
RESEARCH ARTICLE

A detailed heterogeneous agent model for a

single asset financial market with trading via

an order book

Roberto Mota Navarro☯*, Hernán Larralde☯

Instituto de Ciencias Fı́sicas, Cuernavaca, Morelos, México

☯ These authors contributed equally to this work.

* mvr@fis.unam.mx

Abstract

We present an agent based model of a single asset financial market that is capable of repli-

cating most of the non-trivial statistical properties observed in real financial markets, generi-

cally referred to as stylized facts. In our model agents employ strategies inspired on those

used in real markets, and a realistic trade mechanism based on a double auction order

book. We study the role of the distinct types of trader on the return statistics: specifically,

correlation properties (or lack thereof), volatility clustering, heavy tails, and the degree to

which the distribution can be described by a log-normal. Further, by introducing the practice

of “profit taking”, our model is also capable of replicating the stylized fact related to an asym-

metry in the distribution of losses and gains.

Introduction

In the past five decades a great number of time series of prices of various financial markets

have become available and have been subjected to analysis to characterize their statistical prop-

erties [1–5]. From the study of these time series, a set of statistical properties common to many

different markets, time periods and instruments, have been identified. The universality of

these properties is of interest because the size, the participants and the events that affect the

changes of price (returns) in a certain market may differ enormously from those that affect

another. Yet, these investigations show that the variations in prices indeed share non trivial

statistical properties, generically called stylized facts. In this work we present and study a model

of a financial market and its participants which reproduces these stylized facts.

The majority of approaches used today to model financial markets fall into one of two cate-

gories: statistical models adjusted to fit the history of past prices and Dynamic Stochastic Gen-

eral Equilibrium (DSGE) models. The first kind of models are able to produce reasonable

representations and volatility forecasts of financial systems [6] as long as the statistical proper-

ties of the prices with which they were calibrated do not change by a large margin. The second

kind of models assume a “representative agent” for each of the participant sectors in the finan-

cial system, each of these agents attempting to their utility [7]. To avoid creating deterministic

dynamics without periods of depression or growth, DSGE models use exogenous stochastic
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terms which are supposed to mimic the varying conditions of the market, such as sudden

peaks in the demand of a certain financial instrument or changes in the pricing of a

commodity.

Despite of the fact that these models are capable of providing some explanations of the phe-

nomena observed in financial markets, the premises over which they are built are crude

approximations of reality [8, 9] and as a such they are not always useful to gain insight into sta-

tistical phenomena as rich at that observed in financial time series.

This situation has given rise to the exploration of financial systems as “complex systems”

[10]. That is, to consider financial markets as something closer to what they actually are: sys-

tems where great number of different components interact amongst each other in a way that

gives rise spontaneously to the observed macroscopic statistical properties.

Among the models which approach financial markets as complex systems, there is a partic-

ular kind called “Agent Based Models” which employ a bottom-up approach and allow the

modeler to trace back the emergence of the macroscopic statistical properties of the system as

a consequence of the microscopic behavioral traits of its constituent agents [11]. Several Agent

Based Models have been created that are capable of reproducing stylized facts and provide pos-

sible microscopic explanations of their origins. These models have been constructed, in gen-

eral, in one of two ways: models in which the agents do not use a particular set of strategies,

but rather participate in the market in a random fashion, and models in which the agents fol-

low different specific strategies inspired in actual strategies used by participants of real mar-

kets, as we do in this work. The first type of models usually make use of market trading

structures similar to those used in real markets, such as double auction order books, and as a

consequence, the price formation is directly driven by the offers (to buy and sell) supplied by

the agents [12–21, 21, 22]. latter type of models usually have prices adjusted in a stochastic

manner [23–26]. Thus, while models with “intelligent” agents employing different strategies in

realistic market environments have been proposed before [27–32], our model is motivated by

the behavior of market participants following the rules of thumb employed by real life traders,

while keeping the model as simple as possible. In particular, we do not dwell on whether these

rules of thumb have solid microeconomical foundations. Specifically, in our model, we con-

sider two types of agent: technical and fundamental. Technical agents in our model follow a

“Moving average oscilator” strategy [33], which is commonly used by real technical traders.

These traders also incur in profit taking if the price of the asset exceeds a certain threshold.

Heterogeneity among technical agents is achieved by assigning different parameters (“person-

alities”) to different subsets of the technical agent population. On the other hand, the funda-

mental agents in our model “choose” a fundamental price, and change it according to the

influx of news as well as the distance to the positions of the rest of the agents in the market.

The fundamental prices chosen by these agents, and their reaction to the incoming news, differ

amongst agents, as happens in real life. Trading in the model is done through an order book.

Since the model is constructed trying to mimic behavioral patterns followed by the partici-

pants in real financial markets, we expect that, if these behaviors are succesfully captured, how-

ever simplified they may be, the resulting price statistics should reproduce the stylized facts

observed empirically. Specifically, the stylized facts on which we focus in this paper, are the

following:

Absence of auto-correlations: The auto-correlation function of the returns R(t) is essentially

zero for any value of the lag (except at very short time in which there is a negative correlation

“bounce” [2]). The absence of auto-correlations has been used as support for the efficient mar-

ket hypothesis [34] since it implies that it is impossible to incur in arbitrage [35].

