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Abstract

It has been proposed that copy number variations (CNVs) are associated with increased

risk of autism spectrum disorder (ASD) and, in conjunction with other genetic changes, con-

tribute to the heterogeneity of ASD phenotypes. Array comparative genomic hybridization

(aCGH) and exome sequencing, together with systems genetics and network analyses, are

being used as tools for the study of complex disorders of unknown etiology, especially those

characterized by significant genetic and phenotypic heterogeneity. Therefore, to character-

ize the complex genotype-phenotype relationship, we performed aCGH and sequenced the

exomes of two affected siblings with ASD symptoms, dysmorphic features, and intellectual

disability, searching for de novo CNVs, as well as for de novo and rare inherited point varia-

tions—single nucleotide variants (SNVs) or small insertions and deletions (indels)—with

probable functional impacts. With aCGH, we identified, in both siblings, a duplication in

the 4p16.3 region and a deletion at 8p23.3, inherited by a paternal balanced translocation,

t(4, 8) (p16; p23). Exome variant analysis found a total of 316 variants, of which 102 were

shared by both siblings, 128 were in the male sibling exome data, and 86 were in the female

exome data. Our integrative network analysis showed that the siblings’ shared translocation

could explain their similar syndromic phenotype, including overgrowth, macrocephaly, and

intellectual disability. However, exome data aggregate genes to those already connected

from their translocation, which are important to the robustness of the network and contribute

to the understanding of the broader spectrum of psychiatric symptoms. This study shows

the importance of using an integrative approach to explore genotype-phenotype variability.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder [1] characterized by early-

onset social and communication impairment, as well as restrictive stereotypic movements and

behaviors [2]. Approximately 70% of ASD patients have at least one clinical or psychiatric

comorbidity, whereas 48% have two or more [3]. In addition to presenting a heterogeneous

phenotype, ASD is multifactorial disorder with a complex genetic architecture [4–7]. Various

reviews have provided in-depth analyses of the degree of genetic and phenotypic association

between ASD and genetic syndromes [8–12]. Miles et al. [13] defined complex ASD as that

observed in a subset of individuals with evidence of abnormality occurring at the beginning of

morphogenesis, manifesting as dysmorphic abnormalities but not associated with a known

genetic syndrome. Therefore, syndromic ASD is represented by complex cases with or without

an association with a known genetic syndrome.

Although common variations (with a minor allele frequency > 1%) are the largest genetic

component of ASD, accounting for 40% of the risk [14,15], their individual effect is small [16].

Whole-genome screening for de novo and inherited copy number variations (CNVs) have

revealed that rare variants are more common in ASD probands than in healthy controls and

unaffected family members [17–22]. Comparisons of syndromic and non-syndromic cases of

ASD have revealed that clinically relevant CNVs are more common in syndromic probands

[23,24]. The pathogenicity of de novo CNVs has been related to CNV length, larger CNVs hav-

ing been shown to have a greater impact [17,25–27]. However, recurrent CNVs have been

associated with an increased risk of other neurodevelopmental disorders, such as schizophre-

nia and epilepsy [28]. Various authors have attempted to improve the understanding of the

nature of CNVs and to elucidate their contribution to specific phenotypes [29,30]. In patients

with developmental disorders, Andrews et al. [30] found that, if protein-protein interactions

are taken into account, patients with genic (especially de novo) CNVs, disrupting the same

cluster of functionally related genes, present phenotypes that are more similar than would be

expected. Whole-exome sequencing studies have reported that de novo non-synonymous sin-

gle nucleotide variants (SNVs) and small insertions and deletions (indels) are strongly associ-

ated with ASD [31–34]. Iossifov et al. [35] showed that almost all gene-disrupting mutations

occur opposite wild-type alleles, that 13% of de novo missense mutations account for 12% of

diagnoses, and that 43% of likely gene-disrupting de novo mutations account for 9% of diagno-

ses. A whole-genome sequencing study of 85 quartet families (two parents and two ASD-

affected siblings) found that 69.4% of the affected siblings carried different ASD-relevant

mutations (de novo and rare inherited SNVs or structural variants) and that sibling pairs with

discordant mutations usually showed more clinical variability than did those who shared a risk

variant [36].

The prevalence of CNVs suggests that chromosomal microarrays should be used in the

genetic analysis of syndromic ASD or familial cases of the disorder, especially when the patient

has an intellectual disorder [37]. Patients with localized or generalized syndromic overgrowth

should also be tested, given that the condition can be caused by subtle genomic rearrange-

ments [38]. It is of note that even in the presence of large pathogenic CNVs, increasing hetero-

geneity and complexity of a phenotype usually imply a greater number of variants. Assuming

that different ASD phenotypes could be the product of multiple biological pathways, possibly

affecting the same brain mechanisms, more studies should focus on systems genetics and net-

work analyses [39,40]. This underscores the importance of gaining a better understanding of

the role that sets of variant genes play in phenotype differences, which could be achieved

through comparative studies of affected individuals with shared and distinct phenotypic effects

of rare alleles [40]. Therefore, to characterize the complex genotype-phenotype relationship,
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we performed an analysis of CNVs and rare point variations by conducting array comparative

genomic hybridization (aCGH) and exome sequencing in two syndromic siblings with intel-

lectual disability (ID) who shared various dysmorphic features, although they showed signifi-

cant clinical differences in terms of the psychiatric phenotype.

