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Abstract

Reconstructing the transition from a single compartment bacterium to a highly compartmen-

talized eukaryotic cell is one of the most studied problems of evolutionary cell biology. How-

ever, timing and details of the establishment of compartmentalization are unclear and difficult

to assess. Here, we propose the use of molecular markers specific to cellular compartments

to set up a framework to advance the understanding of this complex intracellular process.

Specifically, we use a protein family related to ribosome biogenesis, YRG (YlqF related

GTPases), whose evolution is linked to the establishment of cellular compartments, leverag-

ing the current genomic data. We analyzed orthologous proteins of the YRG family in a set of

171 proteomes for a total of 370 proteins. We identified ten YRG protein subfamilies that can

be associated to six subcellular compartments (nuclear bodies, nucleolus, nucleus, cytosol,

mitochondria, and chloroplast), and which were found in archaeal, bacterial and eukaryotic

proteomes. Our analysis reveals organism streamlining related events in specific taxonomic

groups such as Fungi. We conclude that the YRG family could be used as a compartmentali-

zation marker, which could help to trace the evolutionary path relating cellular compartments

with ribosome biogenesis.

Introduction

The origin of cellular compartmentalization has been subject of study using molecular evolu-

tion now for more than thirty years [1]. Mitochondria and chloroplast have been clearly rooted

within the alpha-proteobacteria and cyanobacteria, respectively [2–4]; on the other hand, to

explain the origin of eukaryotes different theories have been proposed [5–9], while the expla-

nation of a simple fusion or endosymbiosis involving two prokaryotes has been favored to

explain the dual nature of the eukaryotic genome and compartmentalized structure of the

eukaryotic cell [8].

Genomic analyses have been extensively used to support different theories of eukaryotic

compartmentalization evolution based on a specific set or subset of genes often related to
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rRNA sequences, but without any link to compartments or compartmentalization events. The

cellular machinery related to rRNA molecules is a possible source for molecular markers that

could be associated to compartments since this machinery must be present in nearly every cel-

lular compartment from nuclear bodies, nucleolus, nucleus and cytosol, to the endomembrane

system, ensuring the essential coupling between translation and transcription.

Following this idea, we characterized the YRG protein family (YlqF Related GTPases). This

is a GTP protein binding family composed of key proteins involved in 60S ribosome subunit

biogenesis and maintenance [10–13]. Members of this family contain a unique central circu-

larly permutated MMR/HSRI GTPase domain [14,15]. The YRG family was reported to have

nine subfamilies represented by nine proteins: YlqF, YjeQ, Noa1, Mtg1, Lsg1, Gnl1, Gnl2,

Gnl3l and Gnl3 [14], with different subcellular locations. We propose here a tenth YRG pro-

tein subfamily, named YAG (YRG Archaeal GTPases).

Because YRG proteins are necessary for the rRNA assembly activity in different cellular

compartments, it is generally expected that each YRG protein will be only present in a given

organism within a specific subcellular compartment; thus, following up the evolution of YRG

proteins across subcellular compartments and taxa would allow following the corresponding

evolution of compartments.

To illustrate the use of the YRG family as such markers of compartment evolution, we ana-

lyzed orthologous proteins of the family in a set of 171 proteomes (32 Bacteria, 93 Archaea and

46 Eukarya) and found a total of 370 proteins. Our analysis reproduced the major events of the

evolution of eukaryotic compartmentalization, supporting the YRG protein family as a reliable

compartmentalization tracer, able to predict compartment schemes in an evolutionary wide

range of organisms.

Methods

Data retrieval

A total of 171 reference proteomes with a complete set of sequences and functional annota-

tions were downloaded from the database UniProt release 2015_05 [16] (S1 File). The canoni-

cal sequence dataset from each proteome was used. The proteomes covered a wide taxonomic

range: 32 bacterial, 93 archaeal and 46 eukaryotic.

Search for YRG proteins

The YRG search was performed using the standalone version of orthoFind with default parame-

ters [17] and well-annotated YRG proteins as query sequences. It starts with an exhaustive and

iterative local PSI-BLAST search, combined with a reciprocal best-hit protein BLAST (RBHB)

strategy, which allows the finding of orthologous proteins from an initial seed sequence. Each

result was manually checked to avoid assigning proteins to two different ortholog groups.

