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Abstract

Genome-wide association studies (GWAS) using single nucleotide polymorphisms (SNPs)

have identified more than 50 loci associated with estimated glomerular filtration rate (eGFR),

a measure of kidney function. However, significant SNPs account for a small proportion of

eGFR variability. Other forms of genetic variation have not been comprehensively evaluated

for association with eGFR. In this study, we assess whether changes in germline DNA copy

number are associated with GFR estimated from serum creatinine, eGFRcrea. We used hid-

den Markov models (HMMs) to identify copy number polymorphic regions (CNPs) from high-

throughput SNP arrays for 2,514 African (AA) and 8,645 European ancestry (EA) participants

in the Atherosclerosis Risk in Communities (ARIC) study. Separately for the EA and AA

cohorts, we used Bayesian Gaussian mixture models to estimate copy number at regions

identified by the HMM or previously reported in the HapMap Project. We identified 312 and

464 autosomal CNPs among individuals of EA and AA, respectively. Multivariate models

adjusted for SNP-derived covariates of population structure identified one CNP in the EA

cohort near genome-wide statistical significance (Bonferroni-adjusted p = 0.067) located on

chromosome 5 (876–880kb). Overall, our findings suggest a limited role of CNPs in explain-

ing eGFR variability.

Introduction

Chronic kidney disease (CKD) is defined by reduced kidney function or kidney damage and

can progress over time. It is estimated that CKD effects about 26 million US adults[1] and its
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prevalence is increasing both in the United States and globally[1, 2]. CKD has a genetic com-

ponent, which may contribute to the development or progression of CKD in addition to or

through established epidemiological CKD risk factors such as hypertension, diabetes, and pro-

teinuria. Genome-wide association studies limited to single nucleotide polymorphisms (SNPs)

have identified more than 50 loci associated with estimated glomerular filtration rate (eGFR),

a measure of kidney function, in European ancestry (EA) populations[3–5]. These loci account

for only 3% of the variation in eGFR[3], while the heritability of eGFR has been estimated at

33%–75% [6–9]. We hypothesized that heritable loss and gain of germline DNA copy number

may contribute to kidney function.

Glomerular filtration rate (GFR) is considered the best quantitative measure of kidney func-

tion. However, gold standard estimates of GFR by urinary or plasma clearance of exogenous

filtration markers are too cumbersome and expensive for use in clinical and research settings.

Serum creatinine has emerged as a reliable indicator of GFR[10] and is currently the most

commonly used biomarker of kidney function.

Copy number variants (CNVs) have been reported to encompass genes involved in the reg-

ulation of cell growth and metabolism, implicating vital roles in the variability of human traits

and disease risk[11–13]. Copy number polymorphisms (CNPs), regions of the genome where

CNVs segregate in the germline at a population frequency of at least 2 percent, have been

implicated in a broad range of human diseases, including mental health (bipolar disease[14],

schizophrenia[15–17], and autism spectrum disorder[18, 19]), metabolic disease (type I diabe-

tes[20] and obesity[21–23]), congenital anomalies (kidney and urinary tract defects[24–26],

oral clefts[27–29]), and cancer (breast cancer[30], melanoma[31], and colorectal cancer[32]).

While previous SNP association studies have identified several loci strongly associated with

kidney disease, the causal variants are generally not known. CNPs occurring at known risk loci

may help establish a genetic basis for this disease. For example, a deletion of any part of a gene

or its promoter can disrupt transcription to mRNA; amplification of a gene can lead to over

expression of the mRNA product. In Scharpf et al., 2014[33], we showed the association

between copy number and uric acid levels at SLC2A9 was independent of nearby SNP-associa-

tion signals. As many array platforms include probes targeting regions of the genome that are

monomorphic at the single nucleotide level (i.e. there is only one allele at the probe), the dis-

covery of risk loci not well tagged by SNPs is also possible. The array platform used in ARIC

has approximately 1 million monomorphic probes in addition to 1 million polymorphic (SNP)

markers, enabling identification of CNPs in regions not well tagged by SNPs.

Here, we use Bayesian Gaussian Mixture Models (GMMs) to estimate copy number at poly-

morphic (> 2% of subjects) regions identified by a Hidden Markov Model (HMM) and

regions previously reported as polymorphic in the HapMap Project[34]. We evaluated models

for eGFR by serum creatinine (eGFRcrea) levels that include copy number at CNP regions as a

covariate. Findings presented here are the most comprehensive analyses to date of CNPs and

quantitative measures of kidney function in an adult population. Further, this is the first study

to present genomic analyses of copy number for individuals of AA in the ARIC study.