Materials and Methods

Clinical assessment of the subjects

Two siblings (one male and one female) with syndromic ASD and their parents volunteered to

participate in an ongoing exome research study at the Autism Spectrum Disorder Program

Clinic of the Psychiatric Institute of the University of São Paulo School of Medicine. The study

was approved by the Research Ethics Committee for the Analysis of Research Projects of the

University of São Paulo School of Medicine Hospital das Clínicas (Ruling no. 0692–11). All

subjects gave written informed consent. The siblings underwent evaluation by specialized cli-

nicians. The diagnosis of ASD was based on the criteria established in the Diagnostic and Sta-

tistical Manual of Mental Disorders, fifth edition, as well as on the results of morphological

and neurological examinations. The Childhood Autism Rating Scale (CARS) was used in

order to determine the severity of the ASD symptoms. The results of karyotyping, screening

for innate metabolism errors (testing for amino acids and saccharides in urine and serum),

and the test for fragile X syndrome were all negative.

CNV analysis

We performed aCGH on a commercial whole-genome 180K platform containing approxi-

mately 180,000 oligonucleotide probes distributed throughout the human genome (Agilent

Technologies, Santa Clara, CA, USA). A pool of healthy human DNA (Promega, Madison,

WI, USA) was used as a reference in the experiments, and the procedure was performed as rec-

ommended by the manufacturer. Scanned images were processed using Feature Extraction

10.7.3.1 software (Agilent Technologies). We called copy number alterations on the basis of

the log2 ratio of the Cy3/Cy5 intensities in a given genomic segment, > 0.3 or < −0.3 for gains

or losses, respectively, using the aberration detection statistical algorithm aberration detection

method 2, with a sensitivity threshold of 6.7. Because we were interested in pathogenic CNVs,

we selected only de novo genic CNVs that were larger than 100 kb and were considered uncer-

tain, likely pathogenic, or pathogenic according to ClinVar similarity regarding the CNV

region (NCBI Variant Viewer, https://www.ncbi.nlm.nih.gov/variation/view/).

Imbalances identified with aCGH were validated by multiple ligation probe amplification

(MLPA) with two probe sets (SALSA MLPA P036-E1 human telomere-3 and SALSA MLPA

P070-B2 human telomere-5; MRC-Holland, Amsterdam, the Netherlands). Fluorescence in
situ hybridization (FISH) was also use in order to determine whether the rearrangement had

been inherited as a balanced translocation. The FISH was performed according to standard

protocols.

Exome sequencing

We extracted DNA from whole blood and quantified it with a fluorometer (Qubit; Life Tech-

nologies Corporation, Carlsbad, CA, USA). The exome was captured and enriched from geno-

mic DNA using an exome enrichment kit (Nextera; Illumina Inc., San Diego, CA, USA),

representing 62 Mbp of the human genome (hg19 build). Sequencing was performed with a

high-resolution optical imaging system (HiScan; Illumina Inc.).
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Fragments were aligned to the hg19 reference genome through the use of Burrows-Wheeler

alignment [41], and variant calling was performed with a software package for the analysis of

sequence data (Genome Analysis Toolkit; Broad Institute, Cambridge, MA, USA) [42–44]. A

total of 800 informative single nucleotide polymorphisms were analyzed with the whole-

genome association analysis toolset (PLINK; http://pngu.mgh.harvard.edu/~purcell/plink/) to

confirm the familial relationship between samples [45]. For genotype calls (in all members of

the quartet, we used only reads with a Phred score� 30 [46], bases with� 20 reads, and a

genotype quality score� 20 [33].

SNV analysis

Variant annotation was performed with an annotation program (ANNOVAR, http://www.

openbioinformatics.org/annovar/) [47]. To select rare variants (minor allele frequency� 0.01)

and novel variants, we employed the following databases: 1000 Genomes Project (http://www.

1000genomes.org/); the National Heart, Lung, and Blood Institute GO Exome Sequencing

Project (6500 exomes; http://evs.gs.washington.edu/EVS/); and the Exome Aggregation Con-

sortium (http://exac.broadinstitute.org/). Variants with a depth of coverage of less than 20×
reads in all members of the family were excluded in order to avoid false positives. To identify

de novo variations, we accepted candidates only at loci that were homozygous for the reference

allele in the parents. For the gene analysis, we selected only nonsynonymous SNVs, small

indels, and splicing site variations. If present, we selected the variations that were considered

conserved (score� 2) in the Genomic Evolutionary Rate Profiling++ algorithm [48] were

selected, as were those that were considered deleterious or possibly deleterious in the Polymor-

phism Phenotyping v2 HDIV algorithm [49].

