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Abstract

Diabetic non-healing wounds are a major clinical problem. The mechanisms leading to poor

wound healing in diabetes are multifactorial but unresolved inflammation may be a major

contributing factor. The complement system (CS) is the most potent inflammatory cascade

in humans and contributes to poor wound healing in animal models. Signal transducer and

activator of transcription 4 (STAT4) is a transcription factor expressed in immune and adi-

pose cells and contributes to upregulation of some inflammatory chemokines and cytokines.

Persistent CS and STAT4 expression in diabetic wounds may thus contribute to chronic

inflammation and delayed healing. The purpose of this study was to characterize CS and

STAT4 in early diabetic wounds using db/db mice as a diabetic skin wound model. The CS

was found to be activated early in the diabetic wounds as demonstrated by increased ana-

phylatoxin C5a in wound fluid and C3-fragment deposition by immunostaining. These

changes were associated with a 76% increase in nucleated cells in the wounds of db/db

mice vs. controls. The novel classical CS inhibitor, Peptide Inhibitor of Complement C1

(PIC1) reduced inflammation when added directly or saturated in an acellular skin scaffold,

as reflected by reduced CS components and leukocyte infiltration. A significant increase in

expression of STAT4 and the downstream macrophage chemokine CCL2 and its receptor

CCR2 were also found in the early wounds of db/db mice compared to non-diabetic controls.

These studies provide evidence for two new promising targets to reduce unresolved inflam-

mation and to improve healing of diabetic skin wounds.
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Introduction

Diabetes affects an estimated 415 million humans worldwide leading to a multitude of compli-

cations resulting in increased morbidity and mortality[1]. Approximately 15% of individuals

who live with diabetes will develop foot ulcers due to non-healing cutaneous wounds, and 84%

of this population will end up with lower-leg amputations[2]. Normal wound healing is a

highly regulated dynamic series of events involving interfaces of blood cells, proteins, prote-

ases, growth factors, cytokines, extracellular matrix components, and stromal cells. There are

three overlapping phases that define classical wound healing; (1) inflammatory phase, (2) pro-

liferative phase, and (3) remodeling and maturation phase[3]. The inflammatory phase is the

first phase and is characterized by hemostasis and inflammation through the formation of a

clot and release of several chemokines from platelets[3]. Dysregulated clot formation is one of

the underlying mechanisms that contribute to abnormal wound healing in diabetic patients

along with poor re-vascularization, repeated bacterial infections and unresolved inflammation

[4]. This dysregulation is amplified due to hypoxia in diabetic patients caused by peripheral

vascular disease[5].

Diabetic wounds are slow to heal and can therefore become chronic and can develop fur-

ther complications such as infection potentially resulting in amputation. While an acute

inflammatory response may be beneficial and participates in initiation of healing, unresolved

inflammation prevents timely healing in diabetic wounds[4,6]. Part of the unresolved inflam-

mation may be related to increased systemic inflammation associated with diabetes itself[7,8].

Aspects of inflammation known to be associated with abnormal wound healing in diabetes

include prolonged presence of neutrophils and macrophages in the unhealed wound[9,10].

Interestingly, despite their abundance, neutrophils from diabetic patients have reduced migra-

tory capacity and macrophages have a persistent pro-inflammatory phenotype (M1)[11,12].

Currently this is an evolving field as new aspects of the inflammatory response and diabetic

wounds are explored. To date, the potential contributions of complement-mediated inflamma-

tion and STAT4-mediated inflammation remain largely unknown in the context of diabetic

wounds.

The complement system is the most potent inflammatory cascade in humans[13,14]. Com-

plement activation is notable for a rapid onset occurring in seconds and amplification of the

signal at each step of the cascade[14]. Complement activation leads to the generation of many

potent effectors including the anaphylatoxin C5a, which is important for leukocyte recruit-

ment and activation, and C3-fragments C3b and iC3b that are major opsonins targeting leuko-

cyte attack. Complement can be activated by the classical, lectin or alternative pathways, but

most commonly activation is triggered by the classical or lectin pathways with the alternative

pathway functioning as a positive-feedback loop[15]. Complement activation occurs in skin

wounds and has been shown to contribute to altered wound healing in several models includ-

ing burn wounds[16–19]. It is likely that complement plays multiple roles in a wound includ-

ing innate immune protection against infection as well as potentially inhibiting healing if

activation is dysregulated. Dysregulated complement activation clearly plays a prominent role

in many inflammatory diseases where it contributes to host tissue damage[20]. New informa-

tion also suggests that diabetes may contribute to dysregulation of the complement system

[21,22]. We have previously shown that hyperglycemia alters complement mediated control of

