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Abstract

Multi-robot task allocation is one of the main problems to address in order to design a multi-

robot system, very especially when robots form coalitions that must carry out tasks before a

deadline. A lot of factors affect the performance of these systems and among them, this

paper is focused on the physical interference effect, produced when two or more robots

want to access the same point simultaneously. To our best knowledge, this paper presents

the first formal description of multi-robot task allocation that includes a model of interference.

Thanks to this description, the complexity of the allocation problem is analyzed. Moreover,

the main contribution of this paper is to provide the conditions under which the optimal solu-

tion of the aforementioned allocation problem can be obtained solving an integer linear prob-

lem. The optimal results are compared to previous allocation algorithms already proposed

by the first two authors of this paper and with a new method proposed in this paper. The

results obtained show how the new task allocation algorithms reach up more than an 80% of

the median of the optimal solution, outperforming previous auction algorithms with a huge

reduction of the execution time.

Introduction

Systems with two or more mobile robots (multi-robot-systems) can perform tasks that with

one robot would be impossible to carry out or would take much more time. Moreover, such

systems are more robust, scalable and flexible than those with only one robot. However, a lot

of new challenges and problems must be solved before taking advantage of the potential bene-

fits of multi-robot systems. Among all possible issues that arise in a natural way in multi-robot

systems, this paper focuses on the problem commonly referred to as “Multi-robot Task Alloca-

tion” (MRTA) which consists in selecting the best robots to execute each one of the tasks that

must be performed. MRTA is still an open problem, specially when several robots (a coalition)

have to execute concurrently a task before a deadline. Furthermore, in most cases, this problem

is either NP or needs a very long time to provide an optimal solution. To address this problem,

auction-like algorithms are widely used, where the robots negotiate between them to achieve a

solution.
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This paper is focused on the formation of multi-robot coalitions under an auction-based

framework, where the tasks must be executed before deadlines. In this case the knowledge of

how long the coalition will take to finish a task is essential in order to determine the proper

alliances. The time needed to finish a task is frequently unknown because it depends on many

complex and dynamic factors, among them this paper will center its attention on the physical

interference between robots. The interference appears when some individuals of a community

compete for a shared resource. In multi-robot systems, a frequent situation occurs when two

or more robots need to access the same point simultaneously. It has been demonstrated in dif-

ferent studies [1, 2], that the physical interference has an important impact on the system per-

formance. This effect can be dramatic when the system has to address tasks with deadlines

because the interference increases the time needed by the coalition to finish the task and,

therefore, diminishes the coalition utility.

This paper provides the first mathematical formalization of a MRTA problem with dead-

lines that takes into account the interference effect. Moreover, it analyzes the complexity of the

resulting optimization problem by means of the coalition utility and interference. As will be

demonstrated, depending on the interference function and on the task characteristics, the allo-

cation can be faced up as an integer linear optimization problem. The interference function

values have been obtained from the execution of a large number of experiments with physical

simulators in the authors’ previous works [3]. Recently, other authors (see [4]) gave a mathe-

matical model for MRTA with interference but without deadlines. Another example of the

growing interest for this field is the Nunes’ et al. work [5] where a formalization of the task

allocation with deadlines is given only from a theoretical point of view, without neither imple-

menting nor testing their models. Our paper extends this work and carries out an extensive

number of experiments to compare the first two authors’ previous works, given in [3], regard-

ing to the optimum solution. Thus, the experiments show that the algorithms given in [3] can

reach up to more than an 80% of the optimal solution with a very low execution time. In the

light of the formalization and, as a secondary contribution of this paper, a new auction-like

MRTA algorithm, called Multi Objectives Double Round Auction (MDRA), is proposed and

tested. The experimental results show that this new method outperforms the previous ones.

The interference can cause a high impact when implemented in real robots and, as Ruben-

stein et al. points out in [6], is crucial to implement motion strategies for avoiding failures.

Despite this need, this paper is only focused on MRTA problems ignoring the lower motion

issues. As future work, we will address how to join both our MRTA algorithms and motion

control algorithms in an unique strategy.

The rest of the paper is organized as follows: first, Section MRTA Problem Fundamentals

reviews the basic formal definitions of the MRTA problem that can be found in literature; Sec-

tion Previous work on coalition formation is focused on the algorithms formerly proposed to

deal with multi-robot coalitions proposed in literature; Section Coalition formation complex-

ity analysis provides a new formalization for MRTA problem that take into account interfer-

ence; Section Task Allocation: Double Round Auction for tasks with deadline reviews the

authors’ previous work based on auctions and, in addition, introduces the new MDRA algo-

rithm; the experimental results are shown and analyzed in Section Experimental results and

finally, conclusions and future work are presented in Section Conclusions and future work.

MRTA Problem Fundamentals

In this section we review the fundamental aspects of multi-robot task allocation proposed in

the literature. Specially, we focus on the problem of the complexity and on the relationships

with other knowledge fields such as multi-agent or task-scheduling. As will be seen, most
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MRTA problems for the coalition formation are NP-hard, thus, making necessary the use of

heuristic functions for obtaining a solution close enough to the optimum value in a moderate

time. The MRTA methods can be classified in three groups: centralized approaches, swarm-

based methods and auction algorithms. The last two approaches are the most used nowadays,

but as will be seen, these methods present serious limitations when the robots must form coali-

tions to face up tasks with deadlines.

Some taxonomies for MRTA systems have been proposed in the literature, but probably

one of the most broadly used is authored by Gerkey and Mataric [7]. Gerkey’s taxonomy

breaks down the MRTA problem in three orthogonal axes:

• Single-Task robots (ST) vs Multi-Task robots (MT): in a ST problem every robot can only

execute a task at a time. While in contrast, in a MT problem the same robot can execute sev-

eral tasks simultaneously.

• Single-Robot tasks (SR) vs Multi-Robot tasks (MR): if two or more robots can collaborate to

carry out the same task, the problem is MR. The group of robots assigned to a task is called

coalition or working group. Otherwise, if only one robot can be assigned to each task at the

same time, the problem is called SR.

• Instantaneous assignment (IA) vs. Time-Extended assignment (TE): in an IA problem, the

task allocation is made without taking into account future allocations, that is, without plan-

ning the future. Conversely, in a TE problem, a planner considers the future assignments.

This taxonomy will be used to classify the different MRTA methods exposed from now on.

Regardless of Gerkey’s category, the algorithms can be preemptive or non preemptive. A pre-

emptive algorithm is a method where the robots can change their current assigned tasks before

ending them.