Results

The ARIC study includes 9,483 EA and 2,822 AA participants with both baseline eGFRcrea

and Affymetrix 6.0 genotype data. The EA and AA cohorts differ in known clinical risk factors

for kidney disease and eGFRcrea levels (Table 1). In particular, the percentage of AA partici-

pants with hypertension was 56.5, more than twice the percentage among EA participants

(26.6 percent). Similarly, the percentage of AA with diabetes was 19.3 percent compared to
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only 8.6 percent in the EA cohort. The average eGFRcrea among AA participants was 103.2

ml/min/1.73m2, compared to an average of 89.8 ml/min/1.73m2 among EA subjects.

To identify CNVs, we fit a 6-state HMM for all participants passing previously established

quality control steps[35]. Additional statistics for quality control in this study include the median

absolute deviation (MAD) and lag-10 autocorrelation of autosomal log2 R ratios (LRRs) (Figures

A and B in S1 File). On average, the HMM identifies more CNVs in participants of AA than EA

with median frequencies of 68 and 57, respectively. Among EA participants, approximately 10%

of the CNVs span fewer than 10 SNPs or monomorphic markers and were excluded from further

analysis. Of the remaining CNVs, approximately 64% (429,162) occur at regions that are copy

number altered in 2 percent or more of the EA or AA participants (e.g., Fig 1A). Hereafter, we

refer to these regions as CNPs.

A major challenge for identifying CNVs is the substantial intra-subject variance of the LRRs.

As we and others have demonstrated[34–36], the signal to noise ratio can be improved by model-

ing the distribution of only the markers involved in the polymorphism across many subjects. To

comprehensively identify CNPs, including those too small to be estimated by the HMM, we eval-

uated 785 additional regions reported as polymorphic in HapMap[34] and spanning 3 or more

Affymetrix 6.0 markers. For HapMap regions that overlap the HMM-derived CNPs, we used the

genomic coordinates from the HMM.

For each candidate CNP, maximum a posteriori estimates of relative copy number were

obtained from a GMM implemented in the R package cnvCall[37]. Excluding monomorphic

regions, we identified 312 and 464 autosomal polymorphic regions in the EA and AA cohorts,

respectively (Fig 1C and Figure C in S1 File). After translating mixture component indices to

copy number and manually recalling rare homozygous deletions (see Methods), we found

roughly 85 percent of the deletion CNPs in the EA and AA cohorts occur at frequencies consis-

tent with Hardy Weinberg equilibrium (p> 0.01; Figure D in S1 File).

To contrast the CNP regions by methodology (HapMap or HMM), we assessed the extent

to which the CNP regions overlap. Interestingly, 15% of the EA CNPs (n = 46) and 13% of the

AA CNPs (n = 60) did not overlap with published regions in HapMap (Fig 2A and 2B). To

evaluate whether the CNPs identified by only the HMM (not reported in HapMap) were com-

mon in other studies, we examined 17 studies each having at least 100 subjects deposited in the

Database of Genomic Variants as of May 15, 2016 (http://dgv.tcag.ca, NCBI build 36). With

few exceptions, nearly all of these CNPs were in one or more of these studies at a frequency of

2 percent or more (Figure E in S1 File).

Table 1. Study sample characteristics. Descriptive statistics are shown as mean and (standard deviation)

unless otherwise indicated.

European ancestry African ancestry

Sample size eGFRcrea/eGFRcys 8645/6843 2514/1673

Women, N (%) 4592 (53.1) 1576 (62.7)

Age (years) 54.2 (5.7) 53.5 (5.8)

Center N (%) F 2606 (30.1) F 288 (11.5)

J 0 (0) J 2226 (88.5)

M 3226 (37.3) M 0 (0)

W 2813 (32.5) W 0 (0)

eGFRcrea (ml/min/1.73m2) 89.8 (18.0) 103.2 (25.0)

eGFRcys (ml/min/1.73m2) 84.3 (19.6) 91.7 (24.9)

HTN, N (%) 2288 (26.6) 1413 (56.5)