Volatility Clustering: Notwithstanding the absence of auto-correlations in the “raw returns”

series, some non linear functions of returns do exhibit auto-correlations that remain positive
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for relatively long times. This behavior arises from the fact that the returns have a tendency to

“agglomerate in time” in groups of similar magnitude but unpredictable sign [4].

Heavy tailed distribution of returns: The distributions of price changes in real financial

time series do not have a normal distribution [4, 36, 37]. Instead, the distribution is character-

ized by having large positive values of the kurtosis (for instance, the kurtosis for the Standard

& Poor’s index measured over time intervals of 5 minutes has been reported to have a value of

κ� 16 [38]). Further, studies of the complementary cumulative distribution of returns have

shown that it behaves approximately as a power law with an exponent β 2 [2, 4] [35, 36].

Asymmetry in the distribution of returns: In addition to being heavy tailed, it has observed

that in many markets, large negative returns are more frequent than large positive returns.

This asymmetry is behind the negative skewness in the returns distribution which has been

reported in empirical studies [2].

Log-normal distribution of volatilities: The probability distribution of the volatility of indi-

vidual firm shares and of indexes, defined as the average of the absolute returns over a time

window, is well approximated by a log-normal distribution in its central part, while its tail is

well adjusted by a power law with exponent μ� 3 [39].

In the next section we present a detailed discussion of the agent based model we propose.

The paper continues with a section in which we present the results obtained in simulations of

the model and we focus on the stylized facts listed above, comparing the behavior of the model

with representative empirical data. We also study the effect of varying the relative populations

of agents as well as the parameters that control the practice of profit taking by the technical

agents in the system. We end with a section of concluding remarks and perspectives.

1 Model

1.1 General aspects

The model represents a financial market in which N agents trade a single asset through a dou-

ble auction order book in which the standing orders are registered until executed. In the

model we only consider market and limit orders [40] of unit volume.

Like in actual financial markets, in the model, the population of agents is divided into two

different sub-populations, with each sub-population employing one of two basic trading strat-

egies: fundamental analysis -by which a “fundamental price” pf is estimated, and then the trad-

ers attempt to take advantage of the deviations between pf and its present trading price Pt-; or

technical analysis -by which the trader tries to identify and exploit trends in the price time

series-.

These two types of strategies are representative of the main strategies used in real life trad-

ing and were first introduced in the Lux-Marchesi (LM) model [41]. The effects of these strate-

gies on the dynamics of the price are opposed: while fundamental agents tend to stabilize the

prices around the average value of their fundamental prices, technical agents tend to create

periods of violent price changes.

The parameters controlling the behavior of each agent are assigned at the beginning of each

simulation, and even if two agents belong to the same group (fundamental or technical) the

difference in the values of their controlling parameters will generate different “personalities”

within each strategy.

We make time run in discrete units corresponding to simulation steps and on each simula-

tion step, each fundamental agent will engage in trading with a probability pactive while techni-

cal agents will be active when they observe a favorable trend or when they can obtain a high

immediate profit, as will be explained later.

Agent based model of a financial market
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In our system, every agent is assigned unlimited credit, and, in contrast to [28], short selling

is allowed. These two liberties are meant to ensure that an agent is able to engage in trading

whenever it becomes active, thus providing the market with enough liquidity.

Although the model we propose includes the main components of the Lux-Marchesi [41]

and the Chiarella C, Iori G and Perelló J [28] models, there are important differences in the

way in which we designed both the agents and the market environment. Of central importance

is the fact that in our model the process of price formation is directly governed by the demand

and supply provided by the agents and, as in Chiarella C, Iori G and Perelló J [28], all the trans-

actions are mediated through an order book. Another difference is the fact that by assigning

different parameters, we include heterogeneity within each strategy. Further, in our model the

only sources of “exogenous” randomness are, on one hand, the entry times of the fundamental

agents; and on the other, the time of arrival and nature of the news in the system. The news

elicit randomly distributed reactions from the fundamental agents, each of which estimates its

own changes in the fundamental price and may adjust it if it differs too much from the prices

at which other agents are bidding. This contrasts with Lux-Marchesi and Chiarella C, Iori G

and Perelló J [28] in which a unique fundamental price performing a geometric random walk

is assumed. Finally, while the details in the precise behaviors of our technical and fundamental

agents differ from those of other models, we also include the possibility that agents can engage

in profit taking, as happens in real markets.

1.2 Types of agents

1.2.1 Technical agents. As mentioned above, technical agents employ “technical analysis”

in an attempt to predict the future behavior of the price time series with the purpose of exploit-

ing the knowledge of that future behavior.