Integration of CNVs and exome variants: network analysis

We performed enrichment analyses with a web-based gene set analysis toolkit (WebGestalt;

http://bioinfo.vanderbilt.edu/webgestalt/) [50], using a list of the brain-expressed genes among

the CNVs. For those analyses, we considered only genes expressed in at least one sample from

any brain area with positive expression according to the BrainSpan Atlas of the Developing

Human Brain [51].

For the integrative approach, network analysis was performed with the Search Tool for the

Retrieval of Interacting Genes/Proteins (STRING; http://string-db.org/), the minimum inter-

action confidence score being 0.4 (medium confidence). The STRING database comprises

known, predicted protein interactions, as well as direct (physical) and indirect (functional)

associations, derived from genomic context, high-throughput experiments, conserved coex-

pression, and text mining [52]. For prioritization, we used measures of centrality, such as

degree, bridgeness, and brokering, Degree is the number of edges of a vertex (node), and verti-

ces with a very high degree are known as hubs [53,54]. Bridgeness is a measure of the extent to

which a node or edge is located between connected regions [55], and brokering is when a bro-

ker gene acts as a hub that connects many genes that do not otherwise connect with each other

[56].

Results

Phenotypic similarities and differences between the siblings

The two patients evaluated were siblings born to a nonconsanguineous couple. There was no

family history of ASD, other psychiatric disorders, ID, or malformations.
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The male sibling had his first physician visit at 11 years of age (in 1992). At the time, the

mother complained that the child had spoken individual words only after 2 years of age and

had stopped producing any words at all by 4 years of age. He had difficulty learning new things

at school, had no social interests, and was very attached to routines. The mother also stated

that she had had an uneventful pregnancy and a vaginal delivery without complications. She

could not remember the birth weight or length. However, she was able to remember that he

had taken his first steps at 2 years of age. He was diagnosed with ID in 1992 and with ASD in

2003. He began to show irritability, mainly in the morning, and sometimes became autoag-

gressive or exhibited outwardly directed aggressive behavior. Since his first physician visit (in

1992), he had been under pharmacological treatment with antipsychotic agents.

The female sibling had her first physician visit at 7 years of age (also in 1992). At the time,

the mother complained that the girl had difficulties learning new things at school and that her

social skills were extremely inadequate. She had taken her first steps at 18 months of age, and

she had not begun to produce speech until after 2 years of age. The mother reported having

had abdominal pain and vaginal bleeding during pregnancy and that it had been a cesarean

delivery (birth weight: 4140 g; birth length: 51 cm). The patient was diagnosed with ID in 1992

and with ASD in 2003. Since her first physician visit, she exhibited psychomotor agitation,

mainly in the mornings. She was occasionally aggressive, although she was an affectionate and

gentle child most of the time. She liked playing with other children. However, she sometimes

exhibited periods of inappropriate, hypersocial behavior and periods during which she could

not stop talking and presented sleep difficulties. Since 1993 (when she was 8 years of age), she

had been under pharmacological treatment with antipsychotic agents.

In the most recent medical evaluation (S1 Table), the male sibling met the criteria for a

diagnosis of ASD according to the Diagnostic and Statistical Manual of Mental Disorders, fifth

edition [2], whereas the female sibling was diagnosed with ID and syndromic features. The

CARS interview with the parents resulted in a score of 33.5 for the male sibling and 24.0 for

the female sibling (details of the psychiatric examination and neurological evaluation of the

siblings are provided in S1 Table).

aCGH and MLPA analyses

The syndromic presentation suggested the existence of a chromosomal alteration, which was

investigated with aCGH (Fig 1). In the two siblings, there were 12 de novo CNVs (S2 Table): 8

in the female and 4 in the male. Filtering revealed that both siblings had 2 terminal chromo-

somal alterations: a 4.6-Mb duplication at 4p16.2-p16.3 (chr4:71552–4673343; hg19); and a

752-kb deletion at 8p23.3 (chr8:176,814–928,886; hg19). The MLPA analysis confirmed the

presence of the 4p16 duplication and the 8p23 deletion (S1 Fig).

FISH analysis

The FISH analysis confirmed the copy number alterations detected in the siblings (4p16.3

duplication and 8p23.1 deletion, as shown in Fig 2A and Fig 2B, respectively), and the chromo-

somal imbalances were derived from a translocation between chromosomes 4 and 8 [der(8)t

(4;8)(p16.3;p23.1)]. The FISH analysis performed in the parents revealed that the father (Fig

2C) was a carrier of the balanced translocation t(4;8)(p16.3;p23.1).

Phenotype and chromosomal alterations correlation

Various cases of translocations between 4p16.6 and 8p23.1 have been described, the first hav-

ing been reported by Goggin et al. [57]. Table 1 summarizes the characteristics observed in our
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patients compared with those of other reported cases, indicating what is typically found in

cases of pure 4p duplication and pure 8p deletion [57–66].

