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Abstract

The primary aim of the current study was to employ event-related potentials (ERPs) method-

ology to disentangle the mechanisms related to inhibitory control in older adults with Wil-

liams syndrome (WS). Eleven older adults with WS (mean age 42), 16 typically developing

adults (mean age 42) and 13 typically developing children (mean age 12) participated in the

study. ERPs were recorded during a three-stimulus visual oddball task, during which partici-

pants were required to make a response to a rare target stimulus embedded in a train of

frequent non-target stimuli. A task-irrelevant infrequent stimulus was also present at rando-

mised intervals during the session. The P3a latency data response related to task-irrelevant

stimulus processing was delayed in WS. In addition, the early perceptual N2 amplitude was

attenuated. These data are indicative of compromised early monitoring of perceptual input,

accompanied by appropriate orientation of responses to task-irrelevant stimuli. However,

the P3a delay suggests inefficient evaluation of the task-irrelevant stimuli. These data are

discussed in terms of deficits in the disengagement of attentional processes, and the regula-

tion of monitoring processes required for successful inhibition.

Introduction

Williams syndrome (WS) is a neurodevelopmental disorder with an estimated prevalence

of 1:20,000 [1], caused by a micro-deletion of approximately 28 genes on chromosome 7

(7q11.23) [2]. Behavioural and cognitive outcomes have been linked to a number of candidate

genes associated with neuronal development and expression (e.g. LIMK1, CYLN2, GTF21; see

[3] for a review). Although there is significant heterogeneity of cognitive function [4], individ-

uals with WS tend to function at the level of mild-to-moderate intellectual difficulty [5]. The

disorder has attracted the attention of cognitive scientists primarily due to the distinctive cog-

nitive profile. Indeed, an abundance of literature has documented relatively more impaired

visuo-spatial skills (e.g. [6, 7]) compared with relatively less impaired verbal processing [8],

though always against a background of mild-moderate intellectual difficulty. Although the
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heterogeneity of cognitive functioning is mirrored in the vast behavioural variability seen in

the disorder [9], many individuals with WS (both children and adults) tend to be highly-socia-

ble, exhibiting a strong desire to converse with others, and an eagerness to make eye contact

with, and to indiscriminately approach strangers [10, 11].

Many facets of the behavioural and social phenotype in WS, such as social disinhibition [12,

13], their lack of stranger danger awareness [14, 15], and propensity for prolonged face-gazing

[16] are associated with atypicalities in frontally controlled executive function (EF) processes.

Due to the heterogeneity of executive processing mechanisms subserved by the frontal lobes,

there are discrepancies in the literature with regard to the EF functions affected in WS [17, 18],

and vast individual differences are evident. However, research reporting deficits in inhibition

[19–22], visual and auditory sustained attention [19, 22, 23], visual selective attention [24],

and attentional set-shifting [25] prove promising in elucidating specific executive processes

impaired and how these may explain the behavioural and social characteristics associated with

the syndrome.

Research which adopts a Go / No-Go paradigm is particularly informative when examining

attentional and inhibitory profiles in both typical developing individuals and those with devel-

opmental disorders such as WS. In a typical Go / No-Go task, participants are required to make

a motor response (Go) to a frequently presented stimulus and withhold a response (No-Go) to

an infrequent target stimulus. During the task, participants become habituated to the frequent

stimuli and relatively automatic responding begins to occur. Consequently, withholding a

response to No-Go trials becomes problematic. Individual differences in the measurement of

withholding a response to the target stimuli have been shown to be related to inhibitory ability

and impaired frontal lobe function (see [26] for a meta-analysis). A recent study employing

the Sustained Attention Response Task (SART, a computerised Go / No-Go paradigm) is par-

ticularly informative here [22]. Greer and colleagues [22] considered multiple measures of

executive control and inhibition in adults with WS (e.g. reaction time (RT) after an error, false

alarms (FAs), overall RT variability) and concluded such indices as having great value in evalu-

ating everyday cognitive challenges. Increased FAs to the infrequent target stimulus were

indicative of impaired functioning of frontal brain regions sub-serving inhibitory control, as

previously reported in the syndrome ([27]; see also the Attention-Deficit Hyperactivity Disor-

der (ADHD) / WS work on inhibition [28]). Interestingly, and much like other populations

with frontal executive control deficits such as traumatic brain injury (TBI) [29], post error

slowing was also compromised in the WS group. This failure to re-engage attention after an

error has elsewhere been linked with impaired cognitive abilities and spatial cognition deficits

in WS [30]. Overall, Greer et al. [22] promote the use of Go / No-Go paradigms to disentangle

the numerous executive processes related to inhibition and attentional control which are pro-

posed to be problematic in the disorder.

Converging evidence from studies adopting Go / No-Go paradigms and neuroimaging tech-

niques such as functional magnetic resonance imaging (fMRI) and event—related potentials

(ERP) methodologies have enabled researchers to identify the spatial / functional mapping and

temporal dynamics of fronto-cortical networks recruited during attentional and inhibitory

processes in both typically and atypically developing individuals. Particularly relevant to the

current investigation, Mobbs and colleagues [27] compared the fMRI profile of individuals

with WS and typically developing individuals matched for chronological age and gender.