In our model technical agents utilize a technique used in real life called Moving Average-

Oscillator (MAO) [33], which consists of a pair of moving averages with different window

sizes: a long period average called the slow moving average, and a short period average aptly

called the fast moving average. The fast moving average is intended to capture the tendency of

the price movements in a short term while the slow moving average has the purpose of captur-

ing the long term trend. Fig 1 shows an example of this technical indicator.

When the fast average crosses the slow one from above, the MAO strategy suggests that this

is a “signal to sell”, since the prices show a short term tendency to fall below the long term

trend captured by the slow moving average. Similarly, a “signal to buy” occurs when the fast

moving average crosses the slow one from below, since this can be interpreted as the prices

having a short time tendency to rise above the long term trend.

We employ the MAO indicator in our model because while it is very simple and easy to

implement, it is representative of the plethora of technical analysis tools and it is widely used

in real markets [42].

In our model we use MAO indicators that differ in the window sizes of the two averages

which compose them. For each of these indicators there is a population of technical agents fol-

lowing its evolution over time and engaging in trading as a result of the signals that the indica-

tor generates. Further, when an indicator generates a signal to either a buy or sell, each

technical agent following that particular indicator waits a particular time twait before entering

the action suggested by the signal. This waiting time between the moment in which the signal

is generated and the moment in which an agent enters its order is meant to allow the price

time series to move in the direction predicted by the indicator. If the agents were to immedi-

ately enter their orders after they received a signal, they would not take advantage of the rise or

fall in prices that the trends point to. The waiting time twait of each technical agent is drawn
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from a uniform distribution in the interval [0, tmax], and assigned to each agent from the

beginning of the simulation.

A consequence of the way in which the MAO indicator is constructed, is that the technical

agents should have perfectly alternating order flows, with a sell order following a previously

entered buy order and vice-versa. This alternation arises from the fact that the MAO indicator

generates signals when the two moving averages cross each other and for any of the two direc-

tions of crossing: the fast average crossing the slow one from below or from above, the next

direction will be necessarily of the opposite kind.

There is, however, another mechanism which compels a technical agent to engage in trad-

ing, aside from following the technical indicator. This mechanism is profit taking and it basi-

cally consists in selling the asset when the price is sufficiently high with respect to the price at

which the last unit was bought, irrespective of whether the MAO indicator generates a sell sig-

nal or not, thus providing the agent with an immediate profit. This is implemented as follows,

when a technical agent enters an order to the book while following the indicator, that agent

registers the price at which the order was executed in a variable called Psignal. If the price of the

asset Pt deviates from Psignal by more than a factor γ, the agent will proceed to enter a new sell

order; i.e. if after following a buy signal and entering the corresponding buy order to the order

book the price of the asset is greater than (1 + γ)Psignal, then the agent will place a sell market

order, securing in this way an immediate profit. Fig 2 shows how profit taking is carried out in

our model.

The profit taking mechanism is introduced in our model because it is a common practice in

real financial markets and, as we will see, it turns out to have a strong effect on the return

Fig 1. Moving average-oscillator (MAO). This is a common technical indicator which is formed by two moving averages of different

window sizes that are constantly observed. The moving average with the largest window size is called fast moving average and the one with

the smallest window is called slow moving average. When the fast moving average crosses the slow one from below, a signal to buy is

generated; conversely, when the fast moving average crosses the slow from above, a signal to sell is generated.

doi:10.1371/journal.pone.0170766.g001
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statistics. Finally, technical agents in our model act almost immediately after receiving a signal

from their technical indicator and decide whether to buy o sell only regarding the present

price of the asset. Thus, only market orders will be issued by this type of agent, any consider-

ation of the value of the asset used for establishing a target price at which to enter limit orders

is left to the fundamental agents.

1.2.2 Fundamental agents. A fundamental analysis trading strategy is based on two basic

premises: the first one being that every asset has an intrinsic “fundamental price” pf, and the

second one, that in the short run, this fundamental price may be incorrectly estimated by the

market participants but that in the long run, the market will correctly value the asset and its

price will eventually reach the fundamental price pf. An agent following a strategy of this kind

will therefore buy an asset when the price at which it is being traded is below his estimation of

its fundamental price pf and will sell the asset when its price is above pf. In this way a person

following a fundamental strategy will take advantage of the differences between the prices at

which the asset is traded over time and the fundamental price; until the asset finally reaches

said fundamental price.

When a fundamental agent becomes active, there are three available actions that this agent

can engage in: either to buy a unit of the asset, to sell it (even short sell) or to abstain from

either. The decision of whether to buy, sell or abstain from participating will depend on the

position of the agent’s fundamental price pf relative to the price of the nearest best order (best

ask or best bid).