Genes in chromosomal alterations

To explore the phenotypes associated with the chromosomal alterations detected, we

conducted an enrichment analysis based on the 69 genes present in the 4p duplication,

expressed in brain tissue and present in the WebGestalt database (of the 80 RefSeq genes

present in the region according to the hg19 build from the UCSC Genome Browser). The

Fig 1. Chromosomal alterations detected with aCGH analysis in both siblings. A and B present the aCGH profiles of chromosomes 4 and 8, showing the

4p16.3 duplication and the 8p23.3 deletion in the male and female siblings, respectively; C and D present the normal copy number profiles of chromosomes 4

and 8 of the father and mother, respectively.

doi:10.1371/journal.pone.0170386.g001
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disease enrichment analysis (S3 Table) revealed that 5 genes (WHSC1, FGFR3, SH3BP2,

LETM1, and STX18) were found to be overrepresented in craniofacial abnormalities

(adjusted p-value = 0.0002), musculoskeletal abnormalities (adjusted p-value = 0.0009)

and congenital abnormalities (adjusted p-value = 0.0040). Other genes, such as GAK,HTT,

TMEM175, FAM193A, and DGKQ, were mainly related to movement disorders (adjusted

p-value = 0.0001) and basal ganglia disease (adjusted p-value = 3.73e-05). The gene ontol-

ogy analysis revealed enrichment of fibroblast growth factor-activated receptor activity

(FGFR3 and FGFRL1 genes, adjusted p-value = 0.0082) and rough endoplasmic reticulum

(NAT8L, LRPAP1, and HGFAC genes, adjusted p-value = 0.0445).

The 8p23.1 deletion affects 6 brain-expressed genes (from a total of 8 RefSeq genes accord-

ing to the hg19 build from the UCSC Genome Browser): RPL23AP53, ZNF596, FAM87A,

FBXO25, TDRP, and ERICH1. As expected, there was no significant functional enrichment.

Using the STRING, we searched possible connections described in the literature and pro-

tein-protein interaction databases connecting all the CNV genes. There were 61 genes repre-

sented in the STRING (S2 Fig), with 32 connected proteins (i.e., 52.45%, 32/61) and 29

interactions, representing enrichment of interactions (p-value = 3.09e-14). In addition, genes

overrepresented in craniofacial abnormalities, musculoskeletal abnormalities, syndromic

abnormalities, or congenital abnormalities were all presented in the biggest component of the

network formed (the component with the most number of connecting genes). The genes

Fig 2. FISH images. (A) image showing that, in the female sibling, there were three chr4p copies, marked in

green with a GS-118B13 probe (green arrow), and one chr8p copy, marked in red with a RP11-338B22 probe

(red arrow); (B) image showing that, in the male sibling, there were also three chr4p copies, marked in red with

a GS-118B13 probe (red arrow), and one chr8p copy, marked in green with a GS-77L23 probe (green arrow);

(C) image showing that, in the father, there was a balanced translocation, t(4;8); and (D) image showing that,

in the mother, the chromosomes were normal.

doi:10.1371/journal.pone.0170386.g002
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Table 1. Summary of the characteristics observed in our patients, compared with those of other cases described in the literature.

Characteristic Sibling 1 Sibling 2 Skrlec et al. [58] Mau et al.

[59]

Partington et al. [60] Goggin

et al. [57]

Literature

on dup(4p)*
Literature

on del(8p)*

Sex Male Female Male Female Female (1) Female (2) Male NA NA

Age at evaluation 33 years 29 years 5 months 2 years,

10 months

15 years 16 years NA NA NA

Cytogenetic

alterations

46,XY, der

(8)t(4;8)

(p16.3;

p23.1)

46,XX, der

(8)t(4;8)

(p16.3;

p23.1)

46,XY,der(8)t(4;8)

(p16.1;p23.1).ish der

(8)t(4;8) (D8-S504-,

WHCR+, D8Z2+)dn

46,XX,der

(8) t(4;8)

(p12;

p23.1)

46,XX,der

(8) t(4;8)

(p16.2;

p23.1)

46,XX,der

(8) t(4;8)

(p16.2;

p23.1)

46,XY,der

(8) t(4;8)

(p12; p23)

NA NA

Neonatal period

Birth height (cm) 52 44 NA NA

Birth weight (g) 3360 2450 NA NA

Birth OFC (cm) 35 31 NA NA

Anthropometric

Height (cm) 190 183 84.5 NA NA

Weight (kg) 95.8 91.5 11,2 NA NA

OFC (cm) 60 59 46,5 NA NA

Arm span (cm) 194 185 NA NA NA

Dysmorphic features

Microcephaly - - + + + +

Macrocephaly + + +

Round face - - +

Long face + +

Short neck - - + + +

Low anterior

hairline

- - +

Low posterior

hairline

+ + + +

Arched eyebrows + + + +

Long eyelashes + + + +

Synophrys - - + +

Hirsutism - - + + +

Microphthalmia - - + +

Epicanthic folds - - +

Hypertelorism - - + +

Wide nasal bridge + + + + + + +

Anteverted nares - - + +

Long philtrum - - + +

Thin lips - + + +

Down-turned

corners of the

mouth

- - +

Micrognathia or

Retrognathia

- - + + +

Prognathism - -

Widely spaced

teeth

- - + +

Crowded teeth + +

Low-set ears + + + + + +

Malformed ears + + + + +

(Continued )
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Table 1. (Continued)

Characteristic Sibling 1 Sibling 2 Skrlec et al. [58] Mau et al.