Despite comparable behavioural performance (accuracy but not RT) between groups, com-

pared to the typical controls the WS group reported dis-engagement of the frontal-striatal net-

works of the brain which contribute to the complex pattern of social and behavioural deficits

associated with WS [14, 31], and also increased activity in the posterior cingulate cortex on

presentation of No-Go trials. This demonstrates that, irrespective of behavioural similarities,
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these individuals with WS reported a) hypoactivity in the fronto-cortical and subcortical struc-

tures associated with behavioural inhibition, and b) hyperactivity in posterior regions which,

in ADHD, has been linked with a reduced ability to reallocate attention after an error [32] and

which was a main finding of Greer et al. [22]. Research employing ERP methodology in WS is

scarce; however there is evidence of atypical neural activity in frontal regions in response to

social stimuli (faces; [33]) and which may be linked with the social disinhibition associated

with the syndrome (e.g. [14]). In contrast, atypically enhanced frontal ERP activity in response

to non-social stimuli (houses) compared with social stimuli (faces) is reported, and contrary to

the pattern hypothesised [34]. The dearth of research focusing on the ERP correlates which

sub-serves the behavioural and cognitive profile of individuals with WS makes interpretation

of these conflicting findings more challenging.

Here we aim to contribute to the theoretical understanding of the adult WS cognitive pro-

file by examining attentional and inhibitory control mechanisms in the disorder using the

temporal precision of ERP methodology and a three-stimulus Oddball paradigm (Oddball;

[35]). In contrast to the two-stimulus Go / No-Go methodology described above, the Oddball

paradigm requires participants to respond to an infrequent target stimulus while withholding

their response to two distractors; a frequent non-target stimulus and an infrequent task-irrele-

vant novel stimulus. It measures automatic shifts in attention to task-irrelevant information,

the allocation of cognitive resources to task-relevant stimuli, and has been proposed to be asso-

ciated with context updating in working memory (see [36] for a review). Notably, the ERP

response to the task-irrelevant novel stimulus is thought to reflect the processes engaged in

order to successfully inhibit task-irrelevant information. Topographical distributions to infre-

quent task-irrelevant novel stimuli can be observed over bilateral frontal and superior tempo-

ral regions, and which have been related to the inhibition of motor responses in a cognitive

task [37]. Thus, the inclusion of an infrequent task-irrelevant novel stimulus in the current

Oddball task enables us to observe the cortico-electrical activity evoked when unexpected

behavioural inhibitory control is required [38]. Of note, whilst it is important to dichotomise

between one infrequent task-irrelevant ‘deviant’ stimulus and multiple unrepeated infrequent

task-irrelevant ‘novel’ stimuli (see [39] for a discussion), both require the inhibition of motor

action. We have previously demonstrated that a single infrequent task-irrelevant stimulus

repeated throughout the task elicits the fronto-central distribution expected during successful

response inhibition in typically developing adults [40], thus we will refer to the infrequent

task-irrelevant stimulus as ‘novel’ here, in order to simplify description of the task and results.

Three main ERP components are elicited during the completion of the task, the N2, P3a

and P3b. The N2 is a negative going waveform which peaks between ~180–350 ms post stimu-

lus, and is associated with the early recognition and parsing of visual information in the

environment [41]. Daffner and colleagues [42] have been influential in characterising the func-

tional significance of the N2 ERP component. For instance, the N2 evoked when no beha-

vioural response is required (i.e. novel stimulus), typically reports a fronto-central scalp

distribution and is elicited typically without conscious awareness. In contrast, the N2 evoked

in response to the target stimulus represents the degree of attention that is needed for process-

ing stimuli context and is typically observed centro-parietally (see [43] for a detailed review on

the classification and function of the N2 component). Elsewhere, the importance of top-down

processes and visual selective attention in the generation of the N2 has been emphasised [44].

The P3a and P3b are subcomponents of the positive going P300 waveform, and have different

functional correlates [36]. The P300 typically peaks between ~250–500ms post-stimulus, with

the P3a reporting a fronto-central distribution, and the P3b a centro-parietal distribution [45].

The P3a is associated with automatic responses during the engagement of attention, inhibition,

and orienting resources to items in the environment. As such, it typically presents relatively
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larger frontal peak amplitude and relatively short peak latency duration. The P3a has also been

associated with dopaminergic function and attentional control processes [46, 47]. The P3b is

associated with the controlled processes required during working memory storage updating,

and relative to the P3a, typically reports a smaller peak amplitude and later peak latency [48],

reflecting the greater amounts of attentional resources required for task performance (see [36]

for a detailed review of the classification and function of the P300 component).

The Oddball paradigm has been used widely in research investigating neural functioning of

TD individuals [40], clinical and subclinical populations (e.g. schizophrenia [49], eating disor-

ders [50], and developmental disorders (e.g. ASD: [51]). To date, the Oddball task as described

here has not been employed in research with individuals with WS, though there is evidence for

atypical activity in WS in components elicited by the Oddball task [33, 52, 53]. However, one

known study is informative as to the profile of the P3a and P3b that may be observed in WS

during an Oddball task. Key and Dykens [54] employed an Oddball-type paradigm to investi-

gate global / local stimulus discrimination during a Navon style visuo-spatial task in a group of

adults with WS and CA controls. Relative to a standard stimulus, the WS group reported

shorter P3a latency and greater P3a amplitude in response to the global stimulus, but no differ-

ence in P3a amplitude or latency in response to the local stimulus, suggesting insufficient allo-

cation of attentional resources to local features. In contrast, while the CA group reported

increased P3b latencies in response to the local targets, the WS group reported no P3b discrim-

ination between conditions, indicative of impaired effortful processing when greater atten-

tional resources are required, as would be the case during local stimulus discrimination.