S. aureus infection[23,24]. Together, these emerging concepts and knowledge suggest that

complement activation may be dysregulated in diabetic wounds. Peptide Inhibitor of Comple-

ment C1 (PIC1), is a peptide that inhibits enzymatic activation of the first component of the

classical complement pathway C1[25,26], providing a proof-of-concept tool to test classical

complement pathway activation.
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Signal transducer and activator of transcription 4 (STAT4) has been associated with inflam-

mation in both Type 1 and Type 2 diabetes and is primarily activated by IL-12 to promote

cytotoxic responses and T helper 1 cell differentiation[27]. It is also a known mediator of IFNγ
production by T cells and is associated with Th1 differentiation in mice and humans[28,29].

We have shown that STAT4 deficiency or inhibition protects from cytokine induced islet cell

death and disruption of its expression prevents spontaneous development of Type 1 diabetes in

mice[30–32]. We have also reported that STAT4 is a mediator of meta-inflammation and insu-

lin resistance in adipose tissue in obesity[33] and has been shown to have increased expression

in injured lesions in blood vessels of diabetic rats[34]. Mice deficient in STAT4 showed reduced

CD8+ numbers in adipose tissue along with increased CD206+ M2 macrophage polarization

and reduced IL12a in adipose tissue and islets due to decreases in M1macrophage numbers

compared to STAT4 sufficient mice[33,35]. Diabetic wounds show persistent activation of mac-

rophages and increased pro-inflammatory cytokines such as IFNγ, TNFα, IL1β, and IL-12 from

macrophages biased towards the M1 inflammatory activation state. This persistent inflamma-

tory state, complicates wound healing[36]. Therefore, persistent STAT4 expression and activa-

tion in diabetic wounds may contribute to chronic inflammation and delayed healing, and its

relationship to complement is currently not well defined in the context of early and chronic

stages of wound healing.

Materials and Methods

Ethics statement

Mouse experiments were performed under a protocol approved by the University of Virginia

Institutional Animal Care and Use Committee in accordance with the National Institutes of

Health’s Guide for the Care and Use of Laboratory Animals. Mice were housed in an AAA-

LAC-accredited facility. All procedures were performed under anesthesia and all efforts were

made to minimize pain or suffering.

Mouse strains

Genetically diabetic C57BL/Ks db/db male mice, 10–12 weeks of age and heterozygous age-

matched controls were used in all experiments. Diabetic mice exhibited glucose levels

>300mg/dl at the time of wound generation.

Mouse experiments

All animals were anesthetized using a mixture of isoflurane and oxygen. The hair on their back

was shaved and depilated, and then the skin was cleaned with povidone iodine solution and

alcohol. Under sterile conditions, two full-thickness excisional wounds of 8mm in diameter

were generated bilaterally on the back of the mice, approximately 5mm from the spine, with a

6mm sterile biopsy punch.

Early inflammation in wounds of diabetic mice

For the experiments comparing db/db with heterozygous mice without an immunomodula-

tory intervention, 18 mice were used in each group. A 6 mm filter paper disk (Whatman #52,

GE Healthcare, PA) was placed into the wound followed by dressing with Tegaderm™ (3M,

MN) and sealed with benzoin. Each animal was wrapped in a bolster dressing to keep the

dressing in place. db/db and heterozygous mice in groups of three were anesthetized with iso-

flurane at the designated time points (0, 2, 4, 8, 24, and 48 hours) from the time of wounding.

The filter paper disks were recovered and flash frozen. Blood (0.5 ml) was collected by cardiac
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puncture under sedation, into K2EDTA vials and centrifuged to recover the plasma. Euthana-

sia was then performed by anesthetic overdose (Pentobarbital and phenytoin). Wounds were

excised “en bloc” and equally bisected in the sagittal plane, with half of each wound immedi-

ately fixed by submersion in 10% buffered formalin for histological evaluation and the other

half of each wound placed into Trizol reagent (Thermo Fisher, MA), vortexed and flash frozen

for subsequent PCR analysis.

Diabetic mouse wounds with complement inhibitor PIC1 in gel

In another series of experiments, the wounds of db/db and heterozygous mice were treated

with a gel vehicle or with HEC (hydroxyethyl cellulose) with or without the complement inhib-

itor PIC1 (n = 12 mice/experimental group). After anesthesia and wounding, animals received

a topical application 0.1 ml of 2% HEC gel ± PIC1 (20 mg/ml, final concentration). Tegaderm™
and bolster dressings were placed as described above. At designated time points (4, 8, 24, and

48 hours) 3 mice per group were anesthetized, their dressings were removed, and a 6 mm filter

paper disk (Whatman #52) was placed in the wound for 5 minutes, retrieved and frozen. Blood

was obtained via cardiac puncture in heparinized tubes for plasma and the wounds were

excised and processed for analysis as described above. Animals were then euthanized using

anesthetic overdose (Pentobarbital and phenytoin).