DM, N (%) 745 (8.6) 484 (19.3)

doi:10.1371/journal.pone.0170815.t001
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Comparing CNP coordinates by ancestry, we find that only 215 of the 464 regions identified

in the AA cohort are also polymorphic in the EA cohort (Fig 2C). As the ratio of EA to AA

Fig 1. Developing a profile of autosomal CNP regions in ARIC. (A) CNVs identified from the HMM often have similar genomic endpoints across

samples, shown here as colored rectangles for ~450 EA participants at a region on chromosome 5 (top signal in EA analysis). (B) The distribution of the

average for 8,645 EA participants at the region on chromosome 5 approaching genome-wide significance. Copy number is called by the maximum a

posteriori estimates from a normal mixture model. (C) All autosomal CNP regions identified either by HapMap or from the HMM among EA participants

color-coded by the number of copy number states. Black ticks above the ideograms are additional regions from HapMap identified as polymorphic by the

GMM in ARIC. Black ticks below the ideograms are CNPs that are also present in the AA cohort (see also Figure C in S1 File). The region on chromosome

5p is highlighted.

doi:10.1371/journal.pone.0170815.g001
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participants in ARIC was more than 3:1, an unstratified analysis would have failed to identify

regions absent among EA participants and occurring in less than 10 percent of AA participants.

To assess whether copy number at identified CNP regions is associated with eGFRcrea, we

evaluated linear models with log-transformed eGFRcrea as the dependent variable with copy

number and SNP-derived covariates of population structure as covariates (Methods). Because

global differences in allele frequencies may exist between subpopulations particularly within

the AA cohort, we estimated the percentage of African ancestry by ANCESTRYMAP[38]

using genotypes from 1401 ancestry-informative markers in 2,152 AA participants. For the

AA cohort, none of the AA CNPs are statistically significant with or without global ancestry

adjustment (Fig 3A). For the EA cohort, none of the models are statistically significant after

Bonferroni-correction (Fig 3B), though CNP_8.7 (chr5: 8,755,522–8,800,142 bp) is suggestive

(adjusted p = 0.067).

CNP_8.7 is a deletion polymorphism located in a gene desert[39, 40] and is associated with

a 0.04 increase in log eGFRcrea (95% CI: 0.02–0.06 ml/min/1.73 m2). The deletion allele is

interrogated by 40 monomorphic markers and 7 SNPs on the Affymetrix platform and over-

laps deletions previously identified in HapMap[34]. The deletion allele segregates in the EA

population at Hardy Weinberg equilibrium (p = 0.4). In particular, 393 (4.5%) hemizygous

deletions, 2 (0.02%) homozygous deletions, and 8,267 (95.6%) with diploid copy number were

identified.

To confirm copy number estimates at CNP_8.7 with an alternative technology, we obtained

next generation sequencing data from dbGaP for five subjects with a putative hemizygous dele-

tion (accession number phs000090.v1.p1). Preprocessing the read depth in 10kb bins to adjust

for GC-content and excluding regions of low mappability (see Methods), we find that all five

samples have two or more 10kb bins in the region with log ratios of relative copy number less

than -1 (Figure F in S1 File). Further, the three samples with lowest technical variation in the

sequencing platform (F159225, F264060, and W156974) have approximately the same bound-

aries as identified by the array platform.

In the absence of any stronger candidate than CNP_8.7 to pursue for replication in an inde-

pendent study, we evaluated an alternative GFR surrogate. In particular, we hypothesized bona

fide modulation of latent GFR by copy number dosage would be captured by multiple GFR sur-

rogates. As cystatin C is also available in ARIC and well regarded as a surrogate for calculating

Fig 2. Overlap of CNP regions by methodology of identification and ancestry. (A, B) The number of CNPs identified by methodology for

EA (left) and AA ancestry (middle). (C) The overlap of polymorphic regions by ancestry. The EA and AA cohorts shared 215 CNP regions.

doi:10.1371/journal.pone.0170815.g002
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eGFR[41], we evaluated the same regression model as described previously with eGFR by cysta-

tin C (eGFRcys) as the dependent variable. For the 6,830 subjects with available eGFRcys, sub-

jects with one less copy of CNP_8.7 had a very modest 0.01 increase of log eGFRcys (95% CI:

-0.02–0.04 ml/min/1.73 m2; p = 0.54; n = 6,854). To assess empirically whether the qualitative

difference in interpretation of the eGFRcrea and eGFRcys models could be attributable to lack

of statistical power in the latter, we re-evaluated the eGFRcrea model using only the 6,854 par-

ticipants with eGFRcys measurements available. Our findings in the restricted data set are quali-

tatively similar to the full dataset (effect size = 0.04, p = 0.098).