The aim of the current study is to characterise the neural signature of adults with WS dur-

ing a visual three-stimulus Oddball task, and thus elucidate the neural mechanisms that may

underpin the deficient attentional and inhibitory profiles associated with the syndrome. Two

comparison groups are included in the study; a cohort of typically developing adults matched

for chronological age (CA), and a group of typically developing children matched for verbal

mental ability (MA). Typically developing younger children display an age-associated ERP

profile which reflects their ongoing neuronal maturational processes [55, 56]. Thus, we do not

predict an ERP profile in adults with WS that is indicative of verbal mental age; however the

MA group are included in the study for completeness. Based on the previous ERP research

with WS [54], ADHD [57], autism spectrum disorder (ASD) [58], and recent behavioural find-

ings [22], we predict a profile indicative of atypical attentional and inhibitory processing.

However, due to the novelty of the study and because we cannot be sure how the deficits will

manifest we ask a number of questions. Compared to the CA group will adults with WS dem-

onstrate: 1) atypical earlier attentional processing indexed by attenuated N2 peak amplitude

and / or latency differences in response to the task-irrelevant novel and target stimuli? 2)

increased P3a latency reflecting a delay in the orienting to novelty response and or amplitude

difference, and 3) increased P3b latency and amplitude difference indicative of working mem-

ory and storage updating functioning.

Method

Participants

Three groups participated; adults with Williams Syndrome (WS), and two comparison groups

(see [59] for a discussion of matching procedures) consisting of a group of typically developing

adults matched for chronologically age and gender (CA), and typically developing children

matched for verbal mental ability (MA). Eleven adults with WS (7 males, aged 37yrs 2mths -

49yrs 3mths, mean age 42yrs 7mths, SD 48mths) were recruited via the Williams Syndrome

Foundation. Nine had their genetic diagnosis confirmed with fluorescence in situ hybridisation

Inhibition in Williams syndrome adults
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(FISH) testing, whilst the remainder had been diagnosed based on their clinical phenotype

prior to the availability of genetic diagnosis. Seven of the WS group lived at home with their

parents / or with carers in sheltered accommodation, and four lived independently. Six were in

some form of paid employment / volunteer work while the rest attended daycare centres or

receive state-proved care assistance.

The CA group consisted of sixteen typically developing adults (9 males, aged 36yrs 10mths

- 49yrs 2mths, mean age 42yrs 10mths, SD 50mths) matched for chronological age. The MA

group comprised of thirteen typically developing children (7 males, aged 8yrs 7mths -15yrs

7mths, mean age 11yrs 2mths, SD 25mths) and who were matched to the WS group for recep-

tive vocabulary using the raw scores from the British Picture Vocabulary Scale (BPVS-II) [60].

Mean raw BPVS scores were WS 116.82 (SD 10.36), MA 115.8 (SD 14.16) (t(22) = 1.148, p =

.884). Any participants in both the CA and MA groups reporting a developmental disorder

diagnosis (e.g. ADHD and ASD) were excluded from the study. Written informed consent was

provided by all participants in the WS, CA, and, MA groups, and by parents / carers of both

the WS and MA groups.

Ten of the WS group (7 males, mean age 41yrs 6mths, SD 39mths), thirteen of the CA-

matched adults (4 males, mean age 42yrs 3mths, SD 51mths), and twelve of the MA-matched

children (6 males, mean age 11yrs 3mths, SD 25mths) were included in the final analysis. Data

from one WS participant, three CA participants and one MA participant were excluded due to

high levels of EEG artefacts which compromised further analysis.

Handedness from all participants was assessed using the Edinburgh Handedness Inventory

(EHI) [61]. Four of the WS group were left-handed, while all participants in the CA and MA

groups were right-handed. The participants in the two comparison groups received £6.00 for

their participation. This study received ethical clearance from the local ethics committee.

Materials and procedure

The three-stimulus Oddball task was programmed and presented using E-Prime presentation

software on a Toshiba laptop with 14in. monitor. The task comprises of frequent, novel, and

target stimuli. The target stimulus (red circle, area = 12.6 cm2) appeared on 13% of trials, the

standard frequent stimulus (green square, area = 16 cm2) appeared on 74% of trials, and the

novel stimulus (blue square, area = 256 cm2) appeared on 13% of trials. Participants completed

a 10-trial practice block. The testing phase consisted of 2 blocks of 150 trials each. Stimuli

remained on screen for 250ms, and were followed by an inter-stimulus interval, randomised

between 830ms and 930ms. Participants were instructed to press the space bar in response to

the target stimulus and ignore all other stimuli (see [45] for further discussion of the Oddball

task and in particular stimulus parameters that affect the generation of the ERP components).

The nature of the Oddball task mimicked previous research which has successfully generated

the ERP components of interest [40, 50].

The testing sessions with the WS group took place in their homes in a quiet room with elec-

trical noise conditions controlled to mimic laboratory conditions [62, 63]. A parent / carer was

either present at the session or nearby. The comparison groups’ testing sessions took place in

the Psychology Department at the host University or in the participants own homes, with the

same control for electrical noise as previously described. The experimenter outlined the exper-

imental procedure, and invited each participant to read and sign an informed consent form

and complete the EHI.

Inhibition in Williams syndrome adults
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EEG recording

The EEG was recorded from 32 channels using an electrode cap (Biosemi, Amsterdam, The

Netherlands). Electrode placement was based on the extended international 10–20 system

[64]. The montage included 4 midline sites (FZ, CZ, PZ, OZ), 14 sites over the left hemisphere

(Fp1, AF3, F3, F7, Fc1, Fc5, C3, T7, Cp1, Cp5, P3, P7, Po3, O1), and 14 sites over the right

hemisphere (Fp2, Af4, F4, F8, Fc2, Fc6, C4, T8, Cp2, Cp6, P4, P8, Po4, O2). Additional elec-

trodes were placed on the left and right mastoids for referencing purposes. Electrodes were

placed above and below the left eye to record the vertical electrooculogram to assess eye blink

movement. Horizontal eye movements were removed manually during ERP processing.