Ortholog absences were initially checked by a manual RBHB search (seed versus database,

reviewing all the significant hits), and secondly with a search in two different orthology reposi-

tories: OrthoDB [18] and EggNOG [19].

The following well-annotated YRG proteins were used as seed sequences to search for

orthologous proteins in the 171 selected proteomes: Bacillus subtilis (YlqF: O31743; Noa1:

P54453), Escherichia coli (YjeQ: P39286), Sulfolobus solfataricus (SSO0581: Q7LXT6) and

Homo sapiens (Mtg1: Q9BT17; Lsg1: Q9H089; Gnl1: P36915; Gnl2: Q13823; Gnl3l: Q9NVN8;

Gnl3: Q9BVP2). Query sequence data was obtained from the UniProt Knowledgebase [16].

Accession number (AC) and subcellular location of the YRG sequences were obtained from

their UniProt file.
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Phylogenetic analysis

The 370 YRG proteins we found were used to construct a multiple sequence alignment (S1

File), since they correspond to the functional sequences. To do that, we used MAFFT v7.205–1

[20], which presents a high accuracy aligning datasets with low global similarity. Since the

YRG protein family has a complex motif architecture, the linsi options were used (L-INS-i and

iterative refinement method:—localpair—maxiterate 1000), based on its accuracy with multi-

motif proteins [21].

The multiple sequence alignment was used to build a molecular phylogeny with PhyML

[22], which presents reliable results for large data sets with high sequence divergence. Since the

multiple alignment had long gap regions (intervals longer than 20 positions), positions with

residues from less than 10 sequences were cut off. Then, we used ProtTest to find WAG as the

best amino acid replacement model, with a confidence interval of 100. Therefore, we built the

phylogeny with PhyML, the WAG model and 1000 bootstrap replicates to measure the support

of the tree branches. The phylogeny was edited using the java version of the FigTree software

(http://tree.bio.ed.ac.uk/software/figtree/).

Results and Discussion

The presence of YRG proteins is linked to specific subcellular locations

Taking advantage of the growing set of proteins in the databases, we studied the distribution of

YRG family members across the tree of life, in a wide set of taxonomic groups and subcellular

compartments. We searched 171 organisms (32 Bacteria, 93 Archaea and 46 Eukarya) for YRG

sequences, using both tools to find orthologs (orthoFind [17] and RBHB) and databases of ortho-

logous proteins (OrthoDB [18] and EggNOG [19]) (see Methods). The number of putative YRG

proteins found was 370, spread over the different taxonomic divisions (Fig 1A; S1 File; S4 File).

Bacteria have a maximum of two YRG proteins (YlqF and YjeQ). Both are broadly con-

served in bacteria and have been shown to be essential for their growth [23,24]. Notably, from

them only YjeQ is found in eight out of the 93 studied archaeal proteomes, all of which belong

to the phylum Euryarchaeota, class Methanomicrobia.

Each archaeal proteome has a maximum of one YRG protein (with the exception of those

that also harbour bacterial YjeQ), which we name YAG (YRG Archaeal GTPase). As archaea

have no subcellular compartments, its ribosomal activity is restricted to the cytosol [25]. Thus,

the presence of just one YRG protein in most archaeal organisms is coherent with the number

of cellular locations with ribosomal activity.

Eukaryotes have up to seven YRG proteins (Fig 1A; S1 File). All of the known YRG proteins

are present in at least one eukaryotic taxa except for YAG, a typically-archaeal protein. Those

proteins are restricted to specific subcellular compartments, which also correlate with the tax-

onomy of the studied proteomes (Fig 1B). For example, plants and other species with plastids

like the algae Gillardia theta have the bacterial proteins, cYlqF and cYjeQ, as a result of the

acquisition of the plastid via an endosymbiotic event [14]. Similarly, the proteins Mtg1 and

Noa1, present in the majority of eukaryotic proteomes, are similar to the bacterial YlqF and

YjeQ, respectively, and are located in mitochondria [26–28], in agreement to the endosymbi-

otic origin of mitochondria [29].

