
RESEARCH ARTICLE

A de novo loss-of-function GRIN2A mutation

associated with childhood focal epilepsy and

acquired epileptic aphasia

Kai Gao1☯, Anel Tankovic2☯, Yujia Zhang1, Hirofumi Kusumoto2, Jin Zhang2¤,

Wenjuan Chen2,3, Wenshu XiangWei1, Gil H. Shaulsky2, Chun Hu2, Stephen F. Traynelis2,4,

Hongjie Yuan2,4*, Yuwu Jiang1,5*

1 Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing, China,

2 Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, United States of America,

3 Department of Neurology, Xiangya Hospital, Central South University, Changsha, China, 4 Center for

Functional Evaluation of Rare Variant (CFERV), Emory University School of Medicine, Atlanta, GA, United

States of America, 5 Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China

☯ These authors contributed equally to this work.

¤ Current Address: Department of Neurology, Shanxi Medical University First Hospital, Taiyuan, China

* hyuan@emory.edu (HY); jiangyuwu@bjmu.edu.cn (YJ)

Abstract

Objective

N-methyl-D-aspartate receptors (NMDAR) subunit GRIN2A/GluN2A mutations have been

identified in patients with various neurological diseases, such as epilepsy and intellectual

disability / developmental delay (ID/DD). In this study, we investigated the phenotype and

underlying molecular mechanism of a GRIN2A missense mutation identified by next genera-

tion sequencing on idiopathic focal epilepsy using in vitro electrophysiology.

Methods

Genomic DNA of patients with epilepsy and ID/DD were sequenced by targeted next-genera-

tion sequencing within 300 genes related to epilepsy and ID/DD. The effects of one missense

GRIN2A mutation on NMDAR function were evaluated by two-electrode voltage clamp cur-

rent recordings and whole cell voltage clamp current recordings.

Results

We identified one de novo missense GRIN2A mutation (Asp731Asn, GluN2A(D731N)) in a

child with unexplained epilepsy and DD. The D731N mutation is located in a portion of the

agonist-binding domain (ABD) in the GluN2A subunit, which is the binding pocket for agonist

glutamate. This residue in the ABD is conserved among vertebrate species and all other

NMDAR subunits, suggesting an important role in receptor function. The proband shows

developmental delay as well as EEG-confirmed seizure activity. Functional analyses reveal

that the GluN2A(D731N) mutation decreases glutamate potency by over 3,000-fold, reduces

amplitude of current response, shortens synaptic-like response time course, and decreases

channel open probability, while enhancing sensitivity to negative allosteric modulators,
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including extracellular proton and zinc inhibition. The combined effects reduce NMDAR

function.

Significance

We identified a de novo missense mutation in the GRIN2A gene in a patient with childhood

focal epilepsy and acquired epileptic aphasia. The mutant decreases NMDAR activation

suggesting NMDAR hypofunction may contribute to the epilepsy pathogenesis.

Introduction

N-methyl-D-aspartate receptors (NMDARs), ligand-gated cation channels, mediate the slow

component of excitatory synaptic transmission [1]. NMDARs are heterotetramers composed

of two glycine-binding GluN1 subunits and two glutamate-binding GluN2 subunits [1]. Bind-

ing of both agonists is required for activation and results in a conformational change leading

to the opening of a cation-selective transmembrane pore that catalyzes an influx of calcium

and sodium at resting potentials [2,3]. The GluN1 subunit is expressed ubiquitously through-

out the brain, whereas the expression of four GluN2 subtypes (A-D) varies spatially and tem-

porally. Messenger RNA for GluN2A and GluN2C is expressed after birth, and their

expression levels appear to increase with age. By contrast, GluN2B and GluN2D subunits are

expressed prenatally at an early stage of life, and decreases in most brain areas with age [4].

NMDARs play important roles not only in normal brain function, including learning, mem-

ory, synaptic plasticity, motor and sensory processes, and nervous system development, but

also in a wide range of neurological diseases, such as epilepsy, Huntington’s disease, and Par-

kinson’s disease, Alzheimer’s disease, autism, and schizophrenia [5–12].

Recently, pathogenic NMDARs mutations have been identified in epilepsy, developmental

delay, intellectual disability, autism, attention deficit hyperactivity (ADHD), and schizophre-

nia [13–20]. The GRIN2A gene encoding the GluN2A subunit has been suggested to constitute

a locus for mutations in a subset of patients with early-onset seizures [19]. Several case-control

studies have identified mutations in the GRIN2A gene in patients with different forms of epi-

lepsy, including early-onset epileptic encephalopathy, continuous spike-and-waves during

slow-wave sleep syndrome (CSWSS), Landau-Kleffner syndrome (LKS), and Rolandic epilepsy

[13,15,18,21–24].

In this study, next generation sequencing identified a GRIN2Amissense mutation

c.2191G>A (p.Asp731Asn, hereafter referred to as GluN2A-D731N) from a pediatric

patient diagnosed with epilepsy and DD. The patient’s clinical features were summarized

and compared with the two previously reported patients with the same mutation. The

influence of the mutation on NMDA receptor function was evaluated here electrophysio-

logically in vitro by using two-electrode voltage clamp current recordings and whole cell

voltage clamp current recordings.

Materials and methods

Ethics statement

Written informed consent was obtained from the parents of all the patients. This study was

approved by the Peking University First Hospital Medical Ethics Committee. All data of this

study were analyzed anonymously.
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Patient’s information

The patient with GRIN2Amutation was collected from the Department of Pediatrics, Peking

University First Hospital in 2013. This patient was clinically diagnosed as having epilepsy and

ID/DD of unknown origin. Nevertheless, it was strongly suspected that the etiology of these

patients’ diseases was genetic, as there was: (1) no definite perinatal brain injury; (2) no hyp-

oxia, ischemia, infection of the central nervous system or cranial trauma; (3) no evidence of

typical inherited metabolic disorders or specific neurodegenerative disorders based on clinical

features, neuroimaging or blood/urinary metabolic diseases screening; (4) normal routine

karyotyping.