ERP processing

All signals were digitized at a rate of 2048 Hz, with a recording epoch of 1,000ms (-200 to

+800ms). High-pass filter settings were 0.05 – 45Hz, and baseline corrected to -200 μV. Auto-

matic eye blink correction, artefact rejection (values outside the range of −100 μV to +100 μV),

and ERP averaging were carried out off-line using Neuroscan SCAN 4.5 software (Compume-

dics, El Paso, TX). After eye blink correction and removal of trials with artefacts, the remaining

trials were used in the analysis of each group’s responses, with a minimum of sixteen trials per

condition / participant required for inclusion in the final data analysis. There were no differ-

ences in the trials contributing to the ERPs for the standard (WS = 149, MA = 162, CA = 120;

p>0.05), target (WS = 27, MA = 30, CA = 25; p>0.05) and novel stimuli (WS = 28, MA = 27,

CA = 23; p>0.05). The components of interest were N2, P3a, and P3b, detected in the time

frames 200-325ms, 310-450ms, and 380-600ms respectively, based on visual inspection of the

individual waveforms, employing the automatic peak detection procedures in Neuroscan in

the aforementioned time windows. Employing a targeted approach, these data were obtained

from the midline sites (FZ, CZ, and PZ) and where peaks were maximal, based on visual

inspection of the grand average ERPs and previous research employing the Oddball task [40,

65–67].

Data analysis

The peak amplitude and latencies for the ERP components of interest were investigated, with

all analyses conducted using SPSS version 21. The between-subjects factors were group (WS,

CA, MA), and the within-subjects factors were electrode site (FZ, CZ, PZ). Cohens d (bias cor-

rected; [68]) are reported for WS group differences as a measure of effect size.

Results

ERP data were analysed with a 3 x 3 analysis of variance (ANOVA), with group (WS, CA, MA)

as the between measures factor, and site (FZ, CZ, PZ) as the within measures factor. Follow-up

/ planned comparisons of group and site differences were investigated using t-tests. Results

upheld Mauchly’s test of sphericity unless stated. Where this test was violated, a Greenhouse-

Geisser correction was applied to the results. ERP waveforms in response to the novel and tar-

get stimuli are presented in Figs 1 and 2.

N2 results

N2 novel. The N2 (novel) amplitude and latency data were calculated from the mean of

the raw peak amplitude and latency scores in response to the novel stimulus. Descriptive statis-

tics for peak N2 amplitude and peak N2 latency to the novel stimuli are presented in Table 1.
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Fig 1. ERP waveforms in response to the novel stimulus at FZ, CZ, and PZ electrode sites.

doi:10.1371/journal.pone.0170180.g001

Fig 2. ERP waveforms in response to the target stimulus at FZ, CZ, and PZ electrode sites.

doi:10.1371/journal.pone.0170180.g002

Table 1. Mean peak novel N2 amplitude (μv) and mean peak latency (ms) (SD in parentheses) for the WS, CA, and MA groups at FZ, CZ, & PZ elec-

trode sites.

Amplitude Latency

WS CA MA WS CA MA

FZ -3.47 -6.28 -8.93 251.05 273.32 260.83

(2.98) (3.23) (6.35) (42.69) (30.67) (42.17)

CZ -4.91 -10.79 -2.16 246.26 258.67 256.80

(6.44) (7.19) (7.59) (45.68) (41.49) (48.61)

PZ -5.42 -5.95 -3.14 219.31 246.05 221.44

(9.52) (4.64) (9.41) (21.14) (43.62) (17.25)

doi:10.1371/journal.pone.0170180.t001
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N2 amplitude (Novel). The ANOVA revealed no main effects (p>0.05). However, there

was a significant site x group interaction, [F (4, 64) = 6.037, p< .001] on N2 amplitude to the

novel stimulus. In line with the P3a analysis reported below, a more focused approach was

warranted. T-tests identified significantly lower novel peak N2 amplitude at FZ in the WS

group compared with both the CA (t(21) = 2.138, p<0.05, d = 0.87) and MA (t(20) = – 2.492,

p <0.05, d = 1.02) groups, but not between the CA/MA groups (t(23) = 1.332, p>0.05).

Greater novel peak N2 amplitude in the CA group at CZ approached significance compared

with the WS group (t(21) = -2.031, p = .055, d = 0.82), and was significantly greater than the

MA group (t(23) = -2.920, p<0.01; d = 1.22). No novel peak N2 amplitude differences were

observed at CZ between the WS/MA groups (t(20) = -.906, p>0.05) and at PZ between the

WS, CA, and MA groups (all p>0.05).

In WS group there were no difference in novel peak N2 amplitude between sites (FZ/CZ,

CZ/PZ, and FZ/PZ; all p>0.05). Novel peak N2 amplitude in the CA group was significantly

greater at CZ compared with FZ (t(12) = 2.762, p<0.05; d = 1.60), and with PZ (t(12) = -3.252,

p<0.01; d = 1.89), but not between FZ/PZ (t(12) = -.285, p>0.05). In contrast, the MA group

exhibited the opposite pattern with a significant decrease in novel peak N2 amplitude from FZ

to CZ (t(11) = -3.497, p<0.01 d = 2.12) and FZ to PZ (t(11) = -2.491, p<0.05; d = 1.50), and no

difference between CZ/PZ (t(11) = .531, p>0.05).

In summary, the WS group exhibited significantly attenuated peak N2 amplitude at FZ/CZ

compared with the control groups.