Lsg1 is present in all of the 46 studied eukaryotic proteomes, and is located mainly in the

cytosol but shuttling to the nucleus upon specific events (Fig 1B) [14,30,31]. Its subcellular

location is similar to Gnl1, another YRG protein which is localized mainly in the cytosol while

shuttling to nucleus and nucleolus in the cell cycle stage G2 [32]. Finally, three proteins are

restricted to the nuclear compartment and intra subcompartments: Gnl2, present in all of the
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eukaryotic proteomes and shuttling between nucleus and nucleolus [33]; Gnl3l, absent in

some Alveolata proteomes and specific to the nucleolus [34], and Gnl3, also known as

Nucleostemin, only present in Chordata [35].

Correlation between the evolution of the YRG proteins and their

subcellular location

As already described, YRG proteins are characterized by their linkage to specific subcellular

compartments. Furthermore, they are related to each other, as they all evolved from a same

YRG ancestral protein. To clarify their evolutionary history and see how this correlates with

the evolution of compartmentalization, we conducted a phylogenetic analysis using the com-

plete dataset of YRG proteins.

Fig 1. Presence of YRG proteins in 171 proteomes from different taxonomic groups, and their subcellular location. a) Heat

map showing the number of species where members of the different YRG subfamilies were detected. b) Subcellular locations

assigned to each of the ten YRG protein subfamilies, in Bacteria, Archaea and Eukarya, based on annotations from the well-

annotated sequences used as seed for the search.

doi:10.1371/journal.pone.0169750.g001
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The phylogenetic tree shows that all archaeal YRG proteins cluster together in the same

branch of the tree (Fig 2; raw tree file in S2 File). This supports YAG as a separate subfamily of

the YRG family. All YjeQ-like proteins present in archaea appear in a separate branch clus-

tered together with the rest of the YjeQ proteins, in agreement with an event of horizontal

transfer of this subfamily to archaea (Fig 2).

Interestingly, the YRG subfamilies seem to be polarized in either bacterial-origin or eukary-

otic-specific subfamilies, as shown in the phylogeny (Fig 2). This suggests that all eukaryotic

members originated from a common ancestor. Within these eukaryotic families two clear

branches appear grouping the cytosolic (Lsg1 and Gnl1) and the nuclear (Gnl3, Gnl3l, Gnl2)

subfamilies. The positioning of the Gnl3 subfamily within the Gnl3l branch, as well as its

restricted presence to Chordata organisms, suggests a late evolutionary appearance, in a sub-

cellular location closely related to that of its parental gene.

Families of bacterial origin are in a branch both with bacterial YlqF (mitochondrial Mtg1)

and YjeQ (mitochondrial Noa1), each including one plastid member (cYlqF and cYjeQ). The

plastid protein clades are grouped with cyanobacterial proteins (Fig 2), as expected due to the

cyanobacterial origin of plastids [36].

The YRG evolution scheme supports the evolution of

compartmentalization in eukaryotes

Cells require at least one YRG protein per compartment in regard to rRNA assembly activity.

By further correlating the presence of YRG proteins in 171 proteomes from different taxonomic

groups (Fig 1A), the subcellular localization information for each YRG protein (Fig 1B), and the

Fig 2. Phylogeny of the 370 YRG proteins found in the analyses. The sequences are disposed in ten branches, one for each YRG protein subfamily:

Gnl3, Gnl3l, Gnl2, Lsg1, Gnl1, YlqF, Mtg1, YjeQ, Noa1 and YAG. Main branches are labeled with a bootstrap support value (0–1000) (see Methods for

details). Branches are annotated with information about the subcellular location of the subfamily. Zoom-in of YlqF and YjeQ clades are shown to describe their

diversity in different taxonomic groups.

doi:10.1371/journal.pone.0169750.g002
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relations between them inferred from the phylogenetic data (Fig 2), we constructed a detailed

picture of the YRG evolution scheme that corresponds to the evolution of compartmentaliza-

tion in eukaryotes (Fig 3).

The ancestral “single compartment” YRG protein would have led to both the archaeal YAG

and to an ancestral protein of bacterial YlqF and YjeQ. Regarding eukaryotes, results show

that all of them contain both Lsg1 and Gnl2. This suggests that within the first eukaryotes,

Gnl2 was involved in the biogenesis of the 60S ribosome subunit within the nucleus [33] while

Lsg1 performed probably a similar function further down the rRNA biogenesis pathway within

the cytosol [12].