A single robot per task: the SR problem

This section reviews some definitions used to address the SR problem. As proved by Gerkey in

[8], the ST-SR-IA algorithms can be described in terms of the well-known Optimal Assign-

ment Problem (OAP). The OAP is defined as: given n agents (robots) and m tasks to carry out,

each agent can only be assigned to one task and each task requires only one agent. For each

couple (agent-task), a value is defined that forecasts the agents performance for that task, that

is, this value models the agents utility regarding that task. The goal is to assign an agent to each

task to maximize the total utility U. This goal function is given as:

U ¼
X

1�i�n

X

1�j�m

aijUijwj; ð1Þ

where αij = 1 if the task i is assigned to agent j, and αij = 0 otherwise; Uij is the utility gained by

the system when agent j is assigned to task i; and wj is the weight or importance of the task j.
Thus, wj represents the priority of the task. The Hungarian’s method allows to get the optimal

solution for this kind of problems in a time O(nm2) through a dynamic programing centralized

method [9]. We have to note that, if the utilities are interrelated, that is, if the agent’s utility for

a task depends on the tasks previously assigned to that agent, then the assignment is a NP-hard

problem of type ST-SR-TE.

Multiple robots per task: MR problem

In this section we introduce the definitions for MR problems, where the robots can form coali-

tions for carrying out a task. In this case, the definition for the Set Partitioning Problem (SPP)
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can be given in the following way according to [10]: given a finite set E, a family F of all feasible

subsets of E and a utility function U : F ! Rþ, the goal is to find a family X of F that has the

maximum utility and which is a partition of E. The SPP problem is NP-hard, as it was proved

in [11]. The Set Covering Problem (SCP) is similar to SPP but it is enough that X is a covering

of E, being this a SCP NP-complete problem [12]. Both problems can be viewed as general

cases of the multi-robot coalition formation problem, where E is the set of robots, F is the set

of feasible robot coalitions formed (each one with a task assigned), and U is the utility function

assigned to each coalition [13]. If time constraints are needed, the task deadlines should be

considered just as one of the conditions to validate a family F of subsets of E. On the one hand,

the SCP definition allows to allocate more than one task to the same robot and, therefore, it

can address MT problems. On the other hand, the SPP definition is more restrictive because

each robot can only belong to a single coalition at the same time and, therefore, these problems

are ST. In [14], it is proved that, using the SPP and SCP definition, the multi-robot coalition

formation problem is not only NP-hard but, in general, it cannot be approximated by a factor

O(m1−ε), for any ε> 0, where m is the number of tasks. This means that, unless P = NP, the

solution obtained by means of an algorithm with a complexity bounded by a polynomial func-

tion will always be O(m1−ε), for any ε> 0 worst than the optimal solution. As can be observed,

the complexity of the coalition formation algorithms is very high. This fact justifies the great

number of ad—hoc solutions that can be found in the literature.

In [15], a new coalition formation algorithm is proposed, based on the SCP and SPP defini-

tions, where the maximum number of agents per coalition (k) is fixed beforehand. The algo-

rithm complexity is O(nkm), where n is the number of agents and m the number of tasks. In

[13], it is described a new algorithm with a complexity O(nkm) that extents to multi-robot sys-

tems the previous algorithms proposed only for multi-agents in [15]. In [14], Service and

Adams improve the above cited algorithm given in [13], with a O n3
2m

� �
complexity. In any

case, this solution is, in general, not optimal yet. Only, if the robots can be grouped in j homo-

geneous groups, in such a way that each robot only belongs to one of these groups, Service and

Adams’ algorithm provides an optimal solution, with a complexity equal to O(n2jm). In this

algorithm, the task must be assigned to a certain number of robots to start its execution and

only when this number is reached the task i is executed with a utility ui. In nex sections, a new

method, based on the SPP’s definition, will be explained where the number of robots k do not

need to be known beforehand, the robots are not homogeneous and the utility ui depends,

among other factors, on the coalition size. Therefore, Service and Adams’ algorithm is not suit-

able for these kind of environments. It is also remarkable the Agarwal et al. contribution [16],

where genetic algorithms optimize multiple objectives simultaneously for the coalition forma-

tion. These objectives can be the distance traveled by the robots, the number of finished tasks,

or any other system parameter. Due to its complexity, the evolutive algorithms cannot deal

with neither dynamic tasks nor tasks with time restrictions. Nevertheless, the Agarwal’s evolu-

tive methods are very good candidates to improve someway the real time system’s

performance.

Scheduling: ST-MR-TE Problems

The above definitions, based on SPP or SCP, do not take into account any temporal condition

for the tasks, that is, they cannot deal with any scheduling consideration. On account of [17],

the coalition formation problem can be defined in terms of the Job Shop Scheduling (JSS)

problem as follows: given a set of m jobs J = {J1, J2, . . ., Jm} and a set of n machines, each job Ji
has mi associated operations Oi = {Oi1, Oi2, . . ., Oimi

} each one of them with an execution time

for each machine Tij. The system’s goal is to decide (schedule) in which order the tasks must
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be carried out on the machines to minimize the execution time. Moreover, this formulation

allows defining a precedence order among operations and, even more, set a maximum execu-

tion time bound for the tasks. Balas et al. in [18] propose a method that take into account all

these constraints in a multi-agent scenario. It was demonstrated that, in general, the JSS prob-

lem is NP-hard. The JSS problem can be adapted to a multi-robot problem in such a way that

the system should decide the execution order of the tasks assigned to each robot to minimize,

among other factors, the total execution time, the traveled path or the robots’ energy consump-

tion. Thus, these problems are classified as TE, following the Gerkey’s taxonomy. For example,

Jones et al. in [19] use genetic algorithms to solve a variation of the JSS problem for multi-

robot systems.

The Vehicle Routing Problem with Time Windows (VRPTW) can also be considered as a

scheduling problem, where a set of vehicles must transport goods to several “clients”. Each

vehicle has a load capacity and each client demands a quantity of goods that have to be deliv-

ered within a time window. The system goal is to find a route, as short as possible, that satisfies

the clients constraints with the fewest number of vehicles [20]. As the JSS definition, the

VRPTW problem is NP-hard too. A variation of the VRPTW is the Tasks with Overlapping

Time Window Problem (TOTWP) where the time window can be overlapped. Nunes et al. in

[21] try to solve the TOTWP but with non realistic environments and with a single robot per

task (SR problem).

Finally, it should be noticed that MT problems, where a robot is able to execute several

tasks at the same time, are not feasible in most of the multi-robot missions because, in general,

the robots must be located in an specific place to carry out a task.

Previous work on coalition formation

This section focuses on the coalition formation methods that can deal with task deadlines.

Depending on how the task allocation process is distributed among the robots, the coalition

formation methods can be classified into the following categories: centralized systems, self-

organized approaches (swarm intelligence) and auction methods. The Gerkey’s taxonomy will

be applied into each one of these groups.