Genetic analysis

We constructed a custom-designed panel capturing the coding exons of 300 genes associated

with epilepsy and IDDs, including GRIN2A [25]. This panel was synthesized using the Agilent

SureSelect Target Enrichment technique, containing a total of 11,417 probes covering 1.285

Mbp. Targeted next generation sequencing (NGS) was subsequently performed on an Illumina

GAIIx platform (Illumina, San Diego, CA, USA) using a paired-end sequencing of 110 bp to

screen for mutations. Image analysis and base calling were performed by RTA software (real-

time analysis, Illumina) and CASAVA software v1.8.2 (Illumina). After marking duplicate

reads and filtering out reads of low base quality score using the Genome Analysis Tool kit

(GATK), clean paired-end reads were aligned to GRCh27/hg19 using BWA software (Pitts-

burgh Supercomputing Center, Pittsburgh, PA, USA). In addition to insertion-deletions

(indels) and single-nucleotide polymorphisms (SNPs) identified using the GATK, variants

were annotated using ANNOVAR. At last, we performed validation and parental origin analy-

ses for the mutation by conventional Sanger sequencing.

Site-directed mutagenesis, RNA synthesis, and injection

All in vitro studies were conducted according to the guidelines of Emory University. Mutagen-

esis was performed using the QuikChange protocol with PfuDNA polymerase (Stratagene La

Jolla, CA, USA) to replicate the parental DNA strand with the desired mismatch incorporated

into the primer. Methylated parental DNA was digested with Dpn I for 3 hours at 37˚C and

the nicked mutant DNA was transformed into TOP10 Competent Cells (Life Tech, Grand

Islands, NY, USA). Bacteria were spun down and prepared using the Qiagen Qiaprep Spin

Miniprep kit (Hilden, Germany). Sequences were verified through the mutated region using

dideoxy DNA sequencing (Eurofins MWG Operon, Huntsville, AL, USA). The plasmid vector

for wild type (WT) human GluN1-1a (hereafter GluN1) and GluN2A was pCI-neo [22] (Gen-

Bank accession codes: NP_015566, NP_00082).

To investigate the effect of a single copy mutant on the channel function, the constructs of

tri-heteromeric receptors were generated using rat GluN1-1a (hereafter GluN1) and GluN2A

with modified C-terminal peptide tags. As described by Hansen et al. [26], two peptide tags

(C1 and C2) were generated and allowed to form a coiled-coil interaction that masked the dily-

cine KKTN retention motif. These C-terminal retention signals were fused to the wild type

and mutant GluN2A receptors to generate GluN2A-C1, GluN2A-C2, GluN2A-C1-D731N,

GluN2A-C2- D731N. Only receptors with one copy of a C1 tag and one copy of a C2 tag will

mask the endoplasmic reticulum retention signal and reach the cell membrane surface. Co-

expressing with rat GluN1 with C1- and C2-tagged GluN2A yielded receptors with the follow-

ing subunit combinations: GluN1/GluN2A-C1/GluN2A-C2 (referred to 2A/2A), GluN1/Glu-

N2A-C1-D731N/GluN2A-C2 (referred to D731N/2A), and GluN1/GluN2A-C1-D731N/

GluN2A-C2-D731N (referred to D731N/D731N).

GRIN2A mutation in focal epilepsy
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Complementary DNA (cDNA) was linearized using FastDigest (Thermo, Waltham, MA,

USA) restriction digestion at 37˚C for 1 hour. Complementary RNA (cRNA) was made from

linearized cDNA for wild type and mutants using the mMessage mMachine T7 kit (Ambion,

Austin, TX, USA). Injections of cRNA into Xenopus Laevis oocytes (Ecocyte, Austin, TX,

USA) was performed as previously described [27]. Oocytes were held in Barth’s solution con-

taining (in mM) 88 NaCl, 2.4 NaHCO3, 1 KCl, 0.33 Ca(NO3)2, 0.41 CaCl2, 0.82 MgSO4, 5 Tris/

HCl (pH 7.4 with NaOH) supplemented with 100 μg/mL gentamycin, 40 μg/mL streptomycin,

and 50 μg/mL penicillin at 15–19˚C. Injection of cRNA was done in a 1:2 GluN1:GluN2A ratio

for the di-heteromeric receptors and 1:1:1 GluN1:GluN2A-C1:GluN2A-C2 ratio for the tri-

heteromeric receptors by weight with injections totaling 5–10 ng of cRNA in water, with 50 nL

injected per oocyte. Control experiments evaluating the escape of non-triheteromeric recep-

tors from the ER retention were performed [26]. This evaluation estimated that <3% of the

current responses in the tri-heteromeric experiments were mediated by non-triheteromeric

receptors.

Two-Electrode Voltage Clamp Current (TEVC) recordings

Voltage clamp recordings were performed 2–4 days post-injection at room temperature

(23˚C). The extracellular recording solution contained (in mM) 90 NaCl, 1 KCl, 10 HEPES,

0.5 BaCl2, and 0.01 EDTA (pH 7.4 with NaOH). Solution exchange was computer controlled

through an 8-valve positioner (Digital MVP Valve, Hamilton, CT, USA). Oocytes were placed

in a dual track chamber that shared a single perfusion line, allowing simultaneous recording

from two oocytes. All concentration-response solutions were made in the extracellular record-

ing solution. Voltage control and data acquisition were performed with a two-electrode volt-

age-clamp amplifier (OC725, Warner Instruments, Hamden, CT, USA). The voltage electrode

was filled with 0.3 M KCl and the current electrode with 3 M KCl. Oocytes were held under

voltage clamp at -40 mV unless otherwise indicated. For the experiments with glutamate

concentration� 3 mM, osmolality was compensated for solutions with high concentrations of

glutamate by adding sodium isethionate; the pH was corrected after addition of glutamate.