N2 latency (Novel). The ANOVA revealed no significant main effect of group [F (2, 32) =

1.352, p>0.05], or its interaction with site [F (4, 64) = .504, p>0.05], whereas a significant

main effect of site, [F (2, 64) = 12.015, p<0.001], was observed. The MA group demonstrated a

significant decrease in peak latency from CZ to PZ (t(11) = 2.821, p<0.05; d = 1.70) whereas

no differences were observed in the WS (t(9) = 1.645, p>0.05) and the CA groups (t(13) =

1.375, p>0.05). In all groups a significant decrease in peak latency from FZ to PZ was observed

(WS, t(9), = 2.318, p<0.05, d = 1.55; CA, t(13) = 2.230, p<0.05, d = 1.24; MA, t(11) = 3.779,

p<0.05, d = 2.28).

N2 target. The N2 (target) amplitude and latency data were calculated from the mean of

the raw peak amplitude and latency scores in response to the target stimulus. Descriptive sta-

tistics for the peak N2 amplitude and peak N2 latency to the target stimulus are presented in

Table 2.

N2 amplitude (Target). The mixed ANOVA found no significant main effect of group,

[F (2, 32) = p>0.05], a significant main effect of site, (F (2, 64) = 5.382, p<0.01], and a signifi-

cant site x group interaction, (F (4, 64) = 7.698, p< .001], to target peak N2 amplitude.

Independent t-tests revealed significantly lower target peak N2 amplitude at FZ in the WS

group compared with the MA group (t(20) = 2.888, p<0.01, d = 1.18) but not the CA group

(t(21) = 1.135, p>0.05), and no difference between the CA/MA groups (t(23) = 1.621,

Table 2. Mean peak target N2 amplitude (μv) and peak latency (ms) (SD in parentheses) for the WS, CA, and MA groups at FZ, CZ, & PZ.

Amplitude Latency

WS CA MA WS CA MA

FZ -2.87 -4.79 -7.93 265.55 266.63 246.14

(2.74) (4.76) (4.94) (29.19) (48.43) (52.94)

CZ -4.49 -8.85 -1.99 279.46 289.05 223.68

(4.63) (5.97) (4.37) (33.02) (46.98) (43.73)

PZ -4.20 -3.27 -0.26 264.38 260.28 235.40

(6.41) (4.48) (6.68) (43.23) (54.63) (21.27)

doi:10.1371/journal.pone.0170180.t002
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p>0.05). In contrast, the difference in peak amplitude observed in the CA group at CZ

approached significance compared with the WS group (t(21) = 1.907, p = 0.07, d = 0.78), and

was significantly greater than MA group (t(23) = -3.254, p<0.05, d = 1.36). There was no target

peak N2 amplitude difference between the WS/MA groups at CZ (t(20) = -1.301, p>0.05) and

at PZ for all three group comparisons (all p>0.05).

The WS group showed no difference in target peak N2 amplitude between FZ/CZ, CZ/PZ,

and FZ/PZ (all p>0.05); whereas the CA group exhibited a significant increase in peak ampli-

tude from FZ to CZ (t(12) = 3.608, p<0.05, d = 2.08), a decrease from CZ to PZ (t(12) =

-4.638, p = 0.001, d = 2.68), and no difference between FZ/PZ (t(12) = -1.387, p>0.05). In con-

trast, the MA group exhibited a significant decrease in target peak N2 amplitude from both FZ

to CZ (t(11) = -3.23, p<0.05, d = 1.95) and FZ to PZ (t(11) = -2.491, p<0.05, d = 1.50), but not

CZ/PZ (t(11) = -.917, p>0.05).

N2 latency (Target). Analyses violated Mauchly’s test of sphericity therefore a Green-

house-Geisser correction has been applied. The mixed ANOVA reported a significant main

effect of group, [F (2, 32) = 5.246, p<0.05], no significant main effect of site, [F (1.662,

53.173) = .726, p>0.05], and no significant site x group interaction, [F (3.323, 53.173) =

1.500, p<0.05], on target peak N2 latency.

No difference in target peak N2 latency was observed at FZ and PZ between the WS, CA,

and MA groups (all p>0.05). There was no difference in peak latency at CZ (t(21) = -.548,

p>0.05) between the WS and CA groups, but this was significantly delayed in the MA group

compared with both the WS (t(20) = 3.317, p<0.01, d = 1.48) and CA (t(23) = 3.593, p<0.01),

d = 1.50) groups.

Both the WS and MA groups exhibited no difference in target peak N2 latency between FZ/

CZ, CZ/PZ, and FZ/PZ (all p>0.05). The CA group also showed no peak latency differences

between FZ/CZ (t(12) = -1.438, p>0.05), and FZ/PZ (t(12) = .298, p>0.05), but demonstrated

a significant decrease in peak latency from CZ to PZ (t(12) = 2.269, p<0.05, d = 1.31).

In summary, the WS group reported attenuated N2 peak amplitude in response to the tar-

get, but no latency delay.

P3a results

The P3a amplitude data were calculated by subtracting the peak amplitude of the frequent

stimulus from the peak amplitude of the novel stimulus, thus the P3a amplitude data reported

is the mean difference in peak amplitude between these conditions (see [36]). The P3a latency

data were calculated from the mean of the raw peak latency scores in response to the novel

stimulus. Descriptive statistics for the mean peak P3a amplitude and mean peak P3a latency

are reported in Table 3.