Centralized systems

In the centralised systems all the information about the robots or the environment characteris-

tics is sent to a central agent that takes all the decisions. Typically, these systems use techniques

such as, linear programming or heuristic searches on graphs to find the optimal solution or

the closest to the optimal one. Koes et al. [22] utilize linear programming to address simulta-

neously task allocation, path planning and task scheduling. Yu and Cai, in [23], propose a cen-

tralized mechanism called Heterogeneous Interactive Cultural Hybrid Algorithm (HICHA)

where, among other techniques, use genetic algorithms. Another centralized system has been

introduced by Smith and Bullo in [24], where different task allocation methods are analyzed as

a function of the arrival frequency of the tasks.

Swarm Intelligence

Swarm methods are inspired by insect colonies behavior, such as bees or ants, where a global

action emerges from the interaction between very simple entities. These methods belong to a

more general category of systems called self-organized systems which are defined by Cao et al.

[25] as follows: “[. . .] systems of non-intelligent robots exhibiting collectively intelligent behavior”.

That is, they consist on system without any central node, where the cooperative behavior

emerges from the interaction of very simple behaviors running on each robot.

Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions
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The main problem of swarm systems is its lack of global knowledge about the decision

made by other robots. Due to this fact, the solutions provided by the swarm methods are far

away from the optimal one, moreover, they can only address SR problems of limited complex-

ity such as foraging or cleaning with homogeneous robots. This restriction is superseded in

some already explained swarm systems by the authors [26, 27]. Due to its communication

complexity, Low’s et al. algorithm [27] does not show some advantages of swarm methods.

Furthermore, in Low’s system the robots must be homogeneous, and it cannot handle task

time restrictions.

One important issue is how swarm system manage the physical interference effect between

robots. This aspect, that will be addressed in Section Physical interference between robots, has

already been broadly faced up in several papers, such as [28, 29]. Khaluf’s swarm methods [30]

can manage deadlines but without taking into account the interference effect.

Auction methods

Auction methods use communication protocols between robots to implement an explicit

negotiation about which task must execute each robot or coalition of robots. These protocols

are based on the Contract Net Protocol (CNP) proposed by Smith in 1980 [31]. Smith’s work

defines a mechanism to assign tasks to communication nodes (machines) connected between

them, that must solve some cooperative problem in a distributed way. When a node, called

manager or auctioneer, finds or generates a new task, sends a message to announce it before

starting the execution. The other nodes, called bidders, send to the auctioneer a value, called

bid, that indicates how suitable are they for executing the new task. Once the manager node

has received all the bids, it selects the best node (node with the highest bid) for the task. In

multi-robot systems, the nodes are the robots and the manager is a central agent or another

robot.

Most current auction methods only admit a robot per task, therefore, they are SR methods.

In contrast, MR problems, which require coalition formation mechanisms, have hardly been

addressed by auction approaches. Vig and Adam’s RACHNA method [32] allows MR prob-

lems but without deadlines. Paquet in [33] proposes a method where the working group size is

unknown beforehand and considers task deadlines. This mechanism has only been tested on

multi-agent systems, such as Robocup competition, but not on real or simulated physical

robots. Furthermore, due to the high computational cost of its algorithms, the decision about

how many agents are needed to finish a task cannot be made on-line. In [34], Tang and Parker

introduce another auction approach, called ASyMTRe, that allows high tight tasks and coali-

tion formation. More auction methods that admit coalition formation can be found in [35].

None of these methods consider the physical interference or the task deadlines.

Among the auction methods that allow time restrictions, one of the most remarkable work

is that proposed by Jones [36]. This approach makes use of a learning algorithm to find the

most suitable value for the bids in MR problems. Jones’ method uses a learning Support Vector

Regression (SVR) model to obtain the bid value, but does not estimate the execution time.

Lemaire’s auction method [37] allows soft deadlines but with a single robot per task. In [38],

the proposed method can solve the VRPTW without overlapping windows. In [39], Campbell

introduces a method that, that is partially inspired by auctions, where the robots can not

decide to bid for a task despite it was the best option at that moment. The Campbell’s experi-

mental results show a great improvement regarding the aforementioned methods.

Heretofore, all the methods cited does not try to forecast the expected execution time of the

task. Sellner’s and Simmons’ SR method [40] predicts this time making use of kernels, but no

physical interference is taken into account. In contrast, Sellner’s approach requires very heavy
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computational algorithms to carry out the tasks. As has been mentioned in previous sections,

Nunes et al. [21] allow overlapped time windows with auctions to address SR problems.

Finally, other auction-like mechanisms [41] also face up tasks with deadlines but with only one

robot per task.

As has been exposed, the auction mechanisms allow the distribution of the decision process

among the robots through communication protocols. Thus, the typical problems produced in

centralized systems, such as single point of failure or overloading of the central agent, are

avoided. Furthermore, these algorithms are, in general, much more simple than the centralized

approaches. In contrast, to the aforesaid advantages, the solutions provided by the auction

methods require more time and increase the energy consumption compared to the centralized

systems. In addition, the auction methods are more complex than the swarm ones because

they require communication protocols between robots. Despite of that, the auction systems

outperform the swarm-based ones increasing the number of finished tasks and reducing the

energy consumption, among other factors. Furthermore, due to the inter-robot communica-

tion protocols, the auction methods can deal with much more complex and tight tasks.

Physical interference between robots

The physical interference between robots is one of the most fundamental problems to address

by the task allocation mechanisms. In [2] Rosenfeld et al. clearly state the huge impact of the

physical interference on the multi-robot systems performance. There are a lot of methods that

try to minimize the interference effect in multi-robot systems without deadline (see, for

instance, [42]).

In [43], Dahl et al. propose a mechanism called Vacancy Chains to carry out foraging tasks

for MR problems. The system assigns robots to a task (transport an object that can be divided

in small parts) until it detects that the amount of transported object weight decreases. This

reduction can only be due to the interference between robots. Dahl’s method neither deals

with tasks with deadlines nor can estimate tasks execution time. Finally, Lerman’s et al. studies

[1] and Nam and Shell [44] present methods to model the interference but none of them deal

with time restrictions.

Other authors describe swarm-like strategies to deal with the physical interference in sys-

tems with a huge number of robots (see [6, 45, 46]). For example, Rubensteinin et al. in [45]

use self-assembly with thousand of robots to build complex structures.

Coalition formation complexity analysis

The MR problem with deadlines has not been properly addressed by previous task allocation

approaches. Moreover, no formal analysis regarding the complexity of this problem has been

proposed. This section presents a formal definition of the MRTA-ST-MR with deadlines prob-

lem from which we will propose a classification, according to the computational complexity

under different situations.