If pf> Bsell, where Bsell is the price of the best ask, the agent will proceed to buy since there

are agents willing to sell for less than what the agent considers to be the correct price. Similarly

if pf< Bbuy, where Bbuy is the price of the best buy, the agent will proceed to sell since there are

agents willing to buy offering more than the correct price. If neither of these two conditions is

fulfilled, i.e. if Bsell> pf> Bbuy then there will be no competitive offers, since the lowest price at

which the agent could buy a unit of the asset is higher than pf, and the highest price at which it

Bu
y  

sig
na

l      future sell signal

Sells unit

Fig 2. Profit taking mechanism. If after observing a signal to buy, the prices rise enough (in our case this is

defined as the moment at which j1 �
Pt

Psignal
j exceeds a parameter γ), the technical agent will proceed to enter a

sell market order. This practice is commonly used by traders to insure an immediate profit.

doi:10.1371/journal.pone.0170766.g002
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could sell a unit is lower than pf. Thus, when this condition arises the agent will abstain from

participating in the market.

When an agent decides to buy or sell, the decision to do so by entering a limit or a market

order will depend on the distance between pf and the price of the nearest best order. Specifi-

cally, if the agent decides to buy, it will do so by emitting a market buy order when its funda-

mental price is above the price of the best sell offer by more than a certain threshold χmarket, i.e.

when pf> Bsell(1 + χmarket), and it will emit a limit buy order when pf is below this threshold.

Similarly, when the agent decides to sell, it will do so by emitting a market sell order if its pf is

below the best buy offer by more than the threshold χmarket, i.e. when pf< Bsell(1 − χmarket), oth-

erwise it will emit a limit sell order. Just like every other parameter defining the behavior of a

fundamental agents, every agent is assigned an individual threshold χmarket from the begin-

ning. Fig 3 shows this decision making algorithm.

On the occasions in which a fundamental agent decides to enter a limit order, the actual

price of the order is extracted from a shifted symmetric exponential distribution of the form:

f ðx; llimit; mspreadÞ ¼ llimite� jllimitðx� mspreadÞj

where μspread is the average price of the best orders: mspread ¼
1

2
ðBsell þ BbuyÞ. By assigning the

prices of limit orders in this way, they will have a greater tendency to cluster around μspread
which is a representative measure of the central price at which the market participants are val-

uing the asset. This behavior is intended to reflect the situation in which the prices are not

good enough to enter a market order, so the fundamental agents will proceed to bargain with

limit orders at prices that will be close to the central price in the market.

In real life, pf is determined by each fundamental trader, and then adjusted as time goes by,

according to the appearance of news concerning the well being of whatever underlies the asset.

To include this feature of fundamental analysis in our model, we introduce a flow of news

modeled as a sequence of IID random variables zt taken from a normal distribution with mean

μnews and variance σnews. The time intervals betwen succesive news are taken from a Poisson

Fig 3. Order selection algorithm for fundamental agents. In (a) we show the conditions that lead to a

fundamental agent to introduce a market order: if the fundamental price pf is higher by more than a threshold

χmarket (specific to each trader) with respect to the price of the nearest best order, the agent will proceed to

enter a market order. Otherwise, the agent will proceed to enter a limit order (b). In the figure the orders would

be “buy” orders as the agent’s fundamental price lies above the best ask.

doi:10.1371/journal.pone.0170766.g003
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distribution. Here, zt represents the mean value by which the news will change the fundamen-

tal prices of the asset. When, in the context of our model, news are issued at a given time t,
each fundamental agent adjusts its fundamental price from pf(t) to pf(t) + Δpf(t) where Δpf(t) is

again extracted from a normal distribution with mean zt and variance σΔpf as illustrated in

Fig 4. Thus, the majority of fundamental agents will change their prices accordingly with the

sign of zt, however, depending on the magnitude of the news, some agents may even extract a

Δpf with an opposite sign to zt. This diversity of response to a news item attempts to reflect the

possibility of diverse interpretations of the information by the fundamental agents. The funda-

mental price of each agent is chosen from a uniform distribution at the beginning of a

simulation.

Finally, although a fundamental agent bases its trading strategy in the differences between

its fundamental price and the prices at which the market values the asset, if too large a differ-

ence is present, the agent will try to get closer to the central market price μspread. This feature is

meant to capture the attention that a fundamental agent pays to the opinions of the whole pop-

ulation of agents, which constitutes a mild manner of “herding behavior”. If the valuation of

the fundamental price that an agent has is too far from the price at which it is being traded, the

agent will move its fundamental price closer to the central price μspread. This can be interpreted

as a precautionary move by the agent since such a big difference between pf and μspread could

point to information that was not incorporated in the determination of his fundamental price,

or that an ineffective incorporation of the available information was made.

To determine when the difference between pf and μspread is “too big”, each agent compares

this difference with a threshold χopinion, if at the time a fundamental agent becomes active, such

agent observes that

wopinion <

�
�
�
�1 �

pf
mspread

�
�
�
�

Then the agent will adjust its price to get closer to μspread in the following way:

pf ¼

(
mspreadð1þ wopinionÞ; if pf � mspread

mspreadð1 � wopinionÞ; if pf < mspread

Thus, the agent will get as close to μspread as the maximum tolerance (χopinion) between its

opinion and the opinion of the population (μspread) allows.