P3a amplitude. There was no significant main effect of group on P3a amplitude, [F (2,

32) = .325, p>0.05]; whereas a significant main effect of site, [F (2, 64) = 11.53, p< .001], and

a significant site x group interaction, [F (4, 64) = 3.69, p<0.01], were observed. Follow-up

comparisons revealed no difference in peak amplitude between FZ and CZ for the WS (t(9) =

-1.690, p>0.05) and CA (t(12) = -.923, p>0.05) groups, whereas a significant increase in peak

amplitude from FZ to CZ (t(11) = -2.903, p = 0.01, d = 1.75) was observed in the MA group. In

contrast, significantly greater peak amplitude at CZ compared with PZ (all p<0.001) was

observed in both the WS (t(9) = 5.824, p<0.001, d = 3.89) and CA (t(12) = 6.590, p<0.001,

d = 3.81) groups, whereas no peak amplitude difference was observed between CZ and PZ in

the MA group (t(11) = 1.372, p>0.05). The CA group’s P3a peak amplitude was significantly

greater at FZ compared with PZ (t(12) = 3.371, p<0.01, d = 1.95), whereas no significant
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difference in peak amplitude between these sites was found in the WS (t(9) = 1.706, p>0.05)

and MA groups (t(11) = -1.629, p>0.05).

P3a latency. The analyses violated Mauchly’s test of sphericity; therefore a Greenhouse-

Geisser correction has been applied to the P3a latency results. The ANOVA revealed no signif-

icant main effects of group [F (2, 32) = 1.615, p>0.05], site [F(1.202, 38.471) = 1.530, p>0.05]

or site by group interaction [F (2.404, 38.471) = .343, p>0.05]. However, since the P3a is typi-

cally centred on fronto-central locations (confirmed above for WS and CA groups) it was

appropriate to consider a more focused analysis. T-tests identified significantly delayed peak

P3a latency in the WS group than the CA group at both FZ (t(21) = 3.103, p<0.01, d = 1.26)

and at CZ (t(21) = 2.781, p<0.05, d = 1.13). The WS group’s peak latency at FZ was also signifi-

cantly delayed than observed in the MA group (t(20) = 2.210, p<0.05, d = 0.98), but not at CZ

(t(20) = 1.303, p>0.05). There was no difference in peak P3a latency between the CA and MA

groups at FZ (t(23) = .599, p>0.05) and CZ (t(20) = .196, p>0.05), and no differences between

the WS, CA, and MA groups at PZ (all p>0.05). Analyses revealed a significant increase in

peak P3a latency by site from FZ to CZ (t(12) = -2.189, p<0.05, d = 1.26), and from FZ to PZ

(t(11) = -2.186, p<0.05, d = 1.32), but not CZ/PZ (t(11) = -1.313, p>0.05) in the CA group.

There was no difference in peak P3a latency by site (all p�0.05) in both the WS and MA

groups. In summary, a significant increase in fronto-central (FZ / CZ) latency was observed in

the WS group compared to the CA group, which suggests a delay in the neural mechanism

engaged in response to the novel stimulus.

P3b results

The P3b amplitude and latency data were calculated as described for the P3a. Descriptive sta-

tistics for the mean peak P3b amplitude and mean peak P3b latency are reported in Table 4.

P3b amplitude. Analyses violated Mauchly’s test of sphericity therefore a Greenhouse-

Geisser correction was applied. The ANOVA identified a significant main effect of group,

Table 3. Mean peak P3a amplitude (μv) and peak latency (ms) for P3a (SD in parentheses) for the WS, CA, and MA groups at FZ, CZ, & PZ electrode

sites.

Amplitude Latency

WS CA MA WS CA MA

FZ 11.83 13.30 11.31 413.50 388.78 380.63

(5.31) (3.83) (13.10) (16.82) (20.39) (44.30)

CZ 13.99 14.21 17.52 418.77 396.78 393.4

(4.75) (4.34) (17.37) (18.4) (19.1) (59.03)

PZ 9.27 9.51 14.85 415.11 408.46 395.72

(5.29) (4.69) (13.13) (57.65) (43.08) (61.25)

doi:10.1371/journal.pone.0170180.t003

Table 4. Mean peak P3b amplitude (μv) and peak latency (ms) (SD in parentheses) for the WS, CA, and MA groups at FZ, CZ, & PZ electrode sites.

Amplitude Latency

WS CA MA WS CA MA

FZ 9.60 9.79 8.01 459.39 429.94 341.85

(7.29) (6.14) (5.23) (78.90) (35.23) (119.49)

CZ 7.85 4.43 15.89 486.79 459.16 437.47

(7.43) (7.25) (9.77) (47.01) (62.87) (124.82)

PZ 6.38 6.22 18.36 429.76 420.59 456.10

(6.24) (6.63) (9.69) (82.31) (54.25) (79.87)

doi:10.1371/journal.pone.0170180.t004
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[F (2, 32) = 4.161, p<0.05] and a site x group interaction, [F (3.381, 54.095) = 13.886,

p<0.001], on the P3b amplitude.

Follow up comparisons using t-tests identified significantly greater peak P3b amplitude in

the MA group compared with the WS group at both CZ (t(20) = -2.137, p<0.05, d = 0.88) and

PZ (t(20) = -3.364, p<0.01, d = 0.82), and with the CA group at CZ (t(23) = -3.348, p<0.01,

d = 1.40) and PZ, (t(23) = 3.683, p = 0.001, d = 1.53). In addition, the WS group showed no sig-

nificant difference in peak P3b amplitude between all sites (all p>0.05), whereas the CA group

showed significantly greater peak P3b amplitude at FZ compared with CZ (t(12) = 4.156,

p = 0.001, d = 2.40), FZ compared with PZ (t(12) = 3.075. p = .01, d = 1.78), and an increase in

peak amplitude from CZ to PZ which approached significance (t(12) = -2.006, p = 0.068,

d = 1.15). For the MA group, a significant increase in peak P3b amplitude from both FZ to CZ

(t(11) = -3.589, p<0.01, d = 2.16) and FZ to PZ (t(11) = -4.061, p<0.01, d = 2.49) was observed,

but no peak amplitude difference between CZ and PZ (t(11) = -1.450, p>0.05).