Generic problem

The MRTA-ST-MR with deadlines problem (from now on simply MRTA problem) can be

seen as a particular case of the SPP. From now on, N will denote the set of positive integer

numbers. Moreover, in the following, R will denote the set of robots with R = {r1, . . ., rNr
} and

T will denote the set of tasks to carry out with T = {t1, . . ., tNt
}, where Nr;Nt 2 N. Furthermore,

we will assume that both sets, R and T, are kept constant over the time. Next, denote by G the

the subset of 2R formed by all working groups or coalitions of robots allowed over R, where 2R

Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions
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stands for the power set of R. The criteria to decide if a working group is allowed depends on

specific task characteristics.

Now, taking into account the preceding notation, we introduce the main notions in order

to formalize the MRTA problem with deadlines. To this end, let us denote byRþ the non nega-

tive real numbers.

Definition 1 Let tj 2 T and nðtjÞ 2 N with 1� j� Nt. The sets of coalitions assigned to tj over
the time, Sgtj, is defined by

Sgtj
¼ fðg1; t1Þ; . . . ; ðgnðtjÞ; tnðtjÞÞg;

where each pair ðgk; tkÞ 2 ðG� R
þÞ

2 stands for the coalition of robots gk allocated at task tj at
time τk for all k = 1, . . ., n(tj) and, in addition, satisfies that τk< τm whenever k<m for all k,

m = 1. . .n(tj).
It must be pointed out that each coalition gk allocated at a task tj is kept constant from time

instant τk until τk+1 for all k = 1, . . ., n(tj), where τn(tj)+1 denotes the finishing time for that task

provided that the set of coalitions Sgtj is able to carry out the task.

Notice that if the allocation is non preemptive, that is, a robot cannot leave its current work-

ing group after allocating it in a task, then the cardinality of the set of coalitions must be lower

or equal to 1, i.e., jSgtjj � 1 for all j = 1. . .Nt and, thus, Sgtj
2 G� Rþ for all j = 1, . . ., Nt.

Definition 2 Let j 2 {1, . . ., Nt}. Then the execution time of the task tj 2 T is defined as the
function bj : Sgtj

! Rþ [ f1g such that

bjðSgtj
ÞÞ ¼

tnðtjÞþ1 if Sgtj
is able to carry out the task tj

1 otherwise

8
<

:
:

Note that βj(Sgtj)) provides the time needed by the set of coalitions to finish the task tj when-

ever the aforementioned set is able to carry out tj.
As has been pointed out in Section Previous work on coalition formation, giving the exact

value of β function for a certain coalition is often impossible or quite difficult because of,

among other factors, the interference effect. Therefore, in most cases, the function βmust be

predicted through different methods.

Definition 3 Let j 2 {1, . . ., Nt}. Then the utility of a task tj is defined as a function Uj :

Rþ [ f1g ! Rþ such that Uj(1) = 0.

Note that the utility function of a task will depend on task’s characteristics such as its dead-

line which will be denoted by DLj. Fig 1(a) shows an example of an utility function Uj called

hard-deadline utility function, where Uj(τ) is constant and equal to Umaxj
if τ< DLj and

abruptly drops to zero if τ� DLj (the task cannot be executed on time). Another kind of utility

function are so-called soft-deadline utility functions. An example of these type of functions

can be seen in Fig 1(b), where the value of Uj(τ) progressively falls to zero from τ = DLj.

In the light of Definition 3 it is clear that the value Uj(βj(Sgtj)) yields the utility after assign-

ing a coalition set Sgj to a task tj 2 T. Depending on the characteristics of the composition func-

tion Uj � βj, as for instance linearity or continuity, the allocation problem must be addressed

by a different kind of strategy, as will be seen later.

As we have noticed before, Sgtj
2 G� Rþ whenever the allocation is not preemptive. Hence

in this case the global utility associated to the MRTA problem matches up with the function
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U : ðG� RþÞNt ! Rþ given as follows:

UðSgt1
; . . . ; SgNt

Þ ¼
XNt

j¼1

UjðbjðSgtj
ÞÞ: ð2Þ

It is clear that an element ðSgt1
; . . . ; SgNt

Þ 2 ðG� RþÞNt can be identified with a function

TA : T ! ðG� RþÞNt such that

TAðTÞ ¼ ðTA1ðt1Þ; . . . ;TANt
ðtNt
ÞÞ;

where TAj(tj) = Sgtj for all j = 1, . . .Nt.

Under the preceding assumptions, the goal of the MRTA problem is to maximize the global

utility function, that is, to find a function TA� which maximizes the function U. Thus, the

aforesaid goal matches up with obtaining the solution to the following optimization problem:

maximize
TA

XNt

j¼1

UjðbjðTAjðTÞÞÞ

subject to

TAiðtiÞ \ TAjðtjÞ ¼ ; for i; j ¼ 1; . . . ;Nt

ð3Þ

Observe that we need to consider the restriction of Problem 3, since the MRTA problem is

an SPP problem.

To validate the model explained above we propose a simple but generic example of a forag-

ing-like task. To this end, we assume, in addition to the non preemptive allocation assumption,

an IA strategy and that the coalitions for the tasks are formed simultaneously, i.e., τ1 is the

same for all tj with j =, . . ., Nt.

Example: Foraging with tasks’ deadline. Foraging is one of the canonical tasks utilized

by a lot of authors to state their algorithms. Moreover, it can easily be extended to other kind

of missions, such as area coverage or repeated coverage.

In a foraging task there is a set of objects or tasks (T = {t1, . . ., tNt
}) to process. Each task

tj 2 T has a workload (Lj) that, for example, is the weight of the object; and a utility function

Fig 1. Utility function (Uj) examples. (a) Hard-deadline utility function, (b) Soft-deadline utility function, where τ stands for the time needed

by the coalition to finish the task.

doi:10.1371/journal.pone.0170659.g001
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(Uj) with a deadline (DLj) (see the paragraph about utility functions with deadlines below Defi-

nition 3). Each robot ri 2 R = {r1, . . ., rNr
} has a work capacity, Cij, associated to each task tj that

represents the amount of work (object’s workload) that the robot can process per time unit.

For example, in a foraging task, Cij would be the object’s weight that a robot can carry per time

unit. Each coalition of robots g 2 G, in charge of a task tj, has a work capacity GCgj, that gives

the amount of work that the group of robots can perform per time unit. Thus, the expected

time to finish a task performed by a group of robots g (function βj) is denoted by:

bjðgÞ ¼
Lj

GCgj
ð4Þ

The Lj is known before executing the task, for example, the weight of an object to be trans-

ported or the area of a region to be covered by the robots’ group. However, it is hard to deter-

mine precisely the GCgj because it usually depends on dynamic and a priori unknown factors.