[59]

Partington et al. [60] Goggin

et al. [57]

Literature

on dup(4p)*
Literature

on del(8p)*

Widely spaced

nipples

+ NA + +

Large hands + + + +

Short tapering

fingers

- - +

Proximal

implantation of

thumbs

- - + +

Arachnodactyly - - +

Clinodactyly + + + +

Large feet + + + +

Proximal

implantation of

toes

- - +

Syndactyly - - +

Transverse

palmar crease

- - + +

Hypoplastic nails - + + +

Rectus abdominis

diastasis

- - +

Cryptorchidism - - + +

Hypospadias - - + +

Malformative features

Cardiopathy AVSD + +

Genitourinary

anomalies

Vesicoureteral reflux Small

clitoris

+ +

Hypoplasia of the

corpus callosum

+

Coloboma of the

iris or retina

- - Both

Other

Behavior features

Intellectual

disability

+ + + + + + + +

Seizures - - - + +

Stereotypic

movements

+ - +

Hyperactive - - + +

Obsessional

behavior

- - +

Feeding

difficulties

- - + + +

Recurrent

infections

- - +

Other - - NHS

NA: not applicable; OFC: occipitofrontal circumference; AVSD: atrioventricular septal defect; NHS: neonatal hypocalcemic seizure.

*[61–66]

doi:10.1371/journal.pone.0170386.t001
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ZNF596 and FBXO25 from 8p23.1 appeared to be connected, although not within the biggest

component of the network (S2 Fig).

Exome sequencing

We sequenced 45 million reads per sample (4.5 Gb). To avoid miscalling variants [67], we

removed polymerase chain reaction duplicates, resulting in 32 million reads (raw data submit-

ted at the European Nucleotide Archive, accession number PRJEB15585). The mean coverage

on target was 35×, and 44.63% of the targets showed at least 20× coverage (S4 Table).

After the SNV filtering process, only 1 de novo variant was identified, disrupting the

TUBAL3 gene in the exome of the female sibling. TUBAL3 encodes the tubulin alpha chain-

like 3 protein and occurs in exon 4, promoting the replacement of glutamate with lysine at

position 174 and considered deleterious according to the Polymorphism Phenotyping v2 and

Genomic Evolutionary Rate Profiling++ algorithms. In the male sibling data, we identified 3

rare X-chromosome variants (ADGRG2,CNGA2, and FIGF), as can be seen in Table 2.

As for the deleterious heterozygous variants inherited from one of the parents (Fig 3), we

identified a total of 312 variants (S5 Table): in the male sibling, there were 125 exclusive vari-

ants (109 non-synonymous, 8 small indels, 5 stop-gains, 1 stop-loss, and 2 splicing sites); in

the female sibling, there were 85 exclusive variants (81 nonsynonymous SNVs, 2 small indels,

Table 2. Details of the hemizygous variations found in the exome of the male sibling.

Chr Start End Ref Alt Gene Variation 1000G ESP6500 ExAC dbSNP ID Polyphen2 GERP++

X 19032163 19032163 G T ADGRG2 Nonsyn. SNV 0.0013 0.0017 0.0006 rs150013899 0.745 3.37

X 15376167 15376167 G C FIGF Nonsyn. SNV NA NA NA NA 0.804 3.30

X 150906999 150906999 A C CNGA2 Nonsyn. SNV 0.0079 0.0085 0.0025 rs142562634 0.981 3.69

Chr: chromosome; Ref: reference allele; Alt: altered allele; 1000G: 1000 Genomes Project (database); ESP6500: National Heart, Lung, and Blood Institute

6500 exome GO Exome Sequencing Project (database); ExAC: Exome Aggregation Consortium (database); dbSNP: Single Nucleotide Polymorphism

Database; Polyphen2: Polymorphism Phenotyping v2 (algorithm); GERP++: Genomic Evolutionary Rate Profiling++ (algorithm); Nonsyn.: nonsynonymous;

SNV: single nucleotide variant; NA: not applicable.

doi:10.1371/journal.pone.0170386.t002

Fig 3. Summary diagram of the variations found in the two siblings.

doi:10.1371/journal.pone.0170386.g003
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and 2 stop-gains); and the siblings shared 102 variants (96 nonsynonymous SNVs, 5 frameshift

indels, and 1 non-frameshift indel).