P3b latency. The ANOVA found no main effect of group (p>0.05), a significant main

effect of site [F (2, 64) = 3.715, p<0.05], and a significant site x group interaction, [F (4, 64) =

2.942, p<0.05], on peak P3b latency.

T-tests revealed significantly delayed peak P3b latency at FZ in the WS group compared

with the MA group (t(20) = 2.677, p<0.05, d = 1.09) and with the CA group (t(21) = 2.256,

p<0.05, d = 0.98) but not between the CA and MA groups (t(23) = .340, p>0.05). There were

no group differences in peak P3b latency at CZ and PZ (all p>0.05).

Neither the WS nor CA group exhibited any differences in peak P3b latency between sites

(FZ/CZ, CZ/PZ, and FZ/PZ; all p>0.05). In contrast, the MA group showed an increase in

latency from FZ to CZ that approached significance (t(11) = -2.150, p = 0.06, d = 1.30), a signif-

icant increase from FZ to PZ (t(11) = -2.559, p<0.05, d = 1.54), but no latency difference

between CZ and PZ (t(11) = -.568, p>0.05).

Behavioural results

A one-way ANOVA was applied to the reaction time (RT) data to the target stimulus. There

was a significant main effect of group, [F (2, 31) = 6.004, p<0.01]. Post hoc comparisons

revealed the WS group’s RT was significantly slower (mean 500.65ms, SD 64.56) to the target

compared with the CA group (mean 422.36ms, SD 32.76) (d = 1.52; p = 0.01), but not the MA

group (mean 490.67ms, SD 59.54) (p>0.05). The CA group’s RT was also significantly faster

than the MA group (p<0.05) showing an increase in speed of response with age as would be

expected. Speed of processing in the WS group was comparable to their mental age. There was

no difference in accuracy in response to the target, with all groups’ performance reaching

100% accuracy. Also there was no significant correlation between behavioural RT and target

N2 / P3b latency (all p>0.05) in all three groups across all sites.

Discussion

The aim of the current study was to investigate the neuro-cognitive mechanisms engaged dur-

ing the Oddball task in adults with Williams syndrome (WS) as a measure of attentional and

inhibitory control. The paradigm is ideally suited to track different aspects of attention and

inhibition within one task. By utilising the strengths of ERPs, the data contribute to under-

standing the EF profile exhibited in the disorder, showing deficits in the early error monitoring

processes required for successful inhibition, and a delay in the processing or disengagement of

task-irrelevant stimulus. The results tentatively suggest there are atypicalities in relatively ear-

lier and later ERP components in response to the novel stimulus, and dissociation between

involuntary and voluntary attentional processing. The main findings were as follows:
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compared to the CA group, the WS group reported attenuated peak N2 amplitude in response

to the novel and target stimuli, an increase in peak P3a latency in response the novel stimulus,

and no peak P3b amplitude or peak N2 / P3b latency differences in response to the target stim-

ulus. Therefore the use of ERP methodology in the current study has added to our understand-

ing of the executive profile exhibited by individuals with WS (e.g. cognitive disinhibition [19,

21, 22] and which may sub-serve their disproportionate attention to social stimuli [9, 14, 69],

thus providing a theoretical contribution of the atypicalities in these neural mechanisms.

Consider first the P3a component related to orientation of attention and inhibition. The

P3a amplitude was not particularly informative in terms of the WS group comparison with no

significant difference in P3a amplitude between the WS and control groups, irrespective of

site. However, inspection of the scalp distributions identified specific group differences.

Indeed, consistent with previous research, both the WS and CA groups reported larger peak

amplitude fronto-centrally in response to the novel task-irrelevant stimulus as expected [36,

70], whereas the MA group’s data reported a centro-parietal distribution [71]. It could be

argued that there is similar response to the distracting task-irrelevant stimuli across groups but

the latency data may give further clues to inhibitory deficits in the WS population seen at the

behavioural level, e.g. [9, 22].

The WS group reported an overall delay in P3a peak latency, compared to both the CA and

MA groups. The amplitude data may therefore be indicative of similar levels of attention dur-

ing the ‘automatic’ shift in focus to the distracting novel stimulus with the P3a latency sugges-

tive of longer and inefficient, inappropriate stimulus evaluation. This finding is consistent with

the delayed P3a peak latency reported in younger adults with WS [54], and young-middle aged

adults with Fragile X syndrome [62]. To be clear, as the amplitude of the P3a is thought to

highlight the extent of involuntary shifts in attention [72], the results indicate that adults with

WS group have the same neural responsivity to the novel stimulus as age-matched typically

developing controls, but report a delay in the neural mechanisms required to automatically

detach from one task and refocus attention on an unexpected event. When applied to their

behavioural profile, this suggests that inappropriate behavioural actions are likely linked to

similar orientation of attention to irrelevant stimuli in the environment but less ability to dis-

engage (see atypicalities of disengagement, but not engagement, to social information [16, 69,

73]). Indeed, with reports of attention disengagement difficulties in toddlers with WS [74], the

current study tentatively suggests that this may be a difficulty that is exhibited across the devel-

opmental spectrum, though this needs to be verified with both cross-sectional and longitudinal

analyses.

