes 0.732 0.711 0.704 0.751

Logistic Regression 0.78 0.778 0.776 0.858

SVM 0.768 0.756 0.75 0.753

a b c There were no significant difference between the Sulcal Measures and Cortical Thickness using two-tailed t-test (p > 0.3).

doi:10.1371/journal.pone.0170875.t002

Table 3. Classification results using combined data including sulcal measures, cortical thickness, cortical volume and subcortical volume.

Feature Set Selected Attributes Classifier Accuracy Sensitivity Specificity AUC

SM,CT,CV,SV Hippocampus L Naïve Bayes 0.832 0.822 0.818 0.874

Hippocampus R

Amygdala R

Parahippocampal_volume R Logistic Regression 0.815 0.8 0.795 0.866

Precuneus_volume L

Precuneus_thickness R

Supramarginal_thickness R

g-SI L SVM 0.846 0.822 0.816 0.88

Entorhinal_volume R

Superiorparietal_volume R

Abbreviations: SM– sulcal measures; CT– cortical thickness; CV– cortical volume; SV– subcortical volume

L– Left hemisphere; R– Right hemisphere.

doi:10.1371/journal.pone.0170875.t003
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The table shows that classification using sulcal measures, cortical thickness and cortical vol-

ume achieved similar performances (p> 0.3). From the perspective of single modality mea-

surements, using the sulcal measures, the accuracies of the classifiers ranged from 68.2% to

73.6% (sensitivity ranged from 66.7% to 73.3% and specificity 65.9% to 73.5%) and were simi-

lar to the results using cortical thickness (accuracy was from 73.3% to 75.9%, sensitivity from

73.3% to 75.6%, specificity from 73.1% to 75.2%) or cortical volume (accuracy ranged from

71.4% to 75.6%, sensitivity 71.1% to 75.6%, and specificity 70.8% to 75.4%). Subcortical volume

outperformed all of the other three measures (p< 0.05), achieving accuracies of three classifi-

ers ranging from 73% to 78% (sensitivity ranged from 71.1% to 77.8% and specificity 70.4% to

77.6%). Compared with cortical thickness and cortical volume, sulcal measures achieved com-

parable performances with a relatively lower dimension feature (12 dimensions) vector. This is

important since fewer representative features help better understand the biological basis and

the progression of cognitive disorders, and reduce the risk of overfitting. Table 3 to Table 6

show the classification outcomes of the combinations of the four neuroimaging measures and

the MMSE scores. When using all of the imaging features, we obtained accuracies that ranged

Table 4. Classification results using combined data including sulcal measures, cortical thickness, cortical volume, subcortical volume and the

MMSE score.

Feature Set Selected Attributes Classifier Accuracy Sensitivity Specificity AUC

SM,CT,CV,SV,MMSE MMSE Naïve Bayesa 0.894 0.867 0.861 0.893

Hippocampus L

Hippocampus R

Amygdala R Logistic Regressiona 0.878 0.867 0.863 0.864

Parahippocampal_volume R

Precuneus_volume L

Precuneus_thickness R SVMa 0.909 0.889 0.884 0.826

Supramarginal_thickness R

g-SI L

Entorhinal_volume R

Abbreviations: SM– sulcal measures; CT– cortical thickness; CV– cortical volume; SV– subcortical volume

L– Left hemisphere; R– Right hemisphere
a Significantly different from single measure using a two-tailed t-test (p<0.001).

doi:10.1371/journal.pone.0170875.t004

Table 5. Classification results using cortical thickness, cortical volume, subcortical volume and the MMSE score.

Feature Set Selected Attributes Classifier Accuracy Sensitivity Specificity AUC

CT,CV,SV,MMSE MMSE Naïve Bayes 0.845 0.844 0.843 0.9

Hippocampus L

Hippocampus R

Amygdala R Logistic Regression 0.832 0.822 0.818 0.838

Parahippocampal_volume R

Precuneus_volume L

Precuneus_thickness R SVM 0.85 0.844 0.841 0.879

Supramarginal_thickness R

Entorhinal_volume R

Superiorparietal_volume R

Abbreviations: CT– cortical thickness; CV– cortical volume; SV– subcortical volume.

L– Left hemisphere; R– Right hemisphere.

doi:10.1371/journal.pone.0170875.t005
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from 81.5% to 84.6%, and the highest AUC was generated by the SVM classifier as shown in

Table 3. Additionally, classification using all of the imaging features plus the MMSE scores

improved the accuracy to almost 91% with an AUC score of 0.89 (Table 4). If we remove sulcal

measures from the classification, then the accuracies were reduced from 87.8%-90.9% to

83.2%-85% as shown in Tables 4 and 5. Finally, Table 6 shows the results of combining sulcal

measures, subcortical volume and the MMSE scores as the input to test the effectiveness of sul-

cal measures by replacing thickness and volume; the best accuracy was 86.9%, and the highest

AUC was 0.899. Comparing Tables 5 and 6, we showed that those two combinations achieved

accuracies ranging from 83% to 86%, with the specificities ranging from 81.8% to 86.5%, sensi-

tivities from 82.2% to 86.7% and AUCs from 0.838 to 0.9. The performance of classifiers was

improved by combining different measurement modalities (p< 0.001).