Discussion

We implemented a genome-wide association study of CNPs and eGFRcrea in two large EA

and AA cohorts represented in ARIC. We identified 312 and 464 CNPs among EA and AA

participants, respectively (S1 and S2 Tables). For each CNP, we evaluated copy number in the

context of multivariate models for eGFRcrea including known risk factors of kidney disease

and principal component-derived surrogates for subpopulation strata in ARIC. While our

findings revealed no genome-wide statistically significant associations between copy number

and eGFRcrea in either the EA or AA sub-population, we identified one region in the EA

cohort close to genome-wide statistical significance (Bonferroni-adjusted p = 0.053). However,

Fig 3. Statistical significance of copy number in linear regression models for eGFRcrea. (A) Manhattan plot for CNP association analysis in

eGFRcrea among 8,645 European ancestry and 2,514 AA participants in the ARIC study. The gray line indicates genome-wide statistical significance.

(B) Quantile-quantile plots of the expected–log 10 p-values under the null hypothesis of no association versus the observed–log 10 p-values. The lower

and upper bounds of the shaded region indicate 0.025 and 0.975 quantiles, respectively, of the null.

doi:10.1371/journal.pone.0170815.g003
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we found no evidence to support our expectation that bona fide modulation of latent GFR by

copy number dosage would be captured by the alternative GFR surrogate, eGFRcys (p = 0.54).

We caution that our secondary analysis using eGFRcys merely provides additional context for

the interpretation of the borderline association observed at CNP_8.7 using existing data in

ARIC. A definitive analysis of the biological significance of CNP_8.7 (or lack thereof) would

require replication in an independent study.

This study extends previous work characterizing copy number variation in ARIC. First, the

profile of CNPs in the EA cohort now includes published CNP regions too small for detection

by HMMs but estimable by GMMs. Secondly, we provide the first genome-wide profile of

CNPs among AA participants in ARIC. In both the EA and AA CNP profiles, the HMM- and

HapMap-derived regions were confirmed by GMMs that explicitly model between subject var-

iation of one-dimensional LRR summaries. Finally, we show that 13–16% of the CNPs identi-

fied in the EA and AA cohorts would not have been identified by using HapMap information

alone. For populations less well-characterized by consortium efforts such as 1000 Genomes

and HapMap, these percentages are likely to increase.

In summary, our study does not support a link between CNPs and kidney function as measured

by estimated GFR. Nearly 30% of the CNVs identified in this study occur outside of CNPs. The sta-

tistical power to detect effect sizes of rare CNVs is limited, particularly in the AA cohort (Figure G

in S1 File). Pathway-based analyses and/or meta-analysis of multiple cohorts to study the contribu-

tion of rare CNVs in EA and AA subpopulations to CKD require further investigation.

Methods

Study population

The ARIC Study is a prospective observational cohort study with participants aged between 45

and 64 at the baseline visit (visit 1) occurring between 1987 and 1989. The participants were

recruited from 4 US communities: Forsyth County, North Carolina (F); Jackson, Mississippi

(J); suburban Minneapolis, Minnesota (M); and Washington County, Maryland (W). After

enrollment, there were three follow-up visits approximately every three years (1990–92, 1993–

95, 1996–98). A fifth visit was completed in 2011–2013. Details of the study design have been

reported previously[42]. All study participants provided written informed consent, and the

study protocol was approved by the Johns Hopkins Bloomberg School of Public Health Institu-

tional Review Board.

Measurements

In the ARIC study, serum creatinine is available at visits 1, 2, and 4. We used serum creatinine

measurements for the visit with the largest participation, visit 1 (n = 15,792). Serum creatinine

levels were measured using the modified kinetic Jaffe method and calibrated to the age-, sex-,

and race-specific means in the Third National Health and Nutrition Examination Survey

(NHANES III). We estimate GFR based on serum creatinine (eGFRcrea) using the Modifica-

tion of Diet in Renal Disease (MDRD) Study 4-variable equation[10].

Cystatin C, an alternative surrogate quanitative measure of eGFR, was measured by a parti-

cle enhanced immunonephelometric assay (N Latex Cystatin C, Dade Behring). The eGFRcys

levels were estimated as eGFRcys = 76.7 x (serum cystatin C)-1.19 [41]. Both eGFRcrea and

eGFRcys were approximately log-normally distributed.