The results from the P3b data also highlighted an unusual neural profile, in both the adults

with WS and CA matched group. Overall there were no significant differences in P3b peak

amplitude between the WS and CA adults; however the CA group reported a significant frontal

maximum, whilst the MA group reported an enhanced centro-parietal P3b distribution as

expected [75]. An anterior shift in P3b distribution is observed with increasing age in typically

developing older individuals (~70+ years) [76], but has also been reported in middle-age (~49

years) [77]. This shift is thought to reflect an increasing age-associated reliance on frontally

controlled executive processes during contextual updating, a process which is more automatic

in younger individuals [78], thus explains the frontal maximum observed in the CA group. In

contrast the WS group reported no significant differences in P3b peak amplitude across the

three midline sites. The absence of any P3b differences between the frontal, central, and parie-

tal electrodes analysed in the current study infers a less efficient voluntary attentional process-

ing system to the task-relevant stimulus; alternatively it could reflect the recruitment of a wider

range of cortical regions during voluntary attentional processing to compensate for the known

abnormalities in WS such as reduced parietal grey matter density [79] and disproportionate
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decrease in parietal volume ([80] also see [81] for a meta-analysis on dorsal / ventral activity

during Oddball paradigms in typical development). Combined with the P3b amplitude profile,

the lack of any difference in P3b peak latency between the WS and CA groups in the current

study suggests that the Oddball paradigm did not place great demands of sustained attention

in our WS cohort, unlike the behavioural data from the SART described elsewhere [22] and

which incorporated high Go / low No-Go methodology. (See [74, 82] for discussions on delin-

eating different aspects of attention between syndromes, due to differences in the domains

more or less impaired). Thus our data indicate that, under conditions that do not place great

demands on voluntary attentional processes, adults with WS are able to achieve the same beha-

vioural result but through slightly different neural mechanisms. This result is also comparable

with adults with ADHD [57], but not younger individuals with ASD who reported delayed P3b

peak latency [58].

The results from both the novel and target N2 component also contribute in elucidating

atypicalities in the WS neural profile during involuntary and voluntary attentional processing.

The WS group did not demonstrate any localised novel or target N2 distributions, evidenced

by non-significant differences in peak N2 amplitude across all three midline sites in both con-

ditions. Furthermore, relative to both the CA and MA controls, the WS group reported signifi-

cantly reduced frontal novel peak N2 amplitude; and, compared to the CA group, a reduction

in both the novel and target peak N2 amplitude at the central site which approached signifi-

cance. This contrasts with the limited published research documenting the N2 in WS, which

highlighted atypically enhanced N2 negativity in response to both upright and inverted faces

[83, 84], and in response to repeated faces and houses [34]. However, it is important to empha-

sise that WS is often associated with a pro-social drive and a fascination for looking at faces;

therefore the results reported by Mills and colleagues [83, 84] may reflect the atypical neural

profile that delineates their propensity for prolonged face gazing [69] and not the executive

deficits under investigation in the current study.

One theoretical perspective posits that the N2 component in Go / No-Go paradigms reflects

conflict arising from competition between the execution (target) and the inhibition (novel) of

a single response [85]. A larger N2 is typically reported frontally and / or centrally when an

overt response needs to be withheld, thus motivated by inhibition of a planned response [86],

whereas a reduced novel N2 is indicative of an ongoing propensity to respond [43]. This

approach is highly pertinent as the numerically greater N2 amplitude at FZ (CA group) and

CZ (MA group) in response to the novel indicates appropriate neural responsivity required for

successful inhibition in both typically developing control groups. In contrast, the overall atten-

uated N2 amplitudes observed in the WS group, especially in response to the novel stimulus,

demonstrate deficiencies in earlier components that regulate conflict monitoring processes

during Go/No-Go discrimination.

However, there are certain methodological issues to consider with the Oddball paradigm

adopted in the current study. Both the N2 and P3a may habituate on repeated exposure to the

same stimulus, and this habituation continues into second and ongoing blocks of presentation

[87]. Furthermore, the N2 is not influenced by task difficulty; rather it is sensitive to perceptual

deviation from the other stimuli [88]. Thus, it is possible that the comparable P3a peak ampli-

tude profile reported by the WS and the CA groups reflects habituation processes, whilst the

attenuated novel and target peak N2 amplitudes in the WS group are indicative of neuronal

dysfunction in perceptually discriminating between the novel and target stimuli from the fre-

quent stimulus, despite object perception being a robust trait [89]. Future research adopting

an Oddball paradigm would benefit from including unrepeated novel stimuli as this could pro-

vide a purer P3a response, and more distinct differences between the novel and target stimuli

in order to eradicate these possible confounds. It is worthwhile noting that there is much
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discussion and research on the task parameters that influence the P300 responses (see [36] for

discussion). It was important in the present study to use a paradigm that has successfully gen-

erated the ERP components of interest and thereby allow indices of attention and inhibition to

be compared between individuals with WS and those developing typically.

To the best of our knowledge the Oddball methodology adopted here has not been used to

date in research with WS individuals. In conclusion, the adults with WS reported a delay in

their involuntary attentional processes, most likely due to earlier processing deficits evidenced

by the attenuated novel N2 amplitude. Deficits in the monitoring of task-relevant and irrele-

vant stimuli appear comprised in WS at this earlier stage of processing. Their atypical target

N2 and comparable P3b profile, combined with their behavioural performance reaching ceil-

ing level, indicates that they are able to overcome attentional processing deficits in response to

the target stimulus when more effortful voluntary processing is required. We argue that the

P3a latency in the present study is a key index and indicative of inefficient stimulus evaluation

and an atypical delay in their involuntary attentional processes, and perhaps also a marker of

poor return to the processing of task-relevant stimuli. Due to the heterogeneity of executive

processes and myriad measures of inhibitory control further work is warranted using the find-

ing here as the groundwork. Of course, it is highly likely that these attentional and inhibitory

atypicalities underlie aspects of not only the cognitive profile of WS but also the behavioural

profile we associate with the disorder.
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