Diabetic mouse wounds with complement inhibitor PIC1 in a skin

scaffold

The use of an acellular dermal matrix has been well documented in the treatment of hard to

heal diabetic wounds[37]. db/db mice received a decellularized skin scaffold (DermACELL™,

LifeNet Health, VA) that was saturated with the complement inhibitor PIC1 or the vehicle

control and placed into the wounds (n = 6 mice/group). The purpose of this approach was to

evaluate the effectiveness of the matrix as a carrier of the inhibitor, as well as a potential scaf-

fold to promote healing. Therefore, only db/db mice were used to evaluate the effects of PIC1

and the scaffold in diabetic wound healing. Prior to placement in the wounds, the scaffolds

were prepared by extrusion of the storage buffer under pressure followed by saturation with

0.3 ml of PIC1 (to an approximate final concentration of 20 mg/ml) or vehicle (saline). After

anesthesia and wounding, an 8 mm disk of the scaffold (± PIC1) was placed into each bilateral

skin wound and sutured into place. The scaffold was covered with Xeroform™ (DeRoyal, TN)

and then Tegaderm™ and the bolster dressing. At 24, 48 and 72 hours after surgery, all mice

were anesthetized again with isoflurane/oxygen mix, their bandages removed and the DermA-

CELL™ was injected with 0.12 ml of PIC1 (40 mg/ml) or vehicle after which the mice were re-

bandaged and allowed to recover. At day 14 after wounding, mice were anesthetized with iso-

flurane the wounds were photographed and blood was collected by cardiac puncture. Animals

were then euthanized via anesthetic overdose (Pentobarbital and phenytoin) and wound tis-

sues were recovered and processed as described above.

Complement C5a ELISA

Frozen filter paper disks were thawed and placed in an individual well of a 96 well plate

with 50 μl of 1% Triton X-100. The plate was gently shaken for 1 hour at room temperature

and then fluid absorbed in the filter paper was expressed by compression into the well. The

liquid samples were then measured using the mouse Complement C5a ELISA kit (R&D Sys-

tems, MN). Values for samples collected from the left and right wound of each mouse were

averaged.
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Real-time quantitative PCR

Samples of wound tissue were homogenized in Tri-Reagent using a Tissumizer rotor-stator

homogenizer (Teledyne Tekmar, OH). RNA was isolated by either chloroform phase separa-

tion with an Ambion Ribopure kit (Life Technologies, NY), or directly from Tri-Reagent with

a Direct-Zol miniprep plus kit (Zymo Research, CA), and subsequently reverse transcribed

into cDNA using iScript supermix (Bio-Rad, CA). Genes of interest were then assayed by

qPCR using mouse TaqMan probes for STAT4 (Mm00448890_m1) Ccl2 (Mm00441242_m1)

and Ccr2 (Mm00438270_m1) (Life Technologies, NY) with JumpStart Taq polymerase

(Sigma-Aldrich, MO), 3 mM MgCl2, and 200 μ M dNTPs (Promega, WI) using a Bio-Rad

CFX96 C1000 thermocycler. A standard TaqMan cycling protocol was performed, consisting

of a 10 min 95˚C hold, followed by 40 rounds of 15 sec at 95˚C and 1 min at 60˚C. 18s expres-

sion was used as a housekeeping control for data normalization.

Preparation of tissue histology

Skin tissues were embedded and sectioned to make slides for histological evaluation. Histologi-

cal sections were subjected to routine de-paraffination and hydration before antigen retrieval

using sodium citrate (10 mM sodium citrate, 0.05% Tween 20, pH 6.0). Hematoxylin and

eosin staining was performed per routine.

C3-fragment staining was performed after blocking with 10% normal goat serum in 1× PBS

(NGS-PBS) for 1 hour. The sections were then probed for C3-fragments, including C3a and

opsonic forms like C3b/iC3b, with a chicken anti-C3/C3a antibody (Abcam, MA) that recog-

nizes rat and mouse C3/C3a. Secondary staining was performed with a goat anti-chicken IgG

(H+L) labeled with Alexa Fluor 488 (AF 488) (Life Technologies, NY); the slides were mounted

with a Vectashield1 anti-fade mounting medium containing DAPI (Vector Laboratories, CA)

for visualization of nuclei. STAT4 was detected by immunofluorescence using a polyclonal

anti-STAT4 antibody from Santa Cruz Biotechnology (sc-486) and a secondary fluorescent

antibody DyLight 549 (Vector Laboratories, CA). Nuclei were stained using DAPI. STAT4

expression was evaluated in a blind fashion by 4 independent observers. The dermal and adi-

pose tissue areas were analyzed separately. Sections were graded on a scale of 0–3 according to

the overall signal on each of the sections as following: 0 = 0–5%; 1 = 5–25%; 2 = 25–50%;

3>50%. The sampling protocol included 5–8 sections from 3 mice/group. Results from the

four observers were averaged and expressed as average +/- SD.