It is widely accepted that the factor with the strongest effect is the physical interference, as

pointed out in Section Physical interference between robots. In this work the deviation from

the ideal capacity of a robot’s team is summarized in a single term called the interference factor

defined by a function I : G� T ! R (R stands for the real numbers set), where I(g, tj) = Igj
denotes the interference effect of executing task tj by a coalition of robots g. Igj must be viewed

as a noise of the ideal model (idealCapacitygj) that is able to include the physical interference or

any other kind of perturbations, such as odometry errors (see [3].) Thus, the work capacity of

a group to perform a task tj is considered to be:

GCgj ¼ idealCapacitygj � Igj; ð5Þ

where idealCapacitygj is the ideal group capacity. When the individual characteristics of the

robots are known a priori, the idealCapacityg,j can be easily estimated as follows:

idealCapacitygj ¼
X

1�i�ng

Cij; ð6Þ

where ng is the number of robots of the group g. This is a simple but very effective model, as

has been proved by the first two authors in a previous work in [3].

From all these definitions the objective function to maximize can be defined in two differ-

ent ways as follows:

If the there is no interference, that is Igj = 0 for all g 2 G and for all j = 1, . . ., Nt, then the util-

ity function, provided by Eq (2), is given now by

XNt

j¼1

Uj

Lj
PNr

i¼1
aijCij

 !

: ð7Þ

Hence the Problem (3) becomes the following optimization problem:

maximize
aij

XNt

j¼1

Uj

Lj
PNr

i¼1
aijCij

 !

subject to

XNt

j¼1

aij � 1 for i ¼ 1; . . . ;Nr

; ð8Þ
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where

aij ¼
1 if robot ri is assigned to task tj

0 otherwise

(

: ð9Þ

Notice that the restriction in Problem (3), TAi(ti)\TAj(tj) = ; for all i, j = 1, . . ., Nt, have

been rewritten in terms of αij in order to develop our numerical schemes later on.

If there is interference then the utility function, provided by Eq (2), is given now by

XNt

j¼1

Uj

Lj
PNr

i¼1
aijCij þ IðTAjðtjÞ; tjÞ

 !

: ð10Þ

So the Problem (3) becomes the following optimization problem:

maximize
aij

XNt

j¼1

Uj

Lj
PNr

i¼1
aijCij þ IðTAjðtjÞ; tjÞ

 !

subject to

XNt

j¼1

aij � 1 for i ¼ 1; . . . ;Nr

: ð11Þ

The method under consideration to face up the Problems (8) and (11) depends on the char-

acteristics of the composed function (Uj � βj). Next we summarize, on the one hand, the opti-

mization methods that we will use to solve the aforesaid problems and, on the other hand, the

range of considereded characteristics of the utilities functions.

Case studies

Case 1 (Linear and soft-deadline utility function). If Uj is a soft-deadline linear, continu-
ous and decreasing function for all j = 1, . . ., Nt, then, in general, Problems (8) and (11) becomes
binary integer nonlinear optimization problems. This is due to the fact that the functions βj, given
by Eq (4), are not linear. For example, if the utilities functions are defined by Uj(τ) = −τ + Umaxj

for all t 2 Rþ (Umaxj is a constant for each j = 1, . . ., Nt), then Problem (11) can be expressed as
follows:

maximize
aij

XNt

j¼1

�
Lj

PNr
i¼1

aijCij þ IðTAjðtjÞ; tjÞ
þ Umaxj

 !

subject to

XNt

j¼1

aij � 1 for all i ¼ 1; . . . ;Nr

ð12Þ

Case 2 (Soft-deadline utility function and Uj � βj linear). If the functions Uj are given, for
all j = 1, . . ., Nt, as follows

UjðtÞ ¼
Umaxj

t
ð13Þ

(again Umaxj is a constant for each j = 1, . . ., Nt) and Ig is linear, then it is not hard to see that
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Problem (11) is an integer linear optimization problem, as will be demonstrated in following par-
agraphs. This utility function form fits a great number of realistic tasks such as foraging toxic
wastes where as the time passes, the damage of the environment increases and therefore the utility
of the function also decreases.

In general the interference function is not linear with respect to the number of robots, as proved
in [2]. However, in some cases this assumption is pretty realistic, as the experimental results of
Section Experimental results demonstrate. Of course whenever the interference function is linear
it has the following form:

Iðg; tjÞ ¼ ajng þ bj; ð14Þ

where we recall that ng is the number of robots of the coalition g and, in addition, aj, bj are con-
stants that depend on the tasks characteristics. Section Experiments with physical robots: Inter-
ference function shows how aj and bj can be obtained. Taking into account the preceding
information, Problem (11) can be rewritten as follows:

maximize
aij

XNt

j¼1

XNr

i¼1

Umaxj
aij

Cij � aj

Lj

 ! !

� Umaxj

bj

Lj

subject to

XNt

j¼1

aij � 1 for all i ¼ 1; . . . ;Nr

: ð15Þ

Therefore, we conclude that in this case the optimization problem can be addressed, under the
considered assumptions, as an integer linear programming problem.

Case 3 (Hard-deadline utility function). If the utility functions Uj, for all j = 1, . . ., Nt, are
two-step hard deadline discontinuous function (see Fig 1(a)) then we show that the problem can
be addressed as an integer linear programming problem. To this end, let us recall that according
to [47] a renowned classical optimization problem consists in minimizing a function f defined by

f ¼
XNt

j¼1

H
Lj

PNr
i¼1

aij Cij � aj

� �
� bj

� DLj

0

@

1

A; ð16Þ

where each αij is given as in Eq (9) and H is the heaviside function defined by

HðxÞ ¼
0 if x < 0

1 if x � 0

(

: ð17Þ

Following [47], the preceding optimization problem can be converted into an integer program
problem adding for each task tj a new binary auxiliary variables ηj 2 {0, 1} and the constraint

LjPNr
i¼1

aijðCij � ajÞ� bj
� DLj � MZj, where M is a value greater than all the values for the argument of

H. Thus the optimization problem of minimizing the function f can be reformulated as the next
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optimization problem where the variable are now ηj and αij:

minimize
Zj;aij

XNt

j¼1

Zj

subject to

Lj
PNr

i¼1
aij Cij � aj

� �
� bj

� DLj � MZj for all 1 � j � Nt

ð18Þ

In the light of the exposed considerations, it is clear that the multi-robot task allocation prob-
lem under consideration can be seen as an optimization problem which fits the characteristics of
the Problem (18). Indeed, the fact that any ηj takes the value 0 can be interpreted as the coalition
of robots allocated in task tj can carry out the task before its deadline (of course ηj = 1 can be inter-
preted dually). Moreover, each utility function Uj can be expressed in terms of the H functions as
follows:

UjðtÞ ¼ Umaxj
Hðt � DLjÞ; ð19Þ

where τ is the amount of time required to finish the task tj. This expression can be rewritten to
add robots’ capabilities, task’s characteristics and interference, as follows:

Ujð
Lj

PNr
i¼1

aij Cij � aj

� �
� bj

Þ ¼ Umaxj
Hð

Lj
PNr

i¼1
aij Cij � aj

� �
� bj

� DLjÞ: ð20Þ

After taking into account the information provided by the utility functions Uj and the interfer-
ence effect, Problem (18) becomes the following optimization problem:

minimize
Zj;aij

XNt

j¼1

Umaxj
Zj

subject to

Zjm �
XNr

i¼1

aijðCij � ajÞ � �
Lj

DLj
þ bj

 !

for all j ¼ 1; . . . ;Nt

XNt

j¼1

aij � 1 for all i ¼ 1; . . . ;Nr

; ð21Þ

where m ¼ max
j
f�

LjPNr
i¼1

aijðaj� 1Þþbj
g for all j = 1, . . ., Nt. Consequently, when the utility functions

meet the characteristics of the Case 3, the optimization problem matches up with a binary linear
programming problem.

Table 1 summarizes the aforementioned cases, assuming that the interference function Ig is

linear. In spite of most MRTA cases can be addressed as linear (binary-integer) optimization

problems they still require too much time to be solved in dynamic environments, especially

when there are a large number of tasks or robots. As pointed in section about previous work,

many approaches have tried to give a good enough solution with a reasonable amount of time:

swarm intelligence, auction approaches, and so on, but only few of them take into account task

with deadlines. Inspired by the preceding fact and by the exposed example, a new auction-like

algorithm to address MRTA-IA problems is introduced in the next section.
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Task Allocation: Double Round Auction for tasks with deadline

In this section we first overview an auction method, called from now on Simple Double Round

Auction (SDRA), that was previously proposed by the first two authors in [3]. The experimen-

tal results showed that the aforementioned method outperforms the current auction

approaches. Furthermore, to our best knowledge, this is the only method that addresses coali-

tion formation for tasks with deadlines. Then, in the light of the experimental results and moti-

vated by the problem formalization explained in the last section, a new auction method, called

Multiple Objectives Double Round Auction (MDRA), is proposed for the first time.

Simple Double Round Auction (SDRA)

The SDRA algorithm splits the classical auction process into two steps: auction for a task and

auction for a robot. In each task there is a robot, called the task leader, that will manage an auc-

tion process. Thus, several auction processes can be executed in parallel; one for each task.

Each task must have a single leader which is the robot that handles the coalition or work

group, that is, it will be the auctioneer. In the initial stage, each robot is looking for a task.

When a robot finds a new task, it tries to lead it. As there can only be one leader per task, the

candidate will execute the leadership request process to ensure at most one leader per group.

If a robot is promoted to the leadership of the task tj, it creates a coalition of robots, if neces-

sary. In that case, the leader must decide the optimum group size and which robots are part of

it. To take this decision, the leader uses the first step of the SDRA, called auction for a task. In

this process the leader is the auctioneer and the other robots bid using their work capacities,

Cij. After a given time, the leader selects the robots with the highest work capacity using a

greedy algorithm until it detects that, even if the next best robot is added to the group, the task

utility function Uj is not improved. Following the new formulation, if Uj � βj function meets

the constraints of the Case 2 detailed in Section Case studies, the task leader selects the best

robots until this condition is verified:

UjðbjðgBÞÞ � Ujðbjðg 0BÞÞ; ð22Þ

where gB stands for the group of best robots already selected and g 0B ¼ gB [ frnmaxg where rnmax

is the next best robot. If Uj is a hard-deadline function (see Case 3), the task leader stops select-

ing new robots when it detects that the group is able to reach the task deadline, that is until

βj(gB)� DLj.

Furthermore, the leader does not include any selected robot in its group until it receives the

confirmation from these candidates. This confirmation is generated during the auction for a
robot round. In this round, to get the selected robots, the leader bids for them sending the

expected utility of the task. Therefore, now the leader becomes the bidder and the selected

robots are the auctioneers. When a robot receives a bid from a leader, it waits a certain time

for more bids from other leaders. After this time, the robot selects the coalitions with the great-

est bid and it becomes a member sending a confirmation message to the corresponding leader.

Table 1. Summary of the complexity regarding the utility function, where BINLP is binary integer non-

linear programming problem; BILP denotes integer linear programing problem problem; LP is linear

programing problem.

Case 1 BINLP

Case 2 BILP

Case 3 BILP

doi:10.1371/journal.pone.0170659.t001
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The interference factor Igj, required to calculate the expected execution time, (see Eqs (4)

and (5)), was estimated using a Support Vector Regression method (SVR). In the experimental

results section, we will explain in a more detailed way how the interference parameters have

been estimated.

Multiple Objectives Double Round Auction (MDRA)

When applying the SDRA method, the auction for a robot round only used the utility sent by

the leader and did not take into account the individual capacity of the robots. The new method,

called Multiple Objectives Double Round Auction (MDRA), uses both the individual and the

leader’s utility during the auction for a robot round in order to improve the system perfor-

mance. The other two steps of the auction process: leader’s selection and auction for a task, are

not modified with respect to SDRA.

In the MDRA method, as in SDRA, the robots selected by the leaders receive the expected

utility of the tasks, denoted by B = {(t1, b1), . . ., (tn, bn)}, where bi 2 R
þ represents the utility of

the group that attempts to execute the task ti 2 T. Let (tbest, bbest) be the tuple in B with highest

utility; and denote by Bbests = {(ti, bi) 2 B: bi� λB � bbest} where λB 2 [0, 1]. The robot will select

the task from Bbests for which it has the highest capacity. Algorithm 1 specifies the steps exe-

cuted by a non-leader robot to implement the auction for a robot stage, where TIME_BID_AC-
CEPTED stands for the amount of time that the robot waits for leaders bids (AWARD
messages). After this time, the robot selects the coalition with the greatest bid and it becomes a

member sending a confirmation message (ROBOT_ALIVE) to the corresponding leader. If the

leader doesn’t receive any answer from a robot or receives a reject message (REFUSE), it

removes that robot from its list of selected robots. On the other hand, a robot is definitely

added to the group, when the leader receives a confirmation message from it. The λB value is

inspired by the selection factor used in [13], but it is now applied in an auction process with

tasks’ deadlines.