Integrative network analysis of CNVs and exome variants

Using the combined brain-expressed gene list from the male sibling (70 genes present in the

CNVs, 81 genes with variants shared by both siblings, and 105 genes with exclusive variants),

we searched all connections using STRING and found enrichment of interactions (number of

nodes: 236; number of edges: 129; average node degree: 1.09; clustering coefficient: 0.811;

expected number of edges: 86 and protein-protein interaction enrichment p-value: 1.19e-05).

Using the combined brain-expressed gene list from the female sibling (70 genes present in the

CNVs, 81 genes with variants shared by both sibling; and 71 genes with exclusive variants), we

searched all connections with STRING and again found enrichment of interactions (number

of nodes: 204; number of edges: 101; average node degree: 0.99; clustering coefficient: 0.812;

expected number of edges: 58; and protein-protein interaction enrichment p-value: 1.89e-07).

Figs 4 and 5 show the biggest connected component for the male sibling and female sibling,

respectively.

We selected genes connected in the biggest component of each sibling network analysis: 82

connecting genes for the male sibling (26 located in the 4p duplication) and 68 connecting

genes for the female sibling (26 in the 4p duplication). The biggest connecting component in

the networks of both siblings shared 46 genes. Therefore, 36 genes appeared to be connected

exclusively in the network of the male, compared with 22 in the network of the female. After

calculating the centrality measures for each network (S6 Table for the male and S7 Table for

the female), we identified the broker and bridge genes (5% higher brokering score for the bro-

kers, and 5% higher bridging scores for the bridges), as detailed in Table 3. There were 5 bro-

ker genes in the male (CAD, FGFR3, PDE6B, and FYN) and 3 in the female (FLNC, ITGB4, and

FYN). There were 3 bridge genes in the biggest connected component of the network of the

female: CTBP1,HTT (present in the translocation but connected only in the female network),

and SPTBN4 (exclusive, i.e. altered only in the female). IDUA, NCKIPSD, FIGF, and NPR1 are

bridge genes in the network of the male, the last 2 being exclusive. The de novo variant

TUBAL3 did not appear to be connected in the network of the female. Only one hemizygous

variant gene (the bridge gene FIGF) was connected in the network of the male.

Discussion

Our major goal in this paper was to assess genetic findings in siblings that shared syndromic

features and ID, a secondary goal being to explain the differences in the presentation of their

psychiatric symptoms. According to Miles et al. [13,68], the male sibling could be classified as

having complex autism (autism with ID and syndromic features). Both siblings presented irri-

tability, agitation, and aggressive behavior, symptoms that are present in cases of ASD, as well

as in those of ID only. Even among individuals with ASD, these symptoms are more common

in those with ID [69].The male sibling had an attachment to repetitive behaviors, did not make

eye contact, showed no capacity for joint attention, had no social interests, and had no com-

municative ability, all of which were symptoms that were not present in the female sibling.

Their social impairments and alterations in social skills differed, and the female sibling had

been described as presenting periods of inappropriate, hypersocial behavior and periods dur-

ing which she could not stop talking and had sleep difficulties.

The duplication at 4p16.3 and deletion at 8p23.1, both of which were found in both siblings,

are located in a recurrent translocation region in olfactory receptor gene clusters commonly

correlated with non-allelic homologous recombination [61,70,71]. The FISH analysis showed
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that these structural variations were inherited from a paternal balanced translocation. A termi-

nal deletion within 8p is associated with hyperactivity, as well as with ID and impulsivity,

whereas 4p terminal duplications are associated with microcephaly, motor retardation with sei-

zures, and postnatal growth alterations [62–66]. Although translocation between chromosomes

4 and 8 is common, only a few cases of partial trisomy 4p and partial monosomy 8p have been

reported [57–60,70]. The descriptions provided in the literature do not allow a typical pheno-

type of this type of dysmorphic syndrome to be assumed, because the distribution of dysmorph-

isms among patients is heterogeneous and the observed facial dysmorphisms are not specific.

Enrichment analysis confirmed that the gene list from the 4p16.3 region is enriched with

genes associated with craniofacial and musculoskeletal abnormalities, which could explain the

dysmorphic facial and growth features observed in the siblings evaluated here. Genes present in

the 4p16.3 duplication and 8p23.3 deletion are involved in the cell cycle and cell differentiation,

Fig 4. Male sibling STRING network analysis. Biggest component of the connecting brain-expressed genes present in the unbalanced translocation,

altered by the shared and exclusive rare inherited SNV and indels found in the male sibling.

doi:10.1371/journal.pone.0170386.g004
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Fig 5. Female sibling STRING network analysis. Biggest component of the connecting brain-expressed genes present in the unbalanced

translocation, altered by the shared and exclusive rare inherited SNV and indels found in the female sibling.

doi:10.1371/journal.pone.0170386.g005
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and some of these genes are likely to be more specifically related to the observed dysmorphic

features in the siblings, such as FGFR3 associated with chondrogenic and osteogenic events

[72], and well known to be related to skeletal dysplasia [73]. Although the similarity of traits

between the siblings could be explained by their unbalanced translocation, it is of note that

cases in the literature sharing similar chromosomal abnormalities have not presented the same

psychiatric symptoms.