Experiments assessing inhibition by extracellular Zn2+ were performed in the presence of tri-

cine (10 mM) at pH 7.3 with voltage held at -20 mV. ZnCl2 solutions (10 mM) were made

fresh daily in deionized nuclease-free water and added directly to recording solution to obtain

the desired nominal Zn2+ concentration25. Experiments assessing the sensitivity of the channel

to Mg2+ blockade were performed at a holding potential of -60 mV. The effects of Mg2+, pro-

ton, zinc, (+)MK801 maleate (R&D Systems, Inc., Minneapolis, MN, USA), and MTSEA

(2-aminoethyl methanethiosulfonate hydrobromide, Toronto Research Chemicals, Ontario,

Canada) were evaluated on the current response to 4.0–30,000 μM glutamate and 100 μM gly-

cine. For the experiments of MK801 and MTSEA, the EC50 concentrations of glutamate were

used to activate corresponding receptors. All chemicals were from Sigma-Aldrich unless other-

wise stated.

Whole-cell voltage-clamp recordings from transfected HEK cells

HEK293 cells (CRL 1573, ATCC, Manasas, VA, USA) were plated on glass coverslips coated

with 0.1 mg/ml poly-D-lysine and cultured at 37˚C in standard media (5% CO2 in DMEM/

GlutaMax with 10% fetal bovine serum and 10 U/ml penicillin-streptomycin). The calcium

phosphate method [28] was used to co-transfect HEK293 cells with cDNA encoding GFP,

GluN1, and GluN2A or GluN2A(D731N). After 24 hr, whole-cell voltage clamp current

recordings were performed at 23˚C at a holding potential of -60 mV using an Axopatch 200B

amplifier (Molecular Devices, Sunnyvale, CA, USA) in recording solution containing (in mM)

GRIN2A mutation in focal epilepsy
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150 NaCl, 10 HEPES, 30 D-mannitol, 3 KCl, 1.0 CaCl2, and 0.01 EDTA (pH 7.4). Recordings

were made by recording electrodes (3–5 MO) filled with (in mM) 110 D-gluconate, 110

CsOH, 30 CsCl, 5 HEPES, 4 NaCl, 0.5 CaCl2, 2 MgCl2, 5 BAPTA, 2 NaATP, and 0.3 NaGTP

(pH 7.35). Rapid solution exchange was achieved by using a two-barrel theta glass pipette con-

trolled by a piezoelectric translator (Siskiyou Corporation, Grants Pass, OR, USA). Open-tip

solution exchange time was < 1 ms. The data were acquired using Clampex 10 (Molecular

Devices, Sunnyvale, CA, USA). Time constants describing the deactivation time course were

determined using ChanneLab (Synaptosoft, Decatur, GA, USA) to fit a two-component expo-

nential function to the current response time course following glutamate removal,

AmplitudeðtÞ ¼ AmpFAST � expð� time=tFASTÞ þ AmpSLOW � expð� time=tSLOWÞ Equation� 1

where AmpFAST and AmpSLOW are the amplitude of the fast and slow components.

Data and statistical analysis

The EC50 value is the concentration of agonist that elicits a half maximal excitatory response,

and was determined by

Response ¼ 100%=ð1þ ðEC50=½agonist�Þ
nH
Þ Equation� 2

where nH is the Hill slope of the response curve. The IC50 value is the concentration of antago-

nist that elicits a half-maximal inhibitory response, and was calculated using

Response ¼ ð100% � minimumÞ=ð1 þ ð½concentration�=IC50Þ
nH
Þ þminimum Equation� 3

where minimum is the residual response at saturating concentrations of inhibitor (Mg2+, pro-

tons, or Zn2+).

The channel open probability (POPEN) of the mutant receptors was assessed using the kinet-

ics of MK801 inhibition by TEVC recordings. The onset of MK801 inhibition was fitted to a

single exponential function (ChanneLab, Synaptosoft, Decatur, GA, USA) to determine tauon
according to

AmplitudeðtÞ ¼ Amplitude� expð� time=tauonÞ Equation� 4

POPEN was estimated from

POPENðmutantÞ ¼ POPENðWTÞ � konðmutantÞ=konðWTÞ Equation� 5

Assuming that the binding of MK801 is irreversible over the time course of the experiment,

the microscopic association rate for MK801, kon, is 1/(tauon × [concentration]), where concen-
tration was 0.2 μM, and POPEN for WT receptors was taken to be 0.278 for di-heteromeric

receptors (WT 2A; calculated POPEN: 0.278 ± 0.017 from 252 ± 16% of MTSEA potentiation by

Equation-6 below, n = 13) and 0.370 for tri-heteromeric receptors (WT 2A/2A; Supplemental

Fig 2 in [29]) in the presence of saturating concentrations of agonists (� 100 μM for both glu-

tamate and glycine)

The channel open probability was also evaluated and calculated by the degree of MTSEA

potentiation on the currents evoked by EC50 concentrations of glutamate and 100 μM glycine

by using [30,31]:

POPEN ¼ ðgMTSEA=gCONTROLÞ � ð1=PotentiationÞ Equation� 6

where Potentiation is the current after MTSEA treatment divided by the current before treat-

ment and γ is the chord conductance measured before and after MTSEA treatment.

GRIN2A mutation in focal epilepsy
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Statistical significance was computed using unpaired t test (two-tailed) or one way ANOVA

with post hoc Tukey test, with p< 0.05 considered significant. Data are presented as

mean ± standard error of the mean (SEM). Error bars represent SEM unless otherwise stated.