Diabetes was defined as fasting glucose�126 mg/dL, non-fasting glucose�200 mg/dL,

self-reported physician diagnosis of diabetes mellitus or the use of oral hypoglycemic medica-

tion or insulin. Hypertension was defined as systolic blood pressure� 140 mmHg, diastolic

blood pressure� 90 mmHg or the use hypertension treatment medication.

Copy Number Polymorphisms and Kidney Function
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Genotyping and quality controls

Genomic DNA was extracted from peripheral whole blood and SNPs were genotyped on the

Affymetrix 6.0 chip as described previously[43]. Genetic outliers, first-degree relatives, gender

mismatches, and participants who did not consent for use of DNA information were excluded.

To control for population stratification, we computed the first 10 principal components using

EIGENSTRAT[44] using high quality, independent SNPs. Details of principal component gen-

eration have been previously described[45]. All 10 principal components were included as

covariates in our statistical model. To summarize, 11,827 participants (9,038 EA and 2,822

AA) attended visit 1, had valid data on serum creatinine, and had genotype data meeting the

above quality control criteria (Figure A in S1 File).

Overview of CNP estimation

To comprehensively identify all CNP regions among EA and AA participants, we pursued a

two-step approach. First, we fit a HMM to each individual sample. The HMM allows identifi-

cation of both CNVs and CNPs. While helpful for identifying CNPs in populations not well

represented in public repositories, HMMs have a limited resolution that depends on the inher-

ent marker-to-marker variation of the LRR estimates. As the signal to noise ratio is increased

by examining only the markers involved in a CNP across a large collection of samples (e.g.,

McCarroll et al., 2008[34] and Cardin et al., 2011[37]), we examined the distribution of

region-level copy number summaries across all ARIC samples in a second step. In particular,

we evaluated all CNPs previously reported in HapMap spanning at least 3 Affymetrix 6.0

markers using a previously described Gaussian mixture model for CNPs[35].

Hidden Markov model. B-allele frequencies and wave-adjusted LRRs were computed as

described previously[33]. Estimates for copy number states 0–4 for all autosomes were derived

as previously described for the EA participants using the VanillaICE HMM[46, 47]. We

required at least 10 markers in a CNP region identified by the HMM to reduce false positive

identifications. We excluded 393 EA and 275 AA subjects for one or more of the following rea-

sons: median absolute deviation of the LRRs greater than 0.35, autosomal lag 10 autocorrela-

tion of the LRRs greater than 0.05, or more than 150 CNVs (Figure B in S1 File).

CNP regions. We refer to CNVs occurring in the population at a frequency of at least 2

percent as CNPs. CNPs tend to have the same or very similar breakpoints across individuals.

As CNP regions are known to differ by ancestry, we defined consensus start and stop genomic

positions for CNP regions independently for the EA and AA cohorts. Specifically, the consen-

sus start (end) was defined as the minimum (maximum) base-pair spanned by at least half of

all CNVs identified by the HMM at a particular polymorphic region. In addition to HMM-

derived CNPs, we included 785 candidate CNP regions available from HapMap and reported

by McCarroll et al (2008)[34]. For partially overlapping regions, we kept only one region (copy

number estimates were nearly identical in each case), yielding 312 non-overlapping regions in

EA and 464 non-overlapping regions in AA.

Gaussian mixture model. For each HapMap- or HMM-derived CNP candidate, we fit

the GMM implemented in the R package cnvCall (Cardin et al., 2011[37]). Briefly, a one-

dimensional summary for each sample was derived from the first principal component of the

LRR matrix at a CNP (rows are samples and columns are the marker-level LRR). The marginal

distribution of the one-dimensional summary (marginal across subjects) was modeled as a

mixture of normal distributions. Since the number of mixture components, k, was not known

a priori, models k = 1 to k = 5 were evaluated at each CNP. The model with the lowest Bayesian

Information Criterion (BIC) was then selected. To assign a mixture component index to each

sample, we used the maximum a posteriori estimate. If the maximum a posteriori probability

Copy Number Polymorphisms and Kidney Function
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was less than max (0.2, 1/k), an NA, indicating missing, was recorded. A post-post-hoc merg-

ing procedure implemented in cnvCall was used to reduce overfitting skewed-normal

distributions.

