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Abstract

In the sparse representation model, the design of overcomplete dictionaries plays a key role

for the effectiveness and applicability in different domains. Recent research has produced

several dictionary learning approaches, being proven that dictionaries learnt by data exam-

ples significantly outperform structured ones, e.g. wavelet transforms. In this context, learn-

ing consists in adapting the dictionary atoms to a set of training signals in order to promote a

sparse representation that minimizes the reconstruction error. Finding the best fitting dictio-

nary remains a very difficult task, leaving the question still open. A well-established heuristic

method for tackling this problem is an iterative alternating scheme, adopted for instance in

the well-known K-SVD algorithm. Essentially, it consists in repeating two stages; the former

promotes sparse coding of the training set and the latter adapts the dictionary to reduce the

error. In this paper we present R-SVD, a new method that, while maintaining the alternating

scheme, adopts the Orthogonal Procrustes analysis to update the dictionary atoms suitably

arranged into groups. Comparative experiments on synthetic data prove the effectiveness

of R-SVD with respect to well known dictionary learning algorithms such as K-SVD, ILS-

DLA and the online method OSDL. Moreover, experiments on natural data such as ECG

compression, EEG sparse representation, and image modeling confirm R-SVD’s robust-

ness and wide applicability.

1 Introduction

In many application domains, such as denoising, classification and compression of signals

[1–3], it is often convenient to use a compact signal representation following Occam’s Razor

principle. Dimensionality reduction can be accomplished either with feature selection [4, 5] or

sparse decomposition techniques [6].

Sparsity is a classical linear algebra approach leading to parsimonious representation. Con-

sider an overcomplete dictionary matrix D 2 Rn�m (n<m) with columns di, i = 1,. . .,m, called

atoms, and a signal vector y 2 Rn; the sparsity approach consists in expressing y as linear com-

bination ∑ixi di with as few as possible non-zero coefficients xi 2 R. Formally, the sparse
approximation problem consists in finding x 2 Rm minimizing the least squares error
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ky − Dxk2 under the constraint that its ℓ0-norm kxk0 ≔ #{i: xi 6¼ 0} be at most a threshold

k 2 N, i.e. x is k -sparse. This problem is combinatorial in nature and hence NP-hard [7]. Spe-

cifically, the sparse representation of a given set of probe signals poses two relevant questions.

The first concerns the development of efficient algorithms for solving the sparse approxi-

mation problem. To mention just a few, we recall those based on ℓ0-minimization such as the

greedy method Orthogonal Matching Pursuit (OMP) [8], the iterative methods k-Limaps

(Lipschitizian Mappings for Sparsity) [9], and SL0 (Smoothed L0) [10], or those based on ℓ1-

minimization such as Basis Pursuit (BP) [11] and the Lasso [12].

The second issue, that we tackle in this article, concerns the design of suitable dictionaries

that adaptively capture the model underlying the data. In literature, the proposed methods of

dictionary design can be classified into two types [6].

The former consists in building structured dictionaries generated from analytic prototype

signals. For instance, these comprise dictionaries formed by set of time-frequency atoms such

as window Fourier frames and Wavelet frames [13], adaptive dictionaries based on DCT [14],

Gabor functions [15], bandelets [16] and shearlets [17].

The latter type of design methods arises from the machine learning field and consists in

training a dictionary from available signal examples, that turns out to be more adaptive and

flexible for the considered data and task. The first approach in this sense [18] proposes a statis-

tical model for natural image patches and searches for an overcomplete set of basis functions

(dictionary atoms) maximizing the average log-likelihood (ML) of the model that best

accounts for the images in terms of sparse, statistically independent components. In [19],

instead of using the approximate ML estimate, a dictionary learning algorithm is developed for

obtaining a Bayesian MAP-like estimate of the dictionary under Frobenius norm constraints.

The use of Generalized Lloyd Algorithm for VQ codebook design suggested the iterative algo-

rithm named MOD (Method of Optimal Directions) [20]. It adopts the alternating scheme,

first proposed in [21], consisting in iterating two steps: signal sparse decomposition and dictio-

nary update. In particular, MOD carries out the second step by adding a matrix of vector-

directions to the actual dictionary.

Alternatively to MOD, the methods that use least-squares solutions yield optimal dictionary

updating, in terms of residual error minimization. For instance, such an optimization step is

carried out either iteratively in ILS-DLA [22] on the whole training set (i.e. as batch), or recur-

sively in RLS-LDA [23] on each training vector (i.e. continuously). In the latter method the

residual error includes an exponential factor parameter for forgetting old training examples.

With a different approach, K-SVD [2] updates the dictionary atom-by-atom while re-encoding

the sparse non-null coefficients. This is accomplished through rank-1 singular value decompo-

sition of the residual submatrix, accounting for all examples using the atom under consider-

ation. Recently, Sulam et al. [24] introduced OSDL, an hybrid version of dictionary design,

which builds dictionaries, fast to apply, by imposing a structure based on a multiplication