Light microscopy and leukocyte infiltration analysis

Leukocyte infiltration was evaluated for the skin wounds by H&E stained slides or by DAPI

stained slides. H&E stained slides were evaluated for inflammatory infiltrate by Dr. Hood, a

Board certified Dermatopathologist. Dr. Hood analyzed the H&E slides in a blinded manner

evaluating leukocyte infiltration at both the edges and base of the skin wounds. Leukocyte

inflammatory infiltrate was graded on a clinical scale of 0–4 and averaged for the edge and

base of each wound.

Fluorescence microscopy

Images of AF 488 stained C3-fragments and DAPI stained nucleated cells were taken with an

Olympus DP70 digital camera mounted on an Olympus BX50 microscope. The images were

cropped using Adobe Photoshop CS5 to isolate the subcutaneous area of the tissue. C3-frag-

ment expression and nucleated cell counts were measured using ImageJ. C3-fragment levels

were quantified by integrated intensity using the color threshold option to reduce the
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background signals. Nucleated cell counts were quantified by converting the image into an

8-bit binary image and measuring the particle count.

Classical pathway inhibition with peptide inhibitor of complement C1

(PIC1)

PIC1 (i.e., PA-dPEG24)[25], identified and characterized by our group [26], is an inhibitor of

antibody-initiated classical complement pathway activation that blocks the enzymatic activity

of the first component of the classical pathway C1. PIC1 was synthesized as a lyophilized pow-

der (>90% purity) by New England Peptide (MA).

PIC1 in HEC gel

4% hydroxyethyl cellulose (HEC) gel was first prepared by adding HEC powder (TCI America,

OR) into sterile water, boiled for 5 minutes with stirring, and then cooled with stirring until

the gel became semi-solid at room temperature. An equal amount of filtered sterile buffer

(0.9% NaCl, 10mM Na2PO4, pH 7.4), containing PIC1 at a concentration of 40mg/mL, was

added to the cooling HEC gel to achieve a final concentration of 2% HEC and 20 mg/ml PIC1.

Control groups contained equal parts HEC gel and buffer alone. 0.1mL of gel was added to

each wound using a sterile syringe.

Acellular skin scaffold

Acellular skin scaffold (DermACELL), derived from cadaveric human skin, was provided by

LifeNet Health (VA). In vitro experiments were performed with PIC1 demonstrating that it

was absorbed by the scaffold and released from the scaffold with functional inhibition of classi-

cal pathway complement activation. PIC1 was absorbed into the skin scaffold to an approxi-

mate 20 mg/ml final concentration.

Statistical analysis

TaqMan qPCR data was analyzed using two factor ANOVA with post-hoc contrasts to analyze

longitudinal results by genotype using the Real Statistics Resource Pack software (Release 4.6)

add-on for Excel. Comparisons between ±PIC1 and immunohistochemistry data were ana-

lyzed by unpaired Student’s t-test.

Results

Complement effectors and inflammation in db/db mice

In order to evaluate the generation of complement effectors in an animal model of diabetic

skin wounds, we utilized db/db and heterozygous control mice. The anaphylatoxin C5a was

assayed from wound fluid absorbed to filter paper from 10 minutes to 48 hours after wounding

(Fig 1A). C5a concentration in the wound fluid of db/db mice was increased by 3-fold at 10

minutes (P = 0.05) and 2-fold at 2 hours (P = 0.002) compared with heterozygous mice. db/db

mice also showed elevated C5a in wound fluid at 4 hours (P = 0.001) and 24 hours (P = 0.05)

after wounding, compared to the heterozygous control animals.

C3-fragment (e.g. C3a, C3b, iC3b) staining of the wound tissues was noted to predomi-

nantly occur in the subcutaneous tissues at the edges of the wounds (S1 Fig). Two wounds

from each mouse at each time point were available for quantitative analysis by Image J.