Results

Identification of GluN2A(D731N) mutation

We identified a de novo missense mutation c.2191G>A (p.Asp731Asn, D731N; Fig 1A) in a

patient with focal epilepsy and acquired epileptic aphasia, a heterozygous GRIN2Amutation in

a portion of the gene that is intolerant to change. The result is an aspartic acid to asparagine

missense mutation at residue 731 in the extracellular agonist-binding domain (ABD) of the

GluN2A subunit. This area is highly conserved across different vertebrate species as well as

among all of the other NMDAR subunits (Fig 1B), indicating a possible important role in

NMDAR function. The segment of the polypeptide chain harboring residue 731, often referred

to as the S2 region, largely forms membrane-proximal half of the bi-lobed clamshell responsi-

ble for binding agonist, and is composed of the polypeptide chain between the M3 and M4

transmembrane domains (Fig 1C). The residue Asp at position 731 resides within the gluta-

mate binding pocket (Fig 1D), and the substitution of Asn at this position may interfere gluta-

mate ligand binding.

Patient information

The patient was an 11-year-old girl with partial seizures that started at four years of age, with

seizures restricted to periods of sleep. Until now, she has been treated with four antiepileptic

drugs (AEDs), including valproate and oxcarbazepine, which had no obvious effect. In addition,

levetiracetam and clonazepam partially controlled the seizures. She manifested developmental

delay from one-year-old and started motor and cognitive function regression, especially verbal

dyspraxia at four-year-old after seizures happened. She also suffered from paroxysmal weakness

of her right lower limb and gait abnormality. Her prenatal history was normal and neurological

examination was unremarkable. Her electroencephalograph (EEG) recordings (at 6 years)

showed that background activities were slow, and that spike and spike-wave complexes were

present in bilateral rolandic regions, with a significant increase during sleep; discharge index

was about 85% in non-rapid eye movement (NREM) sleep (Fig 2). Her cranial magnetic reso-

nance imaging (MRI) was normal (data not shown). Two additional patients with the same mis-

sense mutation have separately been reported [15,34], however no functional analysis on the

effects of this mutation were performed on human NMDARs. Thus, a total of three unrelated

non-familial patients that have been identified with the same missense mutation and a similar,

if not identical, presentation of symptoms including seizures, cognitive deficits, and motor defi-

cits (Table 1).

GluN2A(D731N) mutation changes agonist glutamate potency

Two-electrode voltage clamp current recordings from Xenopus laevis oocytes (Fig 3A and 3B)

were performed to evaluate the effect of the GluN2A mutation on NMDAR function. Concen-

tration-response curves (Fig 3) were generated for the endogenous NMDAR co-agonists gluta-

mate and glycine to evaluate whether the mutation changes agonist potency. The analyses of

these data show that the GluN2A(D731N)-containing NMDA receptors had a significantly

lower glutamate potency, with the EC50 value being increased from 3.7 μM in WT GluN2A

receptors to about 13.7 mM in GluN2A(D731N)-containing NMDA receptors (Fig 3C; Table 2)

when the concentration-response curves were fitted (dash lines in Fig 3) with predicted maximal

GRIN2A mutation in focal epilepsy
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Fig 1. Genetic and protein changes of GRIN2A and GluN2A. (A) Family pedigree and genotypes (indicated by *) reveal a de novo

mutation (affected proband is indicated by arrow; parentage was confirmed by Sanger sequencing). (B) Schematic representation of

GluN2A subunit (asterisk indicates the position of the D731N mutation). The residue aspartic acid at position 731 is highly conserved across

vertebrate species, and other GluN subunits. (C) A homology model of GluN1/GluN2A complex built from the GluN2B crystallographic data

[32,33] with Asp731 shown as spacefill in red. The red asterisk in the cartoon illustrating the domain arrangement of an individual GluN

subunit (right panel) shows the position of Asp731 in the agonist-binding domain (S2, ABD). Panel D shows glutamate binding pocket

depicting the position of D731 (in GREEN) and D731N (in RED) in the GluN2A ABD structure in complex with ligand glutamate (in CYAN).

doi:10.1371/journal.pone.0170818.g001
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response since the saturating glutamate concentrations are unknown. There is also a modest, but

significant, decrease in glycine potency from an EC50 value of 1.0 μM in WT NMDAR receptors

to 1.7 μM in GluN2A (D731N)-containing NMDARs (Fig 3C and 3D; Table 2). These data sug-

gest that GluN2A(D731N) mutation decreases the potency of glutamate by over 3,000-fold, sug-

gesting high concentrations of glutamate are needed in the brain to activate the NMDARs

harboring this mutation.

Since the mutation in these patients is heterozygous and the functional NMDAR complex

contains two copies of GluN2 subunit, we expect some NMDARs in these individuals may have

a single copy of mutant GluN2A(D731N). We therefore engineered a pair of modified GluN2A

subunits that contain complementary sets of coiled-coil domains followed by an endoplasmic

reticulum retention signal to control receptor trafficking and subunit composition on the cell

Fig 2. EEG of patient 6245 at 6y7m. (A) During awake period, spike and spike-wave complexes (arrow

heads) in Rolandic region, more obvious on the left side (blue). (B) During sleep period, NREM (non-rapid eye

movement) index was about 85%.

doi:10.1371/journal.pone.0170818.g002
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surface [26,34]. We generated receptors containing 0, 1 and 2 copies of the GluN2A(D731N) on

the cell surface and repeated the experiments that establish the concentration-effect relationship

to investigate the effects of a single copy of GluN2A(D731N) on agonist potency. The data

showed that a single copy of GluN2A(D731N) produced an intermediate, but strong decrease

in glutamate potency (2A/2A: 5.7 ± 0.5 μM; D731N /2A: 6,451 ± 260 μM; D731N/D731N:

30,469 ± 438 μM) (Fig 3F; Table 2). Again, the concentration-response curves were fitted (dash

lines in Fig 3F) with predicted maximal response since the saturating glutamate concentrations

could not be determined. Similar to the di-heteromeric mutant receptors (2A-D731N),

NMDARs that contained one or two copies of GluN2A(D731N) showed a mild, but significant

reduction in glycine potency (2A/2A: 1.3 ± 0.1 μM; D731N /2A: 2.1 ± 0.1 μM; D731N/D731N:

2.0 ± 0.2 μM) (Fig 3F; Table 2). These results confirm that a single copy of GluN2A(D731N)-

containing NMDARs can significantly alter receptor function.