2 Results

In this section we present the results obtained in various simulations. Although these results

correspond to a particular set of values for the parameters, reasonable changes in the values of

these parameters generate the same qualitative properties in the statistics of the model. It is of

critical importance for the stability of the system to have a flow of limit orders (liquidity) capa-

ble of filling the gaps that are created when market orders enter the order book. To achieve

this, the parameters that govern the flow of limit and market orders emitted by the agents

must not give rise to bursts of market orders with a volume so large that one side of the order

book is emptied. It is in this sense that we speak above of reasonable changes in the values of

the parameters. Thus, for example, if we were to allow greater volumes of market orders to be

placed within shorter time windows, say, by including a larger number of technical agents in a

simulation, then, the parameters that affect the input of limit orders must be chosen accord-

ingly, in such a way that the fundamental agents have enough time to restore the liquidity con-

sumed by the increased number of market orders. Thus, we calibrated the model to achieve

Agent based model of a financial market
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Most changes 
are positive

A minor fraction of the
 changes are negative

Fig 4. News and their effects on fundamental prices. We model news as a sequence of IID Gaussian

random variables. When a realization of this sequence, representing news being issued, occurs, the

fundamental prices of each agent are adjusted from pf to pf + Δpf
with Δpf

extracted from another normal

distribution whose mean is equal to the value of the current news. In this way when highly positive news

arrive, the majority of fundamental price changes will be positive; conversely, when highly negative news

arrive, most price changes will also be negative.

doi:10.1371/journal.pone.0170766.g004
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stability in the simulations and to reproduce the statistical properties of the returns observed

in real life and did not consider calibrating the model to reproduce the order book stylized

facts [36] Chiarella C, Iori G and Perelló J did in their work [28].

Unless otherwise stated, the following results were obtained with a population of 1000 fun-

damental agents and 1500 technical agents divided into two groups of 750 agents with techni-

cal indicators made of moving averages with window sizes of 4000 and 2000 time steps for one

group and 2000 and 1000 time steps for the other. The other parameter values used for this

run are shown in Table 1.

As is frequently the case for many financial models, some of the parameters defined in our

model may not have a clear connection to observables in real life, and even when observables

similar to the parameters in our model exist, attempting to estimate their values is somewhat

ambiguous. Thus, we chose values which allowed the simulations to run in a stable manner

and that generated statistical properties similar to those observed in real markets. Interestingly,

the model is rather robust and produces similar relevant results for a wide range of parameter

values. The values of the parameters we employed for the results we present below are there-

fore, just an election among many different elections we made within the range of useful

parameter values.

We begin by showing the time series corresponding to the prices and logarithmic returns,

defined as r(t) = log(Pt/Pt−τ), for a given lag τ, generated by our model. These are shown in

Figs 5 and 6(a) respectively. The blue bars in Fig 6(a) signal the time steps in which technical

agents were active. The bursts of greater volatility coincide with the activity of the technical

agents while the times in which only fundamental agents were active (trading) present lower

volatility.

In Fig 7 we show the auto-correlation function of the returns, the blue line corresponds to

the returns calculated time step by time step. In the inset we show the auto-correlation func-

tion for returns calculated every 50 steps, in both cases it can be seen that the auto-correlation

is essentially zero for any value of the lag. It is interesting to note that the phenomenon know

as “bid-ask bounce” can be observed in the returns generated by our simulations. This phe-

nomenon consists in the presence of negative values of the auto-correlation function at very

short lags and it is attributed to the fact that most transactions take place near the best ask or

best bid and tend to bounce between these two values [2].

Table 1. Values of the parameters corresponding to the results presented in this paper (ranges indi-

cate that the parameters for each agent were taken from a uniform distribution in within the specified

values).

Parameter Value

Pactive 0.15

pf(initial) [20.0, 25.0]

χmarket [0.005, 0.25]

χopinion [0.01, 0.1]

σΔpf
0.2

λlimit 3

μnews 0

σnews 0.1

fnews 100

γ 0.01

twait [0, 50]

doi:10.1371/journal.pone.0170766.t001
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In Fig 8(a) we present the comparison between the auto-correlation of the returns (blue

line) and the auto-correlation of the absolute value of the returns (red line). We observe that

the auto-correlation function of the absolute returns remains positive over a long time interval,

and that it decays slowly to zero. Fig 8(b) illustrates the same auto-correlation functions for a

representative company listed in the Standard & Poor’s 500.

Fig 9(a) shows the distribution function of returns from our model. This distribution shows

heavier tails than a normal distribution with the same mean and standard deviation and it is

possible to observe that the left tail is heavier than the right one. For comparison, Fig 9(b) illus-

trates the distribution function of returns for a representative company listed in the Standard

& Poor’s 500.