C3-fragment deposition was noted at 10 minutes out to 48 hours consistent with rapid com-

plement activation (Fig 1B). Because neither group showed a consistent increase or decrease

over time, the data from all time points for each animal was combined for analysis. Overall the
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Fig 1. Complement activation and cellular inflammation for acute skin wounds in diabetic mice. (A)

C5a concentration in wound beds of diabetic and control mice absorbed by filter paper and assayed by ELISA.

Left and right wounds averaged for n = 3 mice in each group and time point: 10 min (P = 0.05) 2h (P = 0.002),

4h (P = 0.001), 24h (P = 0.05). * P�0.05 vs. hetero (control). (B) C3-fragment deposition (C3 opsonization)

in the subcutaneous tissue at the edges of the wound beds of diabetic and control mice assayed by

immunofluorescence (n = 2). (C) Nucleated cell infiltration into the subcutaneous tissue at the edges of the

wound beds of diabetic and control mice assayed by DAPI fluorescence (n = 2). Data are means ± SEM.

doi:10.1371/journal.pone.0170500.g001
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db/db mice showed a 22% increase in C3-fragment deposition in the subcutaneous tissues at

the edge of the skin wounds compared with heterozygous controls (P = 0.003). Together these

data suggest complement activation and effector generation occurs quickly after the skin

wound is made, as expected, and the db/db mice show increased complement effectors in the

subcutaneous tissue at the wound edge compared with controls.

In order to evaluate whether the generation of the anaphylatoxin and chemoattractant C5a

was associated with leukocyte infiltration, we assessed the subcutaneous tissue at the wound

edge for the numbers of nucleated cells using DAPI. The numbers of nucleated cells at the

edge of the wound is shown in Fig 1C. Due to the small numbers of evaluable wounds in each

group, the 10 minute through 48 hour data was combined for analysis revealing a 76% increase

in nucleated cells for db/db mice compared with heterozygous controls (P = 0.039). Histologi-

cal evaluation of H&E stained slides revealed that the vast majority of the leukocytes were neu-

trophils, consistent with acute inflammation (data not shown).

Increased STAT4, CCL2 and CCR2 expression in diabetic wounds

STAT4 is a key mediator of inflammation that induces Th1 polarization and IFNγ production.

Previous studies showed that IFNγ is an important mediator of M1 polarization in wounds

and prevents M2 macrophage polarization that is required for repair and healing[38]. CCL2 is

a potent macrophage chemokine that is known to attract excessive number of macrophages

and therefore may impair the resolution of the inflammatory phase. CCL2 exerts its chemoat-

tractant functions primarily, although not exclusively, via binding to the CCR2 receptor.

Expression of STAT4, CCL2 and CCR2 have not previously been described in the early inflam-

matory stage in db/db diabetic mice with skin wounds. Interestingly, we found that both Stat4

and Ccl2 gene expression were significantly higher at the time of wounding in db/db mice

compared to heterozygous controls (Fig 2). In addition, Ccr2 expression was significantly

increased at all time points compared to the time at wounding. Although the longitudinal pat-

tern of expression was similar in both diabetic mice and in the heterozygous controls, expres-

sion of all three genes remained significantly higher in db/db mice compared to heterozygous

controls at 8 and 48 hours after wounding (Fig 2).

Immunohistochemistry showed robust expression of STAT4 protein in the wounds of both

diabetic mice and heterozygous controls that peaked at 8 hours after wounding (Fig 3A).

STAT4 was not detected in the epidermal layer around the wound but expressed in both the

dermal layer and the adjacent adipose tissue (Fig 3A). In both areas, expression of STAT4 was

predominantly associated with the dermal layer and peaked at 8 hours after wounding in both

db/db mice and heterozygous controls (Fig 3A and 3C). After 48 hours from the time of

wounding, STAT4 expression decreased in the heterozygous control mice but was significantly

higher in the db/db mice both in the dermis and in the adipose tissue, suggesting sustained ele-

vated inflammation in the diabetic mice compared to heterozygous controls (Fig 3B and 3C).

Functional STAT4 requires activation via phosphorylation and dimerization followed by

nuclear transport. Although we were not successful in using a phosphoSTAT4 antibody, we

did find STAT4 expression associated with the nuclei and, more frequently, peri-nuclear or

cytoplastic localization (Fig 3B, arrows and high magnification insets). This indirectly indicates

that a fraction of the STAT4 protein is indeed functionally active in the wounds.