GluN2A(D731N) mutation changes sensitivity to negative allosteric

modulators

Negative regulation by endogenous extracellular magnesium, zinc and protons is an important

feature of NMDAR function [1]. The sensitivity of the mutant receptors to extracellular Mg2+,

Zn2+, and H+ was evaluated by generating concentration-response curves using two electrode

voltage clamp current recordings to calculate the concentration required to produce half maxi-

mal inhibition of responses (IC50).

Analysis revealed that GluN2A(D731N)-containing receptors significantly increase the pro-

ton sensitivity as measured by IC50 corresponding to pH 7.3 for the mutant, compared to pH

6.8 of WT GluN2A (Fig 4A; Table 2). The di-heteromeric mutant receptors showed signifi-

cantly less current remaining at pH 6.8 compared to pH 7.6 (34%) than the WT receptors

(54%; Fig 4B; Table 2), indicating an enhanced proton inhibition on the mutant receptors.

One-copy and two-copy D731N-containing NMDARs also showed significantly less current

remaining at pH 6.8 compared to pH 7.6 than the WT receptors (2A/2A: 59%, D731N/2A:

37%, and D731N/2A: 33%). In addition, the GluN2A(D731N)-containing receptors showed

an increased degree of maximal inhibition by 300 nM Zn2+, which was 58% in GluN2A

Table 1. Summary of patients’ information.

Patient 1 Patient 2 Patient 3

Mutation De novo GRIN2A c.2191G>A (p.

Asp731Asn)

Inherited GRIN2A c.2191G>A (p.Asp731Asn) De novo GRIN2A c.2191G>A (p.

Asp731Asn)

Family

History

None Same mutation in mother only had VD Same mutation in daughter

Diagnoses aRE, VD aRE, VD LKS

Seizure Type PS GTCS PS, GTCS (resolved in late

childhood)

Onset Age 4 yrs 2 yrs 5 yrs

ID/DD Motor and cognitive developmental

delay, VD

Intellectual, motor and cognitive regression, Psychomotor

and language delay

N/A

EEG Discharges in rolandic region, ESES CTS Sharp slow-wave complexes in

temporal lobes

MRI/CT normal N/A normal

Source this study Lesca et al., Nat Genet 2013 Dyment et al., Clin Genet 2015

aRE: atypical Rolandic Epilepsy; CTS: cerebrotemporal spikes; ESES: Electrical Status Epilepticus in sleep; GTCS: General tonic-clonic seizures; LKS:

Landau-Kleffner Syndrome; N/A: not available; PS: partial seizures; VD: verbal dyspraxia.

doi:10.1371/journal.pone.0170818.t001
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Fig 3. GluN2A(D731N) reduces the agonist potency. (A,B) Representative TEVC recordings obtained from

oocytes expressing WT GluN1/GluN2A (WT 2A) receptors (A) and GluN1/GluN2A(D731N) (2A-D731N) receptors

(B) in which the currents were evoked by increasing concentrations (μM) of glutamate (in the presence of 100 μM

glycine) at the holding potential of -40 mV. (C,D) Composite concentration-response curves of glutamate and glycine

for di-heteromeric receptors GluN1/GluN2A (WT 2A) and GluN1/GluN2A-D731N (2A-D731N). (E,F) Composite

concentration-response curves of glutamate and glycine for tri-heteromeric receptors GluN1/GluN2A/GluN2A (2A/

2A), GluN1/GluN2A(D731N)/GluN2A (D731N/2A) and GluN1/GluN2A(D731N)/GluN2A(D731N) (D731N/D731N).

GRIN2A mutation in focal epilepsy
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(D731N) compared to 36% for the WT receptors (Fig 4C; Table 2). Mg2+ potency was not sig-

nificantly affected by GluN2A(D731N) (Fig 4D; Table 2). Altogether, these results suggest that

lower concentrations of negative allosteric modulators Zn2+ and H+ can inhibit the mutant

NMDAR receptors harboring D731N compared to the WT receptors, further contributing to

NMDAR hypofunction.

GluN2A(D731N) mutation changes synaptic-like response time course

The response time course following rapid removal of glutamate from NMDARs has been sug-

gested to control the time-course of the NMDAR component of the EPSC (excitatory postsyn-

aptic current) [35]. To evaluate the effects of GluN2A(D731N) on the deactivation time course,

we measured current responses following glutamate removal using a rapid solution exchange

system in whole cell voltage clamp current recordings from transiently transfected HEK293

cells expressing WT GluN1/GluN2A or GluN1/GluN2A(D731N). GluN2A(D731N) signifi-

cantly reduced amplitude of current response to 1.5 sec application (prolonged application) of

30 mM glutamate in the presence of 100 μM glycine (5.1 pA/pF vs. 235 pA/pF of WT; Fig 5A;

Table 3), which is consistent with the effect of this mutation on receptor surface trafficking [20].

The mutant receptors indicated a shortened glutamate deactivation time course fitted by two

exponential components, with a weighted τw of 18 ms compared to 72 ms for WT GluN1/

GluN2A (p< 0.01, unpaired t-test; Fig 5B; Table 3). Charge transfer during synaptic

(C,E) The composite glutamate (in the presence of 100 μM glycine) concentration-response curves reveal a

significant decrease in glutamate potency in both di-heteromeric (C) and tri-heteromeric (E) GluN2A(D731N)-

containing NMDARs compared to wild type receptors. A single copy D731N-containing receptor (D731N/2A) (E)

showed an intermediate but a dominantly negative effect on glutamate potency. The traces for D731N-contianing

receptors (dash lines in panels C and E) were fitted by predicted glutamate concentrations of maximal responses.