Performances of different classifiers

Table 2 shows the results of the classifications using measurements of a single type. For the sul-

cal measures, Logistic Regression (LR) outperformed Naive Bayes and SVM with an accuracy

of 73.6%, and the AUC of LR was also higher than the AUCs of the other classifiers. When

considering cortical volume and cortical thickness, there were no obvious differences between

the different classifiers. For subcortical measures, LR performed better than the others with an

accuracy of 78% and an AUC of 0.858. In general, the results showed that with the same mea-

surement modality, there were no significant differences between the performances of these

three classifiers (p> 0.05). Figs 2–5 show the corresponding ROC curves of the three classifiers

based on the four combinations of measures. According to the classification results and ROC

curves, there were no significant differences in the classification performances of the three

classifiers given the same feature set (p> 0.05).

Discriminating features

The Information Gain method was used to select a subset of features that were most discrimi-

native between subjects with early-stage AD and NC. For each combined feature set, we listed

the top 10 selected features in Table 3 to Table 6. All four measures, including sulcal measures,

cortical thickness, cortical volume and subcortical volume, were included in the subset. The

hippocampus, amygdala, parahippocampus, precuneus, g-SI, supramarginal cortex and ento-

rhinal cortex showed higher discriminability than other features. Table 4 shows that when

Table 6. Classification results using sulcal measures, subcortical volume and the MMSE score.

Feature Set Selected Attributes Classifier Accuracy Sensitivity Specificity AUC

SM,SV,MMSE MMSE Naïve Bayes 0.869 0.867 0.865 0.899

Hippocampus L

Hippocampus R

Amygdala R Logistic Regression 0.862 0.844 0.839 0.858

g-SI L

g-SI R

Amygdala L SVM 0.862 0.844 0.839 0.885

Accumbens L

Sylvian L

Sylvian R

Abbreviations: SM– sulcal measures; SV– subcortical volume.

L– Left hemisphere; R– Right hemisphere.

doi:10.1371/journal.pone.0170875.t006
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adding the MMSE scores, the performance improved further. MMSE was also selected by the

Information Gain method. Considering the results in Table 3 to Table 6, the MMSE scores,

hippocampus, amygdala, parahippocampus, precuneus, supramarginal cortex, g-SI and Syl-

vian fissure were much more sensitive than the rest of the features.

Discussion

The present study investigated the use of sulcal measures in the diagnosis of early-stage AD,

and we evaluated the performance of three different classification methods. In addition, we

Fig 2. Receiver operating characteristic (ROC) curves for using combined features including sulcal

measures, cortical thickness, cortical volume and subcortical volume.

doi:10.1371/journal.pone.0170875.g002

Fig 3. Receiver operating characteristic (ROC) curves for using combined features including sulcal

measures, cortical thickness, cortical volume, subcortical volume and the MMSE score [32].

doi:10.1371/journal.pone.0170875.g003
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selected the most discriminative features that would most contribute to the diagnosis of early-

stage AD by using IG algorithm.

Many previous studies using imaging biomarkers for AD classification computed cortical

thickness and volume as predictors. Eskildsen et al. combined the measurements of structural

pathologic patterns, measured by analyzing morphologic alterations, and cortical thickness

measures to predict AD among subjects with mild cognitive impairment from a single

T1-weighted MRI scan. They reported the accuracy of 72% using a simple linear discriminant

Fig 4. Receiver operating characteristic (ROC) curves for using combined features including cortical

thickness, cortical volume, subcortical volume and the MMSE score [32].

doi:10.1371/journal.pone.0170875.g004

Fig 5. Receiver operating characteristic (ROC) curves for using combined features including sulcal

measures, subcortical volume and the MMSE score [32].

doi:10.1371/journal.pone.0170875.g005
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classifier [47]. Savio et al. applied four different models of artificial neural networks (Backpro-

pagation, Radial Basis Networks, Learning Vector Quantization Networks and Probabilistic

Neural Networks) to identify patients with early-stage AD by using gray matter volume as

imaging feature. They achieved an accuracy ranging from 66% to 83% [48]. However, their

study included only 98 females, which made their study not representative. By contrast, our

study had a balanced population that included 150 participants with 75 early-stage AD patients

(55 female subjects) and 75 normal controls (46 female subjects). We compared using cortical

thickness and cortical volume separately to identify early-stage AD, and achieved accuracies

close to 76% for both. Some previous studies explored the performance when adding sulcal

measures. Park et al. trained SVM with cortical thickness, sulcal depth and their combinations

to differentiate AD patients and normal controls [6]. Furthermore, they tested the perfor-

mance of using combined features with ROI by eliminating non-informative vertex values that

were not from ROIs. Based on the data of 25 AD patients and 50 NC, they reported 85% accu-

racy achieved by using the combination of features, and improved the accuracy to 90% accu-

racy by using the combination of features with the ROIs. As a comparison, we combined sulcal

width and three other common neuroimaging morphological measures (cortical thickness,

cortical volume, and subcortical volume) to differentiate early-stage AD patients and normal

controls, and achieved an accuracy of 90.9%. Our results showed that adding sulcal measures

could improve the classification performance.