Algorithmn 1 Auction for a robot round executed in each no leader robot

Require:λB 2 [0, 1]
Require:time currenttime
1: if AWARDmessage,(t0, b0), from a leaderthen
2: B (t0, b0)
3: timeinit time
4: whiletime − timeinit� TIME_BID_ACCEPTED do
5: if AWARDmessage,(tj, bj), from a leaderthen
6: B B

S
(tj, bj)

7: j j + 1
8: end if
9: end while
10: (tbest, bbest) tuple in B with the maximumbit value
11: Bbests = {(ti, bi) 2 B: bi� λB � bbest}
12: tsel task from Bbests with the highestrobot’scapacity
13: Send a ROBOT_ALIVEmessageto the leaderof tsel
14: for all tj in B and ti 6¼ tsel do
15: Send REFUSEmessageto the leaderof tj
16: end for
17: end if
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Experimental results

In this section we detail the experiments executed in order to analyze the behaviour of the

auction algorithms, comparing them to the optimal solution given by the optimization

problems of Section Coalition formation complexity analysis. Firstly, we will explain the

experiments carried out with a realistic (physical) simulator called RoboCoT (see [3]) in

order to obtain the I function parameters. From the function I, new experiments have been

carried out using Matlab (Version R2014a and Optimization Toolbox version 7). The

solutions for the optimization, Problems 15 and 21, have been obtained executing the opti-

mal linear programming-based branch-and-bound algorithm together with a simplex

method [48].

Besides the approaches already explained, another simple method, called greedy selection,

has been implemented. In this method each robot selects the best task from its point of view,

in a selfish mode. Thus, a robot ri selects the task tsel such that, tsel ¼ max
j
ðCijÞ. The robots do

not execute any auction algorithm nor make any prediction about the interference.

Experiments with physical robots: Interference function

First, we describe how the parameters of the interference function (Eq 14) have been esti-

mated. In a previous work [49], the first two authors exposed how, for foraging-like tasks (see

Section Example: Foraging with tasks’ deadline), the interference can be modelled as a set of

polynomial functions that only depends on the number of robots and on the distance between

the delivery point and the object. To get the parameters of the polynomial functions the follow-

ing experiment in the realistic simulator RoboCoT was carried out: several robots must trans-

port a unique object, formed by transportable bits, and the total weight transported by the

robots after 40,000 time units is calculated. Seven different distances between object and deliv-

ery point were tested and the parameters of I were fitted for each one of them (see Table 2). Fig

2 shows an snapshot of one of these executions, where the little square represents the object,

the big circle the delivery point and the little circles are the robots. These results were also vali-

dated with other well-known simulator called Player/Stage [50]. Although all the interference

values in this paper relate to physical simulations, the algorithms were also implemented on

four real Pioneer-3DX. Videos with some executions can be watched in [51] and a more

detailed description of these experiments can be found in [49].

From the results of the aforesaid simulations, it can be seen that the maximum utility of the

group (the maximum of Eq (5)) is reached when the number of robots is equal to or lower

than 30. Thanks to the condition given by Eq (22), the maximum number of robots in a coali-

tion created by the auction algorithms is 30. Although in the original paper [49] the polynomi-

als have a degree equals to two, if ng< 30 the Ig can be fitted by a linear polynomial function

Table 2. Parameter aj of the linear interference function.

Distance aj � 103

D1 = 138 10.3428

D2 = 184 6.1682

D3 = 247 3.4728

D4 = 282 2.8746

D5 = 329 1.9278

D6 = 359 1.7190

D7 = 400 1.3657

doi:10.1371/journal.pone.0170659.t002

Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions

PLOS ONE | DOI:10.1371/journal.pone.0170659 January 24, 2017 16 / 26



with a very low error, meeting all the conditions of the cases exposed in section about the for-

malization (Cases 2 and 3). The parameter bj of Eq (14) was set to 0 because it is assumed that

a coalition with a single robot does not have physical interference. Table 2 shows the interfer-

ence linear function parameter aj that minimizes the square error for each distance tested.

Fig 2. Execution example of a RoboCoT experiment to calculate the parameters of the interference function I.

doi:10.1371/journal.pone.0170659.g002

Fig 3. Ratio between utility obtained with MDRA and the utility of the optimal strategy with Nt = 15. The bars stand for the standard

deviation (σ2).

doi:10.1371/journal.pone.0170659.g003

Multi-Robot Coalitions Formation with Deadlines: Complexity Analysis and Solutions

PLOS ONE | DOI:10.1371/journal.pone.0170659 January 24, 2017 17 / 26



Experiments with soft-deadline utility functions

The first set of experiments assume that each Uj � βj is linear and it meets the condition of

Case 2. Therefore the problem to solve is Problem (15). The characteristics of the experiments

are the following: The number of robots (Nr) varies from 2 to 30 times the number of objects

(Nt). There are 5 different types of objects and each robot has a different load capacity depend-

ing on the object type. In order to apply the parameters of Table 2, the distances always fall

into the bounds described in above section. In addition, robots’ work capacity Cij depends on

the type of task and on its velocity, as is pointed out by the authors in [3]. The main goal of

these experiments is to test the new MDRA algorithm with a very large number of robots. It is

worth to point out that when Nt = 15 there are up to 450 robots, and if Nt = 30 then this num-

ber is increased up to 900 robots. Each experiment has been performed 500 times using a uni-

form random distribution to generate the position of the objects, their weights, the load

capacity of the robots and their velocities. S1 Table shows the parameters of the uniform ran-

dom variables for each one of these characteristics. In order to keep the robots as simple as

possible, the robots use their load capacities for selecting the best task in the Greedy strategy.

Fig 3 (Nt = 15) and Fig 4 (Nt = 30) show the utility per robot obtained by different strategies

(SDRA, MDRA and greedy) divided by the utility per robot obtained with the optimal method

(see S2 and S3 Tables). For all these results, utility per robot stands for the mean of the total

obtained utility divided by the number of robots. Thus, higher values stand for results closer to

the optimal. The X-axis shows the ratio between the number of robots and the total number of

tasks and the bars stand for the standard deviation (σ2). As can be seen, the total utility

obtained with MDRA utilities is close to the optimal and the better results (higher values) are

obtained when the number of robots per task is 8. With more than 8 robots per task, the results

stay constant or show a slight decrease. For some cases, MDRA utility reaches more than the

75% of the optimal utility and from around 14 robots per task this value keeps almost constant.

Fig 4. Ratio between utility obtained with MDRA and the utility of the optimal strategy with Nt = 30. The bars stand for the standard

deviation (σ2).

doi:10.1371/journal.pone.0170659.g004
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If, instead of the mean, it is calculated the median, the MDRA utility reaches more than an

80% of the optimal (see S3 Table). The Greedy strategy provides the worst results, always lower

than a 55% of the optimal utility. In most cases, the new MDRA algorithm gives the best results

when λB = 0.8 and outperforms the SDRA. It should be recalled that the tested environments

are very heterogeneous and, therefore, this issue increases the σ2 values of the experimental

results.