Gnl1 is a cytosolic YRG protein restricted mostly to metazoans (Fig 1A). The fact that it

shuttles both to nucleus and nucleolus [32] suggests its evolution related to the increase in

complexity of the nuclear compartment. While the most parsimonious explanation for the

evolution of Gnl1 is that it emerged as a duplication of Lsg1 in the metazoan lineage (Fig 3),

our phylogeny does not support this as the Gnl1 subfamily clusters outside Lsg1 suggesting

that it was lost in Fungi and Viridiplantae.

Besides Gnl2, the other proteins in the nuclear compartment are Gnl3l and Gnl3. Gnl3l is

almost as prevalent in eukaryotes as Gnl2 (Fig 1A); its nucleolar location and wide taxonomic

distribution hints that it duplicated from Gnl2 as part of the emergence of the nucleolus. Gnl3,

localized in the nuclear bodies and present only in chordates, is the most recent YRG protein

Fig 3. Overview of the evolutionary history of the YRG family along with the history of the compartmentalization in eukaryotes.

This YRG evolution model was established based on the presence of the different YRG proteins in 171 proteomes from different taxonomic

groups (S1 File), their subcellular locations (Fig 1B) and the relations between the YRG proteins inferred from the phylogenetic tree (Fig 2).

doi:10.1371/journal.pone.0169750.g003
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and appeared as a duplication of Gnl3l (Fig 2). The nucleolus has kept evolving along the evo-

lution of chordates. For example, in Amniota (reptiles and mammals) the nucleolus has three

subcompartments, instead of the two present in the rest of the eukaryotes [37,38]. The emer-

gence of Gnl3 might have facilitated this evolution (Fig 2), complementing the function of

Gnl2 and Gnl3l in the nuclear/nucleolar ribosomal biogenesis and maintenance.

While the sequence similarity of Mtg1 and Noa1 with the two bacterial YRG proteins (i.e.

YlqF and YjeQ) would seem to agree with their acquisition due to the mitochondrial endosym-

biosis event, their position in our phylogenetic tree (Fig 2) does not support it for YjeQ/Noa1

as they both are coming from monophyletic branches. But YlqF constitutes a paraphyletic

group, with Mtg1 diverging from it, which supports the endosymbiotic event. Furthermore,

the gaining by Viridiplantae species of two more YRG proteins (cYlqF and cYjeQ), responding

to the endosymbiotic event that led to the acquisition of chloroplast by a non-photosynthetic

eukaryotic organism [36], is also supported by our phylogenetic tree, at least in the case of

YjeQ. Cyanobacteria, as most bacteria, have only two YRG proteins, the aforementioned YlqF

and YjeQ; the YRG phylogenetic tree (Fig 2) suggests the branching of cyanobacterial YlqF

and YjeQ with their plastid counterparts (high bootstrapping values in Fig 2). Nevertheless, we

must highlight the low support of all these branches in our phylogeny, in contrast to the

branch of archaebacteria and nucleus, which have been independently confirmed by another

phylogenetic method (S5 File), which does not show the paraphyletic relation for YlqF. The

conclusions should be interpreted with caution, given the low support of the tree, due to the

high divergence of the YRG proteins in the different compartments.

When focusing on opisthokonts (represented in our analysis mainly by fungal and meta-

zoan proteomes), it seems that almost all of them contain two nuclear-nucleolar proteins

(Gnl2 and Gnl3l), one cytosolic (Lsg1), and two mitochondrial (Mtg1 and Noa1). However,

none of the fungal proteomes presents Noa1, while other opisthokonts such as choanoflagellids

and metazoans do have Noa1 orthologs, as well as taxa that appeared prior to the emergence of

opisthokonts (plants, for example). Fungi would have lost the noa1 gene in a gene loss event

that appears to be specific to this taxonomical class.