In keeping with the hypotheses of network medicine proposed by Barabási et al. [53], the

results from our network analysis of the siblings show that genes within the unbalanced trans-

location and the probable deleterious exome variants appeared to be connected in their biggest

component. In addition, some genes that were disconnected only from the genes within the

unbalanced translocation in our network analysis (S1 Fig) became connected when the exome

results were included in the analysis. MXD4, SH3BP2, ZFYVE28, LRPAP1 and RGS12 appeared

in both networks, whereas LYAR and NOP14 became connected only in the network of the

male sibling, ADD1,ADRA2C,HTT, and CTBP1 being connected only in that of the female

sibling.

According to Lim et al. [74], 5% of ASD cases can be affected by homozygous inherited rare

variations, with loss of function, or hemizygous X-chromosome variations in males, and that

deleterious mutations in X chromosome are more common in cases than in controls. In the

present study, FIGF is the only gene that was connected in the biggest component of the net-

work of the male sibling. In addition to being related to cell proliferation [74,75], probably con-

tributing to the syndromic phenotype seen in our male patient, FIGF expression is modulated

by activation of the Wnt signaling pathway [75] and is also related to dopaminergic neuron dif-

ferentiation [76]. The Wnt pathway is one of the main pathways that have been associated with

exome variants in ASD [77].

Pavlopoulos et al. [78] found that different types of biological networks can be modeled

using graph theory, and that some of the nodes in a network may have topological properties

Table 3. Comparison of broker and bridge genes in the biggest connected components of the networks of the two siblings.

Sib Gene Betweenness Bridgeness Brokering Closeness Clustering Degree Bridge or broker?* Variation type Exclusive?†

M CAD 1816.83 15.939 0.167 0.379 0.033 14 Broker Nonsyn. SNV Yes

M FGFR3 1232.00 74.089 0.074 0.333 0.000 6 Broker 4p Dup No

M FYN 1471.83 35.496 0.118 0.355 0.044 10 Broker Nonsyn. SNV No

M PDE6B 346.67 13.867 0.074 0.250 0.000 6 Broker 4p Dup No

M POLR3A 907.83 45.305 0.085 0.345 0.143 8 Broker Nonsyn. SNV No

F FLNC 224.52 15.273 0.078 0.236 0.133 6 Broker Nonsyn. SNV No

F FYN 1155.52 14.664 0.176 0.288 0.015 12 Broker Nonsyn. SNV No

F ITGB4 224.47 12.827 0.078 0.242 0.133 6 Broker Nonsyn. SNV Yes

M FIGF** 133.00 159.600 0.025 0.263 0.000 2 Bridge Nonsyn. SNV Yes

M IDUA 159.50 239.250 0.025 0.265 0.000 2 Bridge 4p Dup No

M NCKIPSD 158.00 131.667 0.025 0.266 0.000 2 Bridge Nonsyn. SNV No

M NPR1 227.17 121.156 0.025 0.272 0.333 3 Bridge Nonsyn. SNV Yes

F CTBP1 396.83 264.556 0.030 0.223 0.000 2 Bridge 4p Dup Yes

F HTT 416.33 297.381 0.030 0.239 0.000 2 Bridge 4p Dup Yes

F SPTBN4 567.50 283.750 0.045 0.262 0.000 3 Bridge Nonsyn. SNV Yes

Sib: Sibling; M: Male; F: Female; Nonsyn.: nonsynonymous; Dup: duplication.

*bridging and brokering scores: 95th percentile.
†Connected in biggest network of only one sibling.

**Hemizygous variation.

doi:10.1371/journal.pone.0170386.t003
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that stand out in comparison with the others. The CAD gene, a variant of which was observed

only in the male sibling evaluated here, is an important and highly connected broker gene.

CAD encodes a protein associated with the enzymatic activities of the first three enzymes in

the pyrimidine biosynthesis pathway and is regulated by the mitogen-activated protein kinase

cascade [79]. In ASD patients, CAD has been found to be altered by 1 deleterious SNV and

present in 4 CNVs [4]; it is also one of the genes identified by Samocha et al. [80] as being

enriched with de novo loss-of-function mutations in ASD patients and not in individuals with-

out ASD.

Exclusively in our female patient, a variant of the ITGB4 gene was a broker in the network.

ITGB4 encodes an integrin-associated transmembrane glycoprotein receptor, expressed on

epithelial cells, and in neural cells such as astrocytes, Schwann cells, neurons, and neural stem

cells [81]. In the central nervous system, beta4 integrin is expressed primarily in arterioles.

Although a lack of endothelial beta4 integrin has no effect on vascular development, its

absence in the hypoxic central nervous system disrupts transforming growth factor-beta–

mediated signaling and results in defective arteriolar remodeling [82].