Classical complement pathway is increased in diabetic skin wounds

In order to evaluate the contribution of classical complement pathway activation in the dia-

betic wound model, we utilized the classical complement pathway inhibitor, PIC1. A neutral

gel, hydroxyethyl cellulose (HEC), was used as the vehicle for PIC1 delivery. The gel was placed
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into the wound and covered by a dressing. Filter paper disks were placed in the wounds for 5

minutes to capture wound fluid for C5a analysis. The trends for C5a concentrations in the

wounds were again noted to be elevated for db/db mice compared with heterozygous controls

demonstrating a 2-fold increase at 4 hours (P = 0.002), 8 hours (P = 0.007), and 48 hours

Fig 2. Longitudinal changes in gene expression of STAT4, Ccl2 and Ccr2 in diabetic db/db mice and

controls. Wounds were excised at indicated time points and gene expression was measured by real-time

PCR using Taqman probes. Results are expressed as 1/ΔCt and represent the average of two wounds/

mouse from 3 mice/group +/-SEM. * P�0.05 vs. dbhet (control); # P�0.05 vs. t = 0 (approximately 10

minutes after wounding).

doi:10.1371/journal.pone.0170500.g002

Fig 3. Immunohistochemistry showing longitudinal changes in expression of STAT4 in diabetic db/db and heterozygous control mice. (A)

Representative micrographs showing STAT4 immunostaining (red) and nuclear staining using DAPI (blue) of formalin fixed paraffin embedded whole

wounds of db/db-/- and control mice at the time of wounding (T0) and after 8 and 48 hours, respectively. Magnification: 100x; (B) High power (400x) images

of the dermis (top) and adipose tissue (bottom) layers of the dbdb-/- and control mice at 48 hours post-wounding. Solid arrows indicate peri-nuclear

localization of STAT4 and dashed arrows indicate nuclear localization. Insets represent higher magnification of the nuclear (top) or peri-nuclear (bottom)

localization of the signal. (C) Grading of STAT4 staining in the dermis and dermal adipose tissue of diabetic db/db and control mice. A scale of “0” to”3” was

used to quantify the abundance of staining. A number of 5–8 micrographs/section from n = 3 mice/group were graded by 4 independent observers in a

blinded manner. * P�0.05.

doi:10.1371/journal.pone.0170500.g003
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(P = 0.05) (Fig 4A). Because complement activation occurs in seconds to minutes and little

change occurred over 4–48 hours, the time points were combined to increase the robustness of

statistical analysis. Overall, db/db mice treated with PIC1 in HEC gel showed a 24% decrease

in C5a compared with HEC controls (P = 0.05) (Fig 4B) and heterozygous animals treated

with PIC1 showed a 30% decrease in C5a compared with HEC only controls (P = 0.01). Depo-

sition of C3-fragments (i.e., C3b/iC3b opsonization) in the subcutaneous tissues around the

wounds (Fig 4C) showed non-significant trends towards decrease in the presence of PIC1 in

HEC gel for both db/db (P = 0.09) and heterozygous mice (P = 0.12). These data suggest that

classical pathway complement activation is occurring in or around the acute wound contribut-

ing to C5a generation and that inhibition of classical complement activation can decrease com-

plement effector generation. PIC1 did not inhibit Ccl2 or Stat4 gene expression in db/db mice

(S2 Fig), suggesting that a combination of PIC1 and an IL12/STAT4 pathway inhibitor could

potentially yield superior results for reduction of sustained inflammation without compromis-

ing the very early beneficial inflammatory response.

In order to simulate a non-healing diabetic wound and evaluate later time points, we uti-

lized an acellular skin scaffold to prevent closure of the wound by contraction and as a sub-

strate for PIC1. Wounding of db/db mice was performed as above, but the acellular skin

scaffold was placed into the wound and covered with a dressing. The skin scaffold was satu-

rated with PIC1 or saline vehicle prior to placement and then PIC1 or saline were added to the

scaffold at 24, 48 and 72 hours under the overlying dressing. Leukocyte infiltration into the

tissues at the edges and base of the wounds at 14 days after wounding was assessed by a Der-

matopathologist using a semi-quantitative clinical scale of 0–4 (Fig 5A and 5B). PIC1 treat-

ment in the skin scaffold decreased leukocyte numbers, predominantly neutrophils, (Fig 5C)

compared with saline control (P = 0.01). Wound closure was not different between the groups

as expected due to stenting by the skin scaffold (data not shown).

Discussion

Identifying new targets for improving poorly healing diabetic wounds represents an important

unmet medical need. This study identifies two pathways of potential importance explaining

excess inflammation in diabetic skin wounds. The hypothesis is that chronic, persistent inflam-

mation is an important contributor to the pathogenesis of non-healing wounds in diabetic

patients.