Fig 10(a) shows the cumulative complementary distribution of positive and negative

returns, highlighting the asymmetry between losses and gains. The tail of the distribution of

negative price changes is significantly heavier than the distribution of positive changes, a fact

that is consistent with the negative skewness displayed by the returns distribution. Fig 10(b)

illustrates the corresponding distributions for a representative company listed in the Standard

& Poor’s 500. In addition to the asymmetry, it can be seen in Fig 10(b) that the tails of the dis-

tribution of returns seem to follow power law behavior. To test how well a power law fits the

data, we used the python package “powerlaw” [44]. Figs 11(a) and 11(b), 12(a) and 12(b) and

13(a) and 13(b) show fits for three different values of the parameter γ. As can be seen in the

Fig 5. Representative time series of asset prices, determined as the last price the asset was traded at each time step (“closing

price”).

doi:10.1371/journal.pone.0170766.g005
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(a)

(b)

Fig 6. Returns time series for the simulation with a time lag τ = 1 (a) and comparison with empirical data from

Consol Energy Inc (b). The blue shaded regions show the times in which technical agents were active, as can be seen,

these times coincide with the periods with the largest changes of price. Data obtained from QuantQuote [43].

doi:10.1371/journal.pone.0170766.g006
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figures, both tails of the distribution are rather well described by power laws, although the val-

ues for the exponents are not around 3, which is the average tail index reported in [45] and

[37] (however see [46]. Nevertheless, some of the values we obtain correspond to those mea-

sured in the returns time series of some companies, examples of which can be seen in Fig 14(a)

and 14(b).

The goodness of fit tests performed by the “powerlaw” package throw as a result the log-

likelihood ratio R between two different candidate distributions. In this test R> 0 (respectively

R< 0) when the first distribution is more (less) likely to describe the data than the second dis-

tribution [47]. To assess how much the sign of R was affected by the statistical fluctuations, the

significance p, gives the probability of measuring a given value of R under the assumption that

its real value is close to zero. A small value of pmeans that it is unlikely that the measured

value of R is a product of the fluctuations, and, as a consequence, that its sign can be trusted as

an indicator of which distribution provides a better fit for the data. The average values of R
and p for simulations with different values of γ are presented in Table 2. For each value of γ in

the table an ensemble of 50 simulations was run and the mean values of the loglikelihood for

the left tail (<R−>) and right tail (<R+>) as well as the significance values<p−> and <p+>

are presented.

Table 3 shows the mean loglikelihood ratios and significance values measured in the empir-

ical data. From the empirical data set it can be seen that although the ratios point to a power

law as the best fit when compared to a lognormal distribution, the significance values are again

high enough (>0.10) to make inconclusive the test. Similarly, in the data set generated from

the simulations, the significance values are too high to ascertain whether a powerlaw distribu-

tion is a better fit than a lognormal. Nevertheless, the power law fits seem to be a very good

Fig 7. Auto-correlation functions of returns. There are essentially no correlations for any value of the lag, except for a negative

correlation that lasts for a few steps at the beginning. This phenomenon is also observed in real returns series and has been called bid-ask

bounce [2]. The main figure corresponds to the autocorrelation function of the returns calculated every time step and the inset figure to the

returns calculated every 50 steps.

doi:10.1371/journal.pone.0170766.g007
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(a)

(b)

Fig 8. Returns auto-correlation function for the simulation (a) and comparison with empirical data from Airgas Inc (b). While the

auto-correlation of the direct returns (blue lines) is zero, the auto-correlation of the absolute value of the returns (red lines) remains positive for

a long period of time, and decays slowly to zero. Data obtained from QuantQuote [43].

doi:10.1371/journal.pone.0170766.g008
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description of the behavior in both tails of the distribution for all three cases of γ, which span

the range from very frequent to very scarce engagement in profit taking.

In Fig 15(a) we present the distribution of volatilities measured as the average of the abso-

lute value of returns |r(t)| over a time window T = nΔt, i.e.

VTðtÞ ¼
1

n

Xtþn� 1

t0 ¼t

jr t0
� �
j

(a)

(b)

Fig 9. Returns PDF from the simulation (a) and comparison with empirical data from United States Steel Corporation, Inc. The tails

of the distribution (red line) are clearly heavier than those of a normal distribution (blue line). Data obtained from QuantQuote [43].

doi:10.1371/journal.pone.0170766.g009
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Fig 10. Comparison of the positive and negative returns CDF from the simulation (a) and from empirical data for Anadarko

Petroleum Corp (b). It can be seen that the left tail of the distribution (red line), corresponding to the negative returns, is heavier than

the right tail (blue line), corresponding to the positive returns. This is related to the negative skewness observed in the distribution.

doi:10.1371/journal.pone.0170766.g010
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For the present result we took values of n = 30 and Δt = 1 time steps. The distribution of vol-

atilities is not well described by a log-normal distribution, however, the central part of the dis-

tribution may be approximated by one [39]. On the other hand, when we remove the technical

agents from the simulation, the volatilities are remarkably well described by a log-normal dis-

tribution as shown in Fig 16, which corresponds to a run with the same parameter values

described in Table 1 without technical agents.