As stated before, we expect to find members of the YRG family in cellular compartments

with ribosomal activity, namely nuclear bodies, nucleolus, nucleus, cytosol, mitochondria and

plastids. Accordingly, we do not observe extra YRG proteins in organisms such as bacteria Mag-
netospirillum magneticum or Magnetobacterium bavaricum. These organisms have magneto-

somes [39], subcellular structures for magnetotaxis, which have associated proteins but no

described ribosomal activity. Conversely, we predict the loss of particular YRG proteins in

organisms lacking the subcellular compartment to which they relate. One way to observe this

phenomenon is looking at parasites, e.g. the microsporidian Encephalitozoon cuniculi. Although

it is a fungal organism, E. cuniculi is an obligate intracellular parasite with a minimal genome

among eukaryotes [40]. Unlike the rest of the fungi, E. cuniculi has neither Mtg1 nor Gnl3l. As

an intracellular parasite, it uses the host’s cellular machinery and therefore does not have mito-

chondria [40], turning Mtg1 into a non-essential protein. The absence of Gnl3l in this organism

responds to not having a complex nucleolus. Similarly, the parasite Cryptosporidium parvum
(Alveolata) has neither Mtg1 nor Noa1, although it does contain a mitochondrion-like organelle

without mitochondrial genome [41]. As such unusual mitochondria import all necessary pro-

teins from the cytoplasm [42], they would not require rRNA assembly proteins explaining the

absence of YRG proteins.

The evolution of the YRG protein family provides a cell biological evolutionary line for the

compartmentalization of eukaryotic cells. The presence of YRG proteins serves as a compart-

mentalization marker that can be used to infer evolution events for the whole of eukarya and

for specific taxa evolution (e.g. Fungi).
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Conclusions

To understand the origin and evolution of compartmentalization in eukaryotic cells, we used

the YRG (YlqF related GTPases) protein family as a molecular marker. This family was reported

to be composed of nine subfamilies and found specifically in six subcellular compartments. The

study of YRG proteins in a wide set of proteomes led us to propose the existence of an archaeal

specific subfamily, which we named YAG (YRG Archaeal GTPase). We propose therefore that

the YRG protein family is composed of ten subfamilies functioning in different subcellular loca-

tions: YlqF (bacteria and plastids, cYlqF), YjeQ (bacteria and plastids, cYjeQ), YAG (archaea),

Noa1 (mitochondria), Mtg1 (mitochondria), Lsg1 (cytosol), Gnl1 (cytosol), Gnl2 (nucleus),

Gnl3l (nucleolus) and Gnl3 (nuclear bodies). Association of YRG protein subfamilies to specific

subcellular compartments and taxa allowed us to use the YRG family as an indicator of the evo-

lution of cellular compartments. Moreover, as the YRG family is related to ribosome biogenesis

and maintenance, it represents a functional ribosome biogenesis marker rather than an rRNA

sequence tracer.

Supporting Information

S1 File. Set of homologous proteins of the YRG protein family. A total of 171 proteomes

were used: 32 Bacteria, 93 Archaea and 46 Eukarya. The dash symbol “-” means the absence of

the protein in that proteome. If the protein is present in a proteome, the UniProt Accession

Number (AC) is shown.

(XLSX)

S2 File. Raw file of the phylogenetic tree obtained with PhyML, with bootstrapping values

(0–1000), in Newick format. Each sequence is labeled using the YRG protein, the species

name and the taxonomical group it belongs to: YRGprotein_Organism_Phyla.

(TXT)

S3 File. Phylogenetic trees (one per YRG subfamily) obtained with PhyML. Each sequence

is labeled using the YRG protein, the species name and the taxonomical group it belongs to:

YRGprotein_Organism_Phyla.

(PDF)

S4 File. Set of homologous proteins of the YRG protein family, in FASTA format. Each

sequence is labeled using the YRG protein and the species name: YRGprotein_Organism.

(FASTA)

S5 File. Phylogeny of the 370 YRG proteins found in the analyses using an alternative

method (RAxML). The sequences are disposed in ten branches, one for each YRG protein

subfamily: Gnl3, Gnl3l, Gnl2, Lsg1, Gnl1, YlqF, Mtg1, YjeQ, Noa1 and YAG. Main branches

are labeled with a bootstrap support value (0–100), and the lowly supported ones are

highlighted in red color.

(PDF)
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