Among the exclusive variant genes within the network of the female sibling evaluated in the

present study, SPTBN4 functions as a bridge. It encodes the myelinated neuron-rich cytoskele-

ton protein beta-spectrin [83], which is important to the clustering of voltage-gated sodium

channel axon initial segments and the nodes of Ranvier [84], being required for ANK3 func-

tion [85]. Although not a broker or a bridge, ANK3was also connected in the network of the

female sibling. ANK3 encodes the protein ankyrin-G, also located at the nodes of Ranvier and

the axon initial segment, a protein responsible for the generation of action potentials [86].

ANK3 has been associated with autism susceptibility [87], as well as with increased risk for and

modulation of working memory deficits in bipolar disorder and schizophrenia [88–90].

Another important female exclusive variant gene, RELN, encodes reelin, an extracellular

matrix protein that activates a signaling pathway for neuronal migration and synaptic plasticity

during brain development, as well as appearing to be involved in schizophrenia, autism, bipo-

lar disorder, and other neuropsychiatric disorders [91–95]. In addition, a recent genome-wide

association study of schizophrenia revealed that the strongest association was with a marker

within RELN, and only in women [96]. Furthermore, Goes et al. [91] found evidence that

genetic variation in RELN is associated with susceptibility to bipolar disorder, particularly in

females.

Some of the altered genes shared by the two siblings evaluated in the present study func-

tioned as hubs in only one of the siblings, differentially contributing to the stability of the gene

network and probably the phenotypes. For instance, IDUA (present in duplication 4p) and

NCKIPSD (present in a shared nonsynonymous SNV) were bridge genes only in the network

of the male sibling.

The only de novo exome variant, TUBAL3 (found in the female sibling), was not connected

in the network. According to Veltman & Brunner [97], approximately 74 novel SNVs arise per

genome per generation. Given the fact that deleterious de novo variants increase disease risk,

various computational methods have been proposed to predict impact and gene prioritization

in human disease [98–100]. However, even though we could not exclude de novo TUBAL3 var-

iation from our analysis, the integrative approach we used showed that it is not important to

the understanding of the phenotypic differences between the two siblings.

Adding exome genes to the network of each sibling showed that, as stated by Andrews et al.

[30], the more connected the genes were, the more severe was the clinical presentation. The

male sibling had a network that was more well connected, and, with the inclusion of the exome,

more genes from the translocation were included. Accordingly, his CARS score was indicative

of greater severity and genes with deleterious variations exclusive to his network are clearly
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related to ASD. The female had some psychiatric symptoms such as excess sociability, periods

of sleep difficulties, and periods of talkativeness, a presentation similar to that of a mood disor-

der. Notably, the variants found only in the female sibling, although having been associated

with autism, have also been shown to be strongly associated with other psychotic disorders,

which probably explains her broader phenotype.

Conclusions

One of the limitations of the current study is the sample size, which was small for an integra-

tive analysis, given that we accessed only the exome data of the two affected siblings. Therefore,

we chose to leave the inherited CNV out of the analysis and focus on the variations that were

the most likely to have deleterious effects, such as de novo CNVs, as well as de novo and rare

inherited nonsynonymous SNVs. Nevertheless, with this analysis of only one family, we were

able to show the importance of exploring the genotype-phenotype variability beyond the effect

of one SNV or CNV.

Our results show that the translocation shared between the siblings could explain their sim-

ilar syndromic phenotype, such as their overgrowth, macrocephaly, and ID. However, our net-

work analysis showed that exome data aggregate genes to those already connected from their

shared CNV, which are important to the robustness of the network and possibly contribute to

the understanding of the broader spectrum of psychiatric symptoms.
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S1 Fig. MLPA results. (A) female sibling, (B) male sibling, (C) father, and (D) mother. In A

and B, the dot over the 1.3 line of the peak ratio value represents the 4p16.3 duplication, and

the dot under the 0.7 line of the peak ratio value represents the 8p23.3 deletion.

(TIF)

S2 Fig. STRING network of genes present in the chromosomal alteration der(8)t(4;8)

(p16.3;p23.1) in the siblings. The biggest connected component is composed of 17 proteins

with 20 interactions (i.e., 24.6%, 17 of the 69 brain-expressed genes), 6 connected components

composed of 2 proteins with 1 interaction and 1 connected component with 3 proteins and 2

interactions, resulting in 15 proteins (i.e., 21.7%, 14 of the 69 brain-expressed genes) and 8

interactions.

(TIF)

S1 Table. Summary of the medical history and clinical evaluation of the probands.
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S3 Table. Results of WebGestalt disease enrichment analysis with at least 4 genes from the

4p16.3 duplication gene list (69 brain-expressed genes)

(DOCX)

S4 Table. Summary of exome sequencing data quality of each member of the family.

(DOCX)
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network of the male sibling.

(XLSX)

S7 Table. Gene list with centrality measures of the biggest connected component of the
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