To assess how well a lognormal distribution fits the volatilities, we performed a Kolmogo-

rov-Smirnov test on the empirical data and on four different sets of data generated with our

model. The p-values obtained from these tests are presented in Table 4. Even in the case with

γ = 0.0025 which generated data which clearly deviates from a lognormal distribution at the

tails, the average p-value is still high enough to make the rejection of the lognormal hypothesis

difficult. The values obtained with the model are very similar to the value of the average

p-value measured from the empirical data, which is at 0.47.

This similarity in the central part of the volatility distributions in the scenarios with and

without technical agents, along with a similar result obtained by Schmitt T, Schäfer R, Münnix

(a) (b)

Fig 11. Complementary cumulative distribution functions and their powerlaw fits for γ = 0.0025. Here κ− and κ+ are the exponents of

the powerlaw fits for the left and right tail correspondingly. Fig (a) shows the negative returns and Fig (b) the positive returns.

doi:10.1371/journal.pone.0170766.g011

(a) (b)

Fig 12. Complementary cumulative distribution functions and their powerlaw fits for γ = 0.0225. Fig (a) shows the negative returns

and Fig (b) the positive returns.

doi:10.1371/journal.pone.0170766.g012

Agent based model of a financial market

PLOS ONE | DOI:10.1371/journal.pone.0170766 February 28, 2017 17 / 27



M and Guhr T [16] with their model, in which the agents place orders with exponentially dis-

tributed volumes, is of interest since the flows of orders are very different in both cases (see

Fig 17(a) and 17(b)), yet, the majority of the volatilities can be described by log-normal distri-

butions. This result suggests that the order book mitigates in some sense, the variations in the

shape of the incoming order “signal”, in such a way that the variations in price (the volatilities)

are not strongly affected by changes in the distribution of orders placed into the book.

In Fig 18 we plot the values of the average skewness of an ensemble of 50 simulations (for

every point in the plot) as a function of the parameter γ. As explained above, this parameter

controls how often the population of technical agents engage in profit taking. In the frame-

work of our model, this behavior is the cause of the asymmetry between losses and gains in the

distribution of returns, since by enanging in profit taking, the population of technical agents

creates large falls in the price of the asset.

The mean skewness we measured in the empirical data obtained from QuantQuote [43] has

a value of −0.33; close to the minimum average skewness obtained in our model with the tech-

nical agents population engaging frequently in profit taking at γ = 0.0025. The number of

Fig 13. Complementary cumulative distribution functions and their powerlaw fits for γ = 0.0400. Fig (a) shows the negative returns

and Fig (b) the positive returns.

doi:10.1371/journal.pone.0170766.g013

(a) (b)

Fig 14. Powerlaw fits of two companies (Abbott Laboratories and Texas Instruments) with tail indexes greater than 3. Data

obtained from QuantQuote [43]. Fig (a) shows the negative returns and Fig (b) the positive returns.

doi:10.1371/journal.pone.0170766.g014
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companies with a skewness within the interval [−0.5, 0] is 199, which represents 39.8% of the

companies listed in the S&P500.

In Fig 19 we present another test that relates the asymmetry of the distribution of returns to

the practice of profit taking. In this figure we present the differences between the exponents of

the power law fits for both the positive tail and the absolute value of the negative tail of the dis-

tribution of returns for several ensembles of 50 simulations in which we varied the parameter

γ.

As can be seen in Fig 19, we obtain mean values of the difference κ− − κ+ in a range of

[−1.92, −0.56]; the distribution of values for this difference as measured in the empirical data is

in the Fig 20. The differences between the exponents for the power law fit obtained from the

data generated with our model present a significant overlap with the empirical ones.

Similarly, in Fig 21 we plot the average kurtosis of an ensemble of 50 simulations as a func-

tion of the fraction of technical agents in the population, in analogy to what is done in [48].

The kurtosis shows an increase with the number of technical agents, which strongly suggests

that they are responsible for the deviations from normal behavior observed in the distribution

of returns. Empirically, the kurtosis measured on the various companies listed in the S&P500

span a wide range of values, with some companies having a kurtosis higher than 100. With our

model, we were able to produce kurtosises as high as 7 when the population of technical agents

was almost twice the size of the population of fundamental agents. Unfortunately, using higher

ratios without compromising the stability of the simulations requires a much larger total popu-

lation of agents which is beyond our computational capacities.

Conclusion

In this work we studied an agent based model of a single asset financial market with agents

employing simple heuristic rules, which is capable of replicating the stylized facts reported in

the literature. As in the LM model [41], we divided the population of agents into two groups

according to the type of trading strategy they use: fundamental agents and technical agents.

Further, we added heterogeneity within each group by varying the values of the parameters

that control each agent’s behavior. Our aim was to create a model whose agents behaved realis-

tically, as in the LM model, but with equally realistic market structures, namely, trading via a

Table 2. Values of the mean log-likelihood ratios <R> between the powerlaw and lognormal fits and of

the mean significance values <p>. The values are presented for three representative cases of our model

with different values of γ. Here <R−> and <R+> stand for the log-likelihoods of the left and right tails, corre-

spondingly. Similarly, <p−> and <p+> stand for the mean significance values for the left and right tails.