Fig 5 shows the ratio between utility per robot using greedy algorithm and MDRA with

λB = 0.8, similar results are obtained for other values of λB. The experiments demonstrate that

the higher number of robots the lower greedy performance with respect to MDRA and hence,

the new auction algorithm improves the results compared to a fully distributed approach. The

standard deviation of these experiments can be obtained from the information of the Figs 3

and 4.

As can be seen in Fig 6 (see also S4 Table), the optimal algorithm needs much more execu-

tion time to give a solution than MDRA with λB = 0.8 or greedy algorithm and it clearly grows

with the number of robots. Moreover, the MDRA algorithm increases very slowly its execution

time with respect to the number of robots. Therefore, it can be concluded that the results pro-

vided by the new MDRA method are pretty close to the optimal results with much less execu-

tion time and it outperforms the SDRA approach.

Experiments with hard-deadline utility functions

This section describes the experiments carried out with hard-deadline utility functions and lin-

eal interference, that is, Case 3 described in Section Case studies. Therefore, the problem to

solve is the same as Problem (21). In order solve it numerically, we must find coalitions with a

performance (amount of work carried out per time unit) greater or equal than the perfor-

mance needed to finish the task before the deadline, instead of the execution time. Notice that

Fig 5. Ratio between greedy utility and MDRA (λB = 0.8).

doi:10.1371/journal.pone.0170659.g005
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both problems are equivalent and, therefore, the resulting solutions are exactly the same.

Moreover the new problem has the same form as the Problem 21 but with

m ¼ min
j
�

Lj
DLj
� bj

� �
, for all j = 1, . . ., Nt. The new m value is simpler than the original one

and avoids division by zero problems.

As for soft-deadline experiments, each experiment has been performed 500 times using a

uniform random distribution to generate the position of each object, its weight and deadline,

the load capacity of the robots and their velocities. As the scalability of the system has already

been demonstrated in the previous section, all the simulations have been performed with 4

tasks (Nt = 4) and the robots always use their expected capacities for selecting the best robot

(Greedy) and for bidding (SDRA or MDRA).

Fig 7 (see also S5 Table) shows the utility per robot for different strategies (SDRA, MDRA

and greedy) divided by the utility per robot obtained with the optimal method, where the

bars stand for the standard deviation σ2. As can be seen, the higher number of robots the

higher value of this ratio for MDRA, which means that the MDRA results are getting closer

to the optimal. Despite of the utility per robot provided by MDRA decreases compared to

the soft-deadline case, it reaches values near the 70% of the optimal (ratio = 0.7). This must

be considered a very good result, specially tanking into account that the complexity of the

problem is dramatically increased, which implies that the MATLAB solver takes order of

minutes to give a results while MDRA keeps bounded on the order of seconds. In all the

cases, the MDRA outperforms the SDRA when λB = 0.8, as happened for soft-deadline utility

function experiments. So the optimal value of λB seems to be very stable for any environment

or utility function. Furthermore, the greedy algorithm keeps very far from the optimal and

even from the auction approaches. Finally, the standard deviation decreases regarding the

Fig 6. Execution time for soft deadline experiments and Nt = 30. The bars stand for the standard deviation (σ2).

doi:10.1371/journal.pone.0170659.g006
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number of robots. The overlap in the standard deviation bars is due to the great heterogene-

ity of the carried out experiments. In order to cover a broad spectrum of situations, the stan-

dard deviations of the uniform random variables used to generate each experiment are very

high, as can be seen in S1 Table. If we focus on a specific set of experiments, the aforemen-

tioned overlap is reduced. For example, Fig 8 (see also S6 Table) shows the ratio between auc-

tion or greedy utility and optimal utility with hard-deadline over the 50 experiments with the

highest tasks’ deadline values. For the sake of simplicity this figure only shows the MDRA

results with λB = 0.8. As can be seen, the overlap between the standard deviation of SDRA

and MDRA is reduced regarding Fig 7. In order to address these problems, future work will

analyze the impact of the environment configuration on the system performance.

As in previous section, Fig 9 shows the ratio between utility per robot using greedy algo-

rithm and MDRA with λB = 0.8, similar results are obtained for other values of λB. The results

demonstrate how the performance of the greedy algorithm decreases regarding the number of

robots. The standard deviation of these experiments can be obtained from the information of

Fig 7.

Conclusions and future work

This paper has presented the first formal study about the interference impact on the complex-

ity of the multi-robot coalition formation problem to allocate tasks with deadlines. The formal-

ization of the MRTA problem shows that, on the one hand the interference can be modelled

by a linear function and, on the other hand, the optimal solution can be obtained solving an

integer linear problem which depends on the utility function characteristics.

As a secondary contribution of this paper, a new auction-like method, called Multiple

Objectives Double Round Auction (MDRA), is also presented. A large number of experiments,

with both hard and soft-deadline utility functions, has been carried out in order to compare

Fig 7. Ratio between auction or greedy utility and optimal utility with hard-deadline. The bars stand for the standard deviation (σ2).

doi:10.1371/journal.pone.0170659.g007
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this new approach to the optimal solutions. The results show that MDRA outperforms previ-

ous auction methods in the literature and can reach between a 70% (for the hard-deadline util-

ity functions) and more than an 80% (for the soft-deadline utility functions) of the optimal

with a very low computational time.

Fig 8. Ratio between auction or greedy utility and optimal utility with hard-deadline using the 50 experiments with the highest

tasks’ deadline values. The bars stand for the standard deviation (σ2).

doi:10.1371/journal.pone.0170659.g008

Fig 9. Ratio between greedy utility and MDRA (λB = 0.8) for hard-deadline tasks.

doi:10.1371/journal.pone.0170659.g009
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Regarding the aspects to improve this work in the near future, our research is now focused

on defining new models for the interference and for measurable errors like: robot’s kinematic

errors, localization errors, and so on. As pointed out in this paper, other authors propose

swarm-like strategies to face up the physical interaction between thousands of robots. Despite

our paper does not address swarm issues, the proposed MRTA strategies can be seen as a pre-

vious stage before applying lower level swarm-like methodologies. Thus, from the results of

these authors (see [45]), we will study how the physical interaction impacts on our MRTA

algorithms. Moreover, non-linear interference models, that would need to be addressed with

genetic algorithms, and methods for optimizing several goals simultaneously are under consid-

eration. A preemptive auction method, that is, a method that allows the exchange of robots

between working groups, is also under study. Finally, we will study how the environments

characteristics impact on the system performance.
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