Previous studies have documented the delayed healing properties of diabetic wounds in a

murine model. It has been shown that the time to complete closure of a 5mm diameter,

splinted full thickness wound was doubled in db/db mice compared to heterozygous litter-

mates (22.6 days vs. 12.7 days). Additionally, the healing kinetics of the two groups were statis-

tically similar until day 8[39]. The complement cascade is rapidly activated in response to

wounding[40], and it has been shown that mice deficient in C3 or C5 displayed accelerated

wound healing in the early stages (days1-3) of normal wound healing[41]. Therefore, the criti-

cal aspect in determining the efficacy of complement as a therapeutic target was to evaluate the

kinetics of C5 and C3a in the initial 48 hours post-wounding in both normal and diabetic

wounds, and if inhibition of C1 could reestablish levels seen in normal wound healing.

These proof of concept data demonstrate increased concentrations of the anaphylatoxin

C5a in the wound fluid of db/db mice compared with heterozygous controls. C5a is a strong

chemotatic stimulus for leukocytes, especially neutrophils[42]. Increased C5a correlated with

increased leukocyte infiltration, predominantly neutrophils, at the edges and base of the

wounds of db/db mice compared with controls. Increased complement activation for the

wounds of db/db mice was supported by demonstration of increased C3-fragments in the
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Fig 4. Complement effectors in acute skin wounds of diabetic and control mice covered with a gel ±
complement inhibitor, PIC1. (A) C5a concentration in the wound beds of diabetic and heterozygous control

mice absorbed by filter paper and assayed by ELISA. Left and right wounds averaged for n = 3 mice in each

group and time point: 4H (P = 0.002), 8H (P = 0.007) and 48H (P = 0.05). (B) C5a concentration in the wound

beds of diabetic and heterozygous control mice treated with vehicle control gel or PIC1 gel (combined time

points). db/db ± PIC1 (P = 0.05). Heterozygous ± PIC1 (P = 0.01); data are means ± SEM. (C) C3-fragment

deposition (C3 opsonization) in the subcutaneous tissue at the edges of the wound beds of diabetic and

control mice treated with vehicle control gel or PIC1 gel (combined time points). db/db ± PIC1 (P = 0.09).

Heterozygous ± PIC1 (P = 0.12), Data are means ± SEM. * P�0.05 vs. saline control.

doi:10.1371/journal.pone.0170500.g004
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Fig 5. Analysis of leukocyte inflammation of wounds for diabetic mice treated with PIC1 at 14 days.

Representative wound histology (H&E) for (A) control scaffold only mice, and (B) PIC1 impregnated skin

scaffold. (C) Averaged inflammatory index of leukocytes (predominantly neutrophils) for db/db mice at day 14
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subcutaneous tissues compared with controls. These results suggest that diabetic wounds may

produce excessive complement activation and C5a generation leading to increased neutrophil

recruitment to the wound. Addition of the complement inhibitor PIC1 to the wound via a gel

or skin scaffold was associated with decreased neutrophil migration to db/db wounds support-

ing the connection between complement activation in diabetic wounds and neutrophil

inflammation.

The wound healing studies utilizing DermACELL as a carrier for the inhibitor into wounds

demonstrated the effectiveness of the material as a carrier of the inhibitor, as well as a potential

scaffold to promote healing. Therefore, only diabetic wounds were used to evaluate any effect in

healing due to the application of the PIC1 complement inhibitor by quantifying the inflamma-

tory cells in the wound bed. In this model wound closure was not used as a primary outcome

due to the fact that the DermACELL remained in the wound bed, making re-epithelialization

difficult to assess and wound closure through contracture could not be achieved. Results of our

study did show that the PIC1 loaded into the DermACELL did reduce the number of inflamma-

tory cells in the wound bed, demonstrating a potential effect for longer term healing.

In addition to complement activation leading to enhanced neutrophil recruitment to

the wound, increased C3-fragments presence in the subcutaneous tissues likely illustrates

increased deposition of C3b/iC3b opsonins on host tissues. C3-fragment opsonization targets

cells for neutrophil attack [43] which is further enhanced by C5a serving as a stimulus for neu-

trophil degranulation. These effectors working in concert contribute to the release of toxic

granule enzymes like neutrophil elastase and myeloperoxidase contributing to host tissue dam-

age. In the setting of diabetic wounds, it is reasonable to argue that these mechanisms may

contribute to abnormal wound healing.

We noted increased subcutaneous adipose tissue in the db/db mice, consistent with find-

ings by prior investigators. The evolving understanding of diabetes attributes a major contri-

bution to the disease pathogenesis by adipose tissue and adipocyte-mediated inflammation.