Our study confirmed that sulcal measures were discriminative between subjects with

early-stage AD and NC. The g-SI and Sylvian fissure were the most sensitive among all of the

sulcal measures, which indicated that they could be useful neuroanatomical markers for early-

stage AD. This was consistent with a previous report [22]. Notably, sulcal features and cortical

features may reflect brain atrophy in similar aspects. When comparing classification perfor-

mances that use sulcal features and cortical features separately, there was no significant differ-

ence between them (see Table 2). When combining sulcal features and cortical features as the

original predictors for feature selection, fewer sulcal features were selected. The effectiveness

of the sulcal features might be underestimated when combining sulcal features and cortical fea-

tures because sulcal widening could be associated with cortical thinning at the same time

[42,49]. However, it is interesting that as shown in Tables 4 and 6, the g-SI was always selected

when using two different combinations of feature sets. The g-SI appeared to be a superior

imaging feature in the classification because it reflected a global change in the human cortex.

In addition to the g-SI, we noticed that the Sylvian fissure was also more sensitive in separating

subjects with early-stage AD from NC than the other four individual sulci.

Using the same modalities or combinations of features, the three different classifiers

achieved classifications close in accuracy, sensitivity, specificity and AUC, suggesting that neu-

roimaging features may play a more important role than classifiers of different algorithms in

the diagnosis of early-stage AD. However, the accuracy, sensitivity and specificity of the classi-

fication were not satisfactory for clinical use, and future research should focus on the selection

of sensitive imaging, cognition, and clinical features as well as features in other domains to

improve the classification performance in order for this technique to eventually be used for

clinical applications.

It is worth noting that the hippocampus, amygdala, parahippocampus, precuneus, supra-

marginal cortex, entorhinal cortex, g-SI and Sylvian fissure showed significant differences

between normal controls and early-stage AD patients. The hippocampus plays an important

role in memory and spatial navigation [50–52]. Atrophy of the hippocampus is considered an

important biomarker of memory impairment and is related to early-stage AD [53,54]. The

amygdala is considered to be related to the processing of memory and emotional function

[55,56]. Amygdala atrophy can also be a characteristic of AD [57,58]. Previous reports have
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suggested that individuals with early-stage AD have lower levels of global cortex gyrification,

which were measured by the g-SI [22]. In addition, previous reports have shown that among

all the sulci, the Sylvian fissure exhibits the largest increase in width between normal cognition

individuals and mild AD patients [22]. According to these findings, the features that were

selected using the Information Gain method can be explained by the biological and pathologi-

cal changes in AD.

Sylvian fissure is the sulcus that separates the frontal and temporal lobes. Post-mortem

studies reported that AD-associated widening specifically of the superior frontal and superior

temporal sulci [59,60]. Furthermore, one of our own earlier studies found that Sylvian fissure

exhibited the largest increase in width between individuals with normal cognition and those

with mild AD [22]. As the most discriminating feature in our current study, we found that Syl-

vian fissure could be a useful neuroanatomical marker of early-stage AD.

A limitation of our study is that the individuals were classified using CDR scale. While the

CDR is a scale used to characterize six domains of cognitive and functional performance appli-

cable to Alzheimer disease and related dementias, it is not specific for characterizing dementia

of the Alzheimer’s type (DAT) [61]. The OASIS dataset we analyzed had a global CDR of 0 for

cognitively normal, and CDRs of 0.5 and 1 for very mild, and mild dementia respectively.

There was no DAT with OASIS.

In conclusion, our experiments showed that sulcal measures could be useful neuroanatomi-

cal markers in differentiating early-stage AD and normal controls. The g-SI and Sylvian fissure

were the most significant features among the sulcal measures that we employed. Although sul-

cal measures did not perform better than other commonly used neuroimaging indices, the

results indicated that adding sulcal measures could improve the classification performance.

Our study also demonstrated that there were no significant differences in the final classifica-

tion between the three different classifiers. Among all of the features investigated, the hippo-

campus, amygdala, parahippocampus, precuneus, supramarginal cortex, entorhinal cortex, g-

SI and Sylvian fissure width were the most sensitive for early-stage AD detection. These fea-

tures could therefore help understand the pathology of this condition in clinical applications.
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