(D,F) The composite glycine (in the presence of 3–30 mM glutamate) concentration-response curves indicate a mild,

but significantly reduced glycine potency in both di-heteromeric (D) and tri-heteromeric (F) GluN2A(D731N)

receptors. Error bars are SEM, and are shown when larger than symbol size.

doi:10.1371/journal.pone.0170818.g003

Table 2. Summary of pharmacological data for GluN2A(D731N).

di-heteromeric receptors tri-heteromeric receptors

WT 2A 2A-D731N WT 2A/2A D731N/2A D731N/D731N

Glutamate, EC50 (n) 3.7 ± 0.1 (7) 13,655 ± 199 (11) ¥* 5.7 ± 0.5 (10) 6,451 ± 260 (16) ¥ # 30,469 ± 438 (11) ¥ # %

Glycine, EC50 (n) 1.1 ± 0.1 (10) 1.7 ± 0.2 (10)* 1.3 ± 0.1 (8) 2.1 ± 0.1 (12) # 2.0 ± 0.2 (8) #

Proton, IC50 6.8 (5) 7.3 (6) — — —

Proton, % (n)£ 54 ± 1.4 (10) 34 ± 1.7 (8)* 59 ± 1.8 (11) 37 ± 1.8 (8) # 33 ± 3.9 (8) #

Zinc, IC50 (n) 87 ± 12 (5) 20 ± 5.6 (8)* — — —

Zinc, max% (n)$ 36 ± 1.5 (5) 58 ± 2.2 (8)* — — —

Mg2+, IC50 (n)& 31 ± 4.1 (20) 25 ± 4.1 (15) — — —

The data were generated by TEVC recordings on Xenopus oocytes and were expressed as mean ± s.e.m. (n) is the number of cells recorded from.
¥ fitted EC50 values by predicted glutamate concentrations of maximal responses

* p < 0.01, compared with WT 2A, unpaired t-test
# p < 0.01 compared with WT 2A/2A
% p < 0.01 compared with D731N/2A, one way ANOVA, post hoc Tukey test
£ percentage current at pH 6.8 compared to the pH 7.6
$ maximal inhibition at 300 nM Zn2+

& holding at -60 mV

doi:10.1371/journal.pone.0170818.t002
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transmission can be determined from the integral of experimentally recorded EPSCs, which can

be approximated by an instantaneously rising and exponentially decaying function. The integral

of this function is the product of the amplitude and the weighted time constant describing the

exponential decay. We estimate the synaptic charge transfer by using the product of the response

amplitude and deactivation time courses, which was markedly decreased by over 180-fold for

GluN2A(D731N) compared to wild type GluN2A (Table 3). To mimic synaptic events, we also

measured current responses by briefly moving the cell into the agonist solution for 5 millisec-

onds (brief application). Similar to the prolonged (1.5 sec) application of glutamate, GluN2A

(D731N) had a faster deactivation time course with a τW of 13 ± 2.0 ms compared to 55 ± 8.4 ms

for WT GluN2A (p< 0.01, unpaired t-test; Fig 5C and 5D). These data suggest NMDARs that

contained GluN2A(D731N) have a shortened deactivation response time course, and thus a

shortened time course of the NMDAR component of the EPSC at synapses.

Fig 4. GluN2A(D731N) enhances sensitivity to endogenous proton and zinc ions. (A) The composite

proton concentration-response curves show an enhanced sensitivity of the GluN2A(D731N)-containing

receptors to proton compared to the WT NMDA receptors; the abscissa shows hydrogen ion activity. (B)

Summary of proton sensitivity of WT GluN2A and mutant receptors, evaluated by current ratio at pH 6.8 to pH

7.6 (in the presence of 30 mM glutamate and 100 μM glycine). Di-heteromeric (h2A-D731N), one-copy and

two-copy mutant tri-heteromeric (D731N/2A and D731N/D731N) receptors show a decreased current ratio,

indicating enhanced proton sensitivity. (C) The composite zinc concentration-response curves show an

enhanced sensitivity of the GluN2A(D731N)-containing receptors to zinc compared to the WT NMDA

receptors. (D) Composite Mg2+ concentration-response curves for di-heteromeric receptors indicate a similar

Mg2+ inhibition of GluN2A(D731N)-containing receptors. The data were generated by TEVC recordings on

Xenopus oocyte at holding potential of -40 mV for proton concentration-response curves, and -20 mV for zinc,

and -60 mV for Mg2+ concentration-response curves. Fitted parameters are in Table 2.

doi:10.1371/journal.pone.0170818.g004
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Fig 5. GluN2A(D731N) decreases current amplitudes and shortens synaptic-like response time

course. The representative current response time course was generated by the whole cell voltage clamp

recording (VHOLD -60 mV) of GluN1/GluN2A (WT 2A, in BLACK) and GluN1/GluN2A-D731N (2A-D731N, in

RED) receptor responses to rapid application of long (1.5 sec) (A,B) and brief (5 ms) (C,D) application of 30

mM glutamate. Panels B and D showed normalized responses to the WT response at the moment glutamate

were removed. The mutant D731N-containing receptors showed an accelerated deactivation time course

(right panel in B,D). Saturating glycine (100 μM) was present in all of solutions. Fitted parameters describing

the response time course are given in Table 3.

doi:10.1371/journal.pone.0170818.g005

Table 3. Summary of response time course for GluN2A(D731N).

WT 2A 2A-D731N

Amplitude (peak, pA/pF) 235 ± 46 5.1 ± 1.1 *

Amplitude (SS, pA/pF) 126 ± 28 4.8 ± 1.0 *

ISS / IPEAK 0.56 ± 0.01 0.94 ± 0.01 *

10–90% Rise time (ms) 4.9 ± 0.4 17 ± 2.2 *

τFAST deactivation (ms) 41 ± 3.7 15 ± 2.4 *

τSLOW deactivation (ms) 384 ± 96 37 ± 12 *

%τFAST deactivation 81 ± 6.5 74 ± 6.2 *

τW deactivation (ms)$ 72 ± 9.2 18 ± 2.3 *

Charge transfer, pA x ms/pF 16,984 92 *

n 12 11

The data were generated by whole cell voltage clamp current recordings on transfected HEK293 cells and

were expressed as mean ± s.e.m.
$ The weighted tau was calculated from the Amplitude of the fast and slow components (AmpFAST,

AmpSLOW) by τW = AmpFAST/(AmpFAST+AmpSLOW) × τFAST + AmpSLOW/(AmpFAST+AmpSLOW) × τSLOW

* p < 0.01, compared with WT 2A, unpaired t-test

doi:10.1371/journal.pone.0170818.t003
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GluN2A(D731N) mutation changes channel open probability

To evaluate the effects of this mutant on channel open probability, the receptors were activated

by EC50 concentrations of glutamate (4 μM for WT 2A, 13.7 mM for 2A-D731N, 6 μM for 2A/

2A, 6.5 mM for D731N/2A, and 30 mM for D731N/D731N, see Table 2) with saturating con-

centration (100 μM) of glycine. The rate of channel block by 200 nM MK801 was measured

using TEVC recordings from Xenopus oocytes to estimate channel open probability [28,36,37].

The di-heteromeric mutant (2A-D731N) receptors show a slower rate of inhibition, which we

interpret as a decreased channel open probability. We estimate the reduction in open probabil-

ity to be 6.0-fold (0.046 compared to 0.28 of WT 2A; Fig 6A and 6C; Table 4; see Methods). In

NMDARs that contain two copies of the mutation (D731N/D731N), there was a 6.1-fold

reduction in open probability (0.064) compared to the 0.37 of WT 2A/2A. NMDARs with a

single copy of the mutation (D731N/2A) showed 1.5-fold decrease in open probability (0.249)

(Fig 6B and 6C; Table 4).

We further evaluated channel open probability by measuring the degree of MTSEA (200 μM,

closed bar in Fig 6D) potentiation using TEVC recordings from Xenopus oocytes expressing the

WT GluN2A (left panel, Fig 6D) or the mutant GluN2(D731N) (right panel, Fig 6D) coexpressed

with GluN1(A652C) at holding potential of -40 mV. Because the low potency of glutamate at

mutant receptors prevented us from using saturating concentrations of glutamate, we assessed

Fig 6. GluN2A(D731N) decreases channel open probability. (A-C) Representative TEVC recordings from WT and the mutant di-heteromeric and tri-

heteromeric receptors from Xenopus oocytes show the time course of MK801 (0.2 μM) inhibition. The receptors were activated by EC50 concentrations of

glutamate with saturating concentration (100 μM) of glycine at holding potential of -40 mV. The di-heteromeric mutant (2A-D731N) and tri-heteromeric

receptors with two-copies of the mutant subunit (D731N/D731N) showed a prolonged inhibition rate, reflecting a decreased channel open probability. A

single copy mutant subunit (D731N/2A) also produced a mild but significant prolongation in MK801 inhibition rate. (D,E) The channel open probability was

evaluated by measuring the degree of MTSEA (200 μM) potentiation using TEVC recordings from Xenopus oocytes expressing the WT GluN2A (left panel)

or the mutant GluN2A(D731N) (right panel) coexpressed with GluN1(A652C) at a holding potential of -40 mV in presence of EC50 concentrations of

glutamate with saturating concentration (100 μM) of glycine (open bar) and 0.2 mM MTSEA (closed bar). Fitted parameters describing the exponential time

course for MK801 inhibition and calculated open probability are given in Table 4.

doi:10.1371/journal.pone.0170818.g006
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MTSEA potentiation on responses activated by EC50 concentrations of glutamate (4.0 μM gluta-

mate for WT GluN2A and 13.7 mM glutamate for GluN2A(D731N) with 100 μM glycine. Chan-

nel open probability is inversely correlated with the degree of potentiation [30], and thus we

interpret the increase in the current response produced by MTSEA treatment of GluN1(A652C)/

GluN2A(D731N) receptors to reflect a significant decrease in open probability by the D731N

mutation (calculated POPEN 0.05 for 2A-D731N vs. 0.22 for WT 2A; Fig 6E; Table 4). These data

are consistent with the change in the time course of the onset of MK801 inhibition, indicating the

mutant D731N receptors decrease channel open probability.

Discussion

Recent advances in whole exome sequencing have improved affordability of genotyping and

aided in understanding undiagnosed diseases as well as epilepsy syndromes. This has led to

compelling data that NMDAR mutations contribute to epilepsy with studies suggesting that

GRIN2Amutations are associated with 9% of epilepsy-aphasia spectrum disorders and 20% of

Landau-Kleffner Syndrome (LKS), continuous spikes and waves during slow-wave sleep

(CSWS), and atypical rolandic epilepsy (aRE) cases [13–15,29,38]. Monogenic mutations have

been shown to cause epilepsy, especially when mutations occur in genes encoding ion channels

[39].

We describe the functional effects of a GRIN2Amissense mutation in the S2 region of the

glutamate binding domain (LBD) of the GluN2A NMDA subunit found in three unrelated

patients (Table 1). This amino acid change at residue 731 from aspartic acid to asparagine

(D731N) results in the substitution of an uncharged amino acid for a charged amino acid.

According to the crystal structure of the GluN2A [40,41], the residue Glu2A-D731 occupies a

strategic position in close proximity to the glutamate molecule (Fig 1D). Functional analysis of

GluN2A-D731N reveals a drastic decrease in glutamate potency (~3,000-fold). This likely

reflects interactions (a water bridge) between the amino group of the agonist glutamate and

the residue at position 731 [40,42]. The homologous positions of GluN2A-D731 were also

reported to be the critical glycine binding positions in GluN1 [43]. In the GluN1 subunit,

mutation of the homologous position GluN1-D732 to glutamate (D732E), asparagine

(D732N), alanine (D732A), or glycine (D732G) decreased the potency of glycine by over

4,000-fold [43]. No response or very small responses to 10 mM glutamate and plus 10–30 mM

glycine were observed in receptors harboring GluN2A-D731A, GluN2A-D731E,

Table 4. Summary of channel open probability for GluN2A(D731N).

di-heteromeric receptors tri-heteromeric receptors

WT 2A 2A-D731N WT 2A/2A D731N/2A D731N/D731N

1/Tau-MK801, ms-1 0.334 ± 0.026 0.056 ± 0.002 * 0.405 ± 0.04 0.273 ± 0.035 # 0.066 ± 0.016 # %

POPEN (from MK801) 0.278 ± 0.024 0.046 ± 0.002 * 0.370 ± 0.039 0.249 ± 0.032 # 0.064 ± 0.014 # %

n 8 10 8 8 17

MTSEA Potentiation (% of control) 312 ± 17 1541 ± 106 * — — —

POPEN (from MTSEA) 0.222 ± 0.015 0.047 ± 0.003 * — — —

n 10 16 — — —

Evaluated by TEVC recordings on Xenopus oocytes, see Materials and Methods.

The data were expressed as mean ± s.e.m. (n) is the number of cells recorded from.

* p < 0.01, compared with WT 2A, unpaired t-test
# p < 0.01 compared with WT 2A/2A
% p < 0.01 compared with D731N/2A, one way ANOVA, post hoc Tukey test

doi:10.1371/journal.pone.0170818.t004
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GluN2B-D732A, or GluN2B-D732E [42–44]. Mutation of Asp at position 731 may destabilize

the glutamate binding pocket, resulting in a strong decrease of glutamate potency. Decreased

potency for glutamate in the mutant receptor will reduce activation both at the synapse as well

as for extrasynaptic NMDA receptors compared to the WT receptors. The decreased potency

is also expected to accelerate the deactivation of the current responses following glutamate

removal, and thus accelerate the EPSC time course [35, 45]. Interestingly, we also found that

the mutant GluN2A-D731N also enhanced sensitivity to both zinc and protons, consistent

with the strong coupling between downstream mechanisms that mediate proton and Zn2+

inhibition [46,47]. The enhanced sensitivity to negative allosteric modulators may reflect the

enhanced sensitivity of channel opening in NMDARs harboring the D731N mutation to inhi-

bition given the reduced open probability. However, further study is required to explain how

the mutation in the agonist binding domain affects the zinc and proton inhibition. The

increase in zinc and proton inhibition further diminishes activity of the mutant receptor

through enhanced inhibition at physiological concentrations of these negative modulators.

The combination of these two effects will strongly reduce NMDAR activation compared to

WT GluN2A-containing NMDA receptors. Thus, our data suggest that the aspartic acid at

position 731 residues is critical to NMDAR function.

Previously published reports suggest that epilepsy is associated with loss-of-function and

gain-of-function GluN2A mutations [13,15,20–22,29,48], indicating that either enhanced or

reduced NMDAR function could lead to epilepsy. In the brain, the neuronal network is consti-

tuted by excitatory neurons (as glutamatergic neurons) and inhibitory neurons (as GABAergic

neurons). GluN2A/GRIN2A is expressed in both glutamatergic and GABAergic neurons of in

the human fetal cerebral cortex [49] and in GABAergic interneurons in the prefrontal cortex

[50]. Therefore, the alternation of functions and expression levels of GluN2A (caused by

GluN2A mutations) in different neuron types may have different impacts on the balance of

excitation and inhibition in brain circuits, as well as circuit development. This study indicates

that loss-of-function GluN2A mutants may impair the inhibitory effect of GABAergic neurons

and contribute to epilepsy.

The phenotype of all three unrelated patients was marked with developmental delay, partic-

ularly in language. All patients exhibited temporal lobe seizures. For at least one of the patients

(in this study), EEG recordings confirmed seizure activity during sleep. Such encephalopathy

with status epilepticus during sleep (ESES) has been shown to disrupt neural processes local to

the site of activity [51]. Slow-wave activity during sleep is important in learning, with EEG

activity correlated to similar areas in sleep and wakefulness [52]. All three probands experi-

enced rolandic epilepsy from the temporal lobes, an area associated with language function. It

is possible that the normal processes during sleep necessary for language development are per-

turbed by mutant NMDA receptor hypo-activity, disrupting normal circuitry. Further experi-

mentation is required to validate this theory, but there is strong evidence for the importance in

screening for NMDAR mutations in cases of idiopathic epilepsy. This study shows the func-

tional effects of a GRIN2Amutation in a highly conserved portion of the ABD. Such work

could ultimately lead to the identification of a new generation of drugs to mitigate or prevent

the devastating effects of disorders such as LKS and other epilepsy-aphasia spectrum

disorders.

Correlating phenotype to genotype is difficult because many genes may be involved, along

with environmental factors, in expression of seizures. Gene sequencing technology may help

to solve this problem, and has allowed us to identify multiple patients with an identical

GRIN2Amutation. Functional analysis of de novo mutations verified through genomic

sequencing in trios will aid in the understanding of certain types of epilepsy, which will ulti-

mately lead to better treatment. Moreover, understanding the functional effect of mutations is

GRIN2A mutation in focal epilepsy
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clinically important, and may lead to better therapeutic solutions to their corresponding

diseases.
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