To translate cnvCall component indices into absolute copy number, we implemented a sim-

ple relabeling heuristic. Let I denote the mixture component index, I 2 {1,. . .,k} and CN denote

the copy number, CN 2 {0,. . .,4}. If the average LRR of the first component was less than -1.5

(consistent with a homozygous deletion), we set CN = I-1. For common deletions and k� 3,

homozygous deletions often have mean LRR greater than -1.5. Therefore, if the mean of the

first component was less than -0.5 and the distance between the first and second mode was

1.5-fold the distance between the second and third mode, we also set CN = I-1. If the first com-

ponent is not homozygous (i.e. neither of the above criteria were met), we set CN = 2 for the

modal component index. The remaining indices were set to CN = 1 or CN = 3 depending on

whether the component index is less or greater than the modal component index, respectively.

From a statistical point of view, two challenging aspects of developing mixture models to

estimate copy number are model selection (i.e., choosing the right k) and model robustness to

assumptions of approximate normality. While cnvCall selects the model with the lowest BIC

and has an outlier component to capture outliers, we found that for less common deletions, a

model having only hemizygous and diploid components (k = 2) was selected over a model that

includes a homozygous deletion component (k = 3). While the more parsimonious model may

be preferable in some situations, here the more parsimonious k = 2 model is biologically

implausible if the deletion allele is segregating in the population at Hardy Weinberg equilib-

rium (HWE), as expected. Having implemented the above relabeling heuristic, we identified

all CNPs in which the first component was hemizygous deletions. For these CNPs, we set

CN = 0 for any sample with an average LRR consistent with homozygous deletion (< -1.5) but

assigned NA to indicate missing by cnvCall.

Analysis of whole genome sequencing platform. We downloaded and preprocessed low-

pass whole genome sequencing data for 5 ARIC samples (dbGaP accession number phs000090.

v1.p1). Briefly, we realigned each BAM file to the NCBI build 36 reference genome using ELAND

[36]. Next, we tiled the genome into 10kb non-overlapping bins and counted the number of

reads aligning to each bin. We transformed the bin-counts to the log2 scale, and GC-corrected

the bin counts using a loess scatterplot smoother with a span of 1/3.

Association analysis

Copy number was obtained from the relabeled cnvCall component indices and manually iden-

tified rare homozygous deletions (as described previously). Other covariates included age, sex,

study site, and principal components derived from the SNP genotypes (described previously).

Since eGFRcrea is approximately log-normally distributed and previous studies have used the

log-transformed response (instead of a log-link), we evaluated linear models with the log-

transformed measurements. All CNP analyses were stratified by ancestry. The genome-wide

statistical significance level by Bonferroni was p< 1.61x10-4 for the EA participants (0.05/312)

and p< 1.08x10-4 (0.05/464) for the AA participants.

Statistical power

We used simulation to estimate the statistical power for identifying copy number alterations

associated with eGFRcrea levels. Briefly, we randomly sampled the copy number status for

8,645 EA participants assuming prevalence of a deletion allele ranging from rare (0.02, top-left

of Figure G in S1) to common (0.2, bottom-right of Figure G in S1). Conditional on the copy

number assignment, we added a value β and 2×β to the empirical log(eGFRcrea) estimates for
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individuals with 1 copy and 2 copies, respectively. We evaluated a range of values for β that

include estimates from previously replicated SNP-association studies, as well as values observed

in this study. For example, the average slope in a GWAS based on SNPs in the ARIC EA cohort

using the same log(eGFRcrea) response was 0.02 [5]. For each simulated dataset, we fit a gener-

alized linear model with log-link and calculated the Bonferroni-adjusted p-value of the copy

number regression coefficient. Repeating the simulation 100 times for each combination of

deletion prevalence and estimated β, the statistical power is the fraction of simulated datasets

with adjusted p< 0.05. We repeated this simulation with a sample size of 2,514 for the AA

cohort.

Genomic annotation and software versions

Genomic annotation in this paper is based on UCSC build hg18 (NCBI36). The version of R

and of the R packages used in this analysis is included in S1 File.

Supporting Information

S1 File. Includes Figures A-G and software versions.

(DOCX)

S1 Table. Genomic coordinates and model summary statistics for EA CNPs.

(CSV)

S2 Table. Genomic coordinates and model summary statistics for AA CNPs.

(CSV)
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