Among other mechanisms of adipose-mediated inflammation in diabetes growing evidence

supports the contribution of dysregulated complement activation [44]. Our findings appear to

support the concept of diabetes causing dysregulated complement activation by demonstrating

increased inflammatory complement effectors in the adipose tissue of diabetic mice. We spec-

ulate that that dysregulated complement activation in the diabetic adipose tissue bed may con-

tribute to the abnormal wound healing seen in diabetic patients.

These results provide the foundation to determine more comprehensive effects of comple-

ment inhibition on diabetic wound healing. Future studies need to include dosing and delivery

times as well as time to complete wound closure, to maximize the effect of PIC1 on diabetic

healing.

STAT4 is primarily activated by IL-12, and has been implicated in both Type 1 and Type 2

diabetes. Disruption of STAT4 activation prevents spontaneous development of Type 1 diabe-

tes in non-obese diabetic mice[31,32]. STAT4 has emerged as an important transcription fac-

tor regulating T-cell activation, macrophage inflammatory phenotype, insulin resistance and

atherosclerosis[33,35]. STAT4 also regulates the expression of major cytokines and chemo-

kines that regulate inflammatory cell migration into tissues such as the vasculature and adipose

tissue[45,46]. STAT4 activation is downstream of Jak/Tyk kinases and STAT4 activation is

seen in several cell types that could play a role in chronic wound inflammation. These include

NK cells, macrophages, adipocytes, endothelial cells and dendritic cells[28,33,47]. We have

post wounding for wounds treated with PIC1 complement inhibitor in a skin scaffold or control skin scaffold,

n = 6 in each group. Data are means ± SEM. * P�0.05 vs. saline control.

doi:10.1371/journal.pone.0170500.g005
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recently shown that mice with STAT4 germline deletion demonstrate a bias towards CD206

+ M2 “anti-inflammatory” macrophages, without a change in the total cell number[35]. In-

terleukin 12 (IL-12) is one of the major inducers of STAT4 activation, is produced by M1

“inflammatory” macrophages and has been implicated in impaired diabetic healing[36]. Also,

other factors such as IFNγ have been shown to activate STAT4 in endothelial cells and elevated

levels have been shown in lesions of injured blood vessels in diabetic animals[34]. Therefore,

STAT4 is an important mediator of inflammation in immune cells and adipocytes in diabetes

and obesity and sustained activation of STAT4 in skin wounds may contribute to perpetuation

of inflammatory responses and impaired healing.

There has been very limited evaluation of STAT4 expression and its role in the skin. One

very recent study showed immunostaining of STAT4 in the skin of patients with leprosy[48].

However, STAT4 was associated with pro-fibrotic processes in liver and kidney[49,50].

In the present study, we provide the first evidence for the presence and role of STAT4 in

skin wounds of a typical type 2 diabetic mouse model. STAT4 expression was induced early in

the wound and levels remained elevated up to 48 hours in the diabetic db/db mice compared

to wounds in non-diabetic mice. Additional studies will be needed to evaluate further the par-

ticular cell type(s) expressing STAT4 as well as the full chronicity of expression. However, it

was interesting that both STAT4 and the chemokine ligand/receptor pair CCL2/CCR2, that

are linked to macrophage migration, were upregulated at time zero indicating a pre-activated

inflammatory state in the dermis of the db/db mice. Importantly, STAT4 and the CCL2/CCR2

remained highly expressed in the db/db-/- mice 48 hours post-wounding suggesting early

hyper-activation of an inflammatory pathway that can lead to delayed healing. Though the

acute STAT4 expression profile was similar to C5a in both the normal and diabetic wounds

(Figs 1 and 3), inhibition of complement through the application of PIC1 did not decrease

STAT4 (S2 Fig). The role of STAT4 in participation to the chronic inflammatory state and

poor resolution of healing of diabetic wounds will require further study. However, given the

role of STAT4 in chronic inflammation in adipose tissue and other diabetic tissues, targeting

STAT4 activation alone or in combination with complement blockage could provide a novel

therapeutic approach to improve healing of diabetic wounds.

Supporting Information

S1 Fig. Fluorescent staining of C3-fragments. Representative micrographs showing comple-

ment C3-fragments deposited in the subcutaneous tissue at the skin wound edge for db/db

mice and heterozygous controls.

(TIF)

S2 Fig. Effect of PIC1 on Stat4 and Ccl2 gene expression in db/db diabetic mice. Wounds

were excised at indicated time points and gene expression was measured by real-time PCR

using Taqman probes. Results represent the average from 3 mice/group ±SEM. Differences

between PIC1 treated and untreated wounds for each time point were analyzed using the

unpaired t-test. The null hypothesis was rejected for a p-value <0.05.

(TIF)
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