<R−> <p−> <R+> <p+>
γ = 0.0025 −0.006 0.595 −0.032 0.057

γ = 0.0225 0.004 0.597 −0.053 0.623

γ = 0.0400 −0.050 0.609 0.203 0.489

doi:10.1371/journal.pone.0170766.t002

Table 3. Values of the mean log-likelihood ratios <R> between the powerlaw and lognormal fits and of

the mean significance values <p> for the empirical data.

<R−> <p−> <R+> <p+>
0.258 0.399 0.403 0.338

doi:10.1371/journal.pone.0170766.t003
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limit order book. We find, in accordance with previous models, that when the population of

agents include technical agents, the returns present volatility clustering and a heavy tailed dis-

tribution. Further, we found that essentially no autocorrelation of the returns was present for

any configuration of the populations. In addition to these main stylized facts, we find that

when we allow the population of technical agents to engage in profit taking, the distribution of

returns displays negative skewness and an asymmetry between losses and gains appears. By

varying the frequency with which technical agents engage in profit taking, we can generate

(a)

(b)

Fig 15. Distribution of volatilities for a simulation with both fundamental agents and technical agents (a) and comparison with

empirical data from the Standard & Poor’s 500 (b). It can be seen in (a) that while the distribution of returns is not well described by a log-

normal distribution, the central region is qualitatively similar to one, but the right tail is considerably heavier. Data obtained from Yahoo

Finance.

doi:10.1371/journal.pone.0170766.g015
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return distributions with varying degrees of separation in the tails. This dependence of the

skewness over the frequency of profit taking suggests that this practice may be one of the

causes of the appearance of the asymmetry in real financial markets.

Regarding the distribution of volatilities we find that only its central part is qualitatively

similar to a lognormal distribution when technical agents are included in the population. If, on

the other hand, we only include fundamental agents, the volatilities are remarkably well

described by a lognormal distribution. The similarity of the volatility distributions in both sce-

narios, at least in the central part, suggests that its shape may not be strongly dependent on the

detailed properties of the flow of incoming orders, since this flow varies significantly when

technical agents are inserted in the population as compared with a population comprised

entirely of fundamental agents.

We accompany our results with empirical data from real financial series chosen to illustrate

the various stylized facts reproduced by our model.

In its present state, the model represents a single asset market, however, it is simple enough

to be extended in several ways. For instance, an interesting extension to the model would be to

increase the number of assets in the market and to limit the credit available to each agent. By

Fig 16. Volatilities of a simulation without technical agents. When only fundamental agents are used in a simulation, a log-normal

distribution is a remarkably good description of the distribution of volatilities.

doi:10.1371/journal.pone.0170766.g016

Table 4. Values of the mean p values corresponding to the goodness of fit of a lognormal distribution

for the distribution of volatilities for four representative cases of our model with different values of γ.

γ = 0.0025 γ = 0.0150 γ = 0.0300 γ = 0.0400

p-value 0.21 0.42 0.49 0.50

doi:10.1371/journal.pone.0170766.t004
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(a)

(b)

Fig 17. Representative trading volumes for runs of the model without technical agents (a) and with technical agents (b). As it can

be seen, there are large fluctuations of the volume when technical agents are included in a simulation (b) but when only fundamental agents

are present (a), the volume forms a steady flow with little deviations from its mean. The insets in each figure show the distribution of flows.

doi:10.1371/journal.pone.0170766.g017
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Fig 18. Mean skewness of the distributions of returns as a function of the profit taking threshold γ. As γ becomes smaller, more

profit taking takes place and the mean skewness of the distributions of returns becomes more negative.

doi:10.1371/journal.pone.0170766.g018

Fig 19. Mean difference of the exponents κ− and κ+ of the power law fits for the absolute value of the negative (red) tail and the

positive (blue) tail of the distributions of returns. This difference tends to decrease as γ becomes larger, suggesting that the tails of the

distribution tend to collapse one on top of the other as the technical agents engage less frequently in profit taking.

doi:10.1371/journal.pone.0170766.g019
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doing this, the well being of the different “companies” associated to the different assets could

become correlated depending on the shifts of the demand for each asset. Thus, we could

inquire into the nature of these correlations, and how they are related to the composition of

the population of agents. Another interesting modification would be the introduction of

sequences of catastrophic news. The model will allow us to study how fast and in which way

the market recovers to states observed previous to the arrival of the catastrophic news, if it

recovers at all, and if the composition of the population affects this recovery.

Fig 20. Distribution of the differences between the negative and positive tail exponents of the powerlaw fit. The red histogram

corresponds to the values of the empirical data, the blue one corresponds to the data generated by the model. A significant number of

companies present values in the range generated by our simulations.

doi:10.1371/journal.pone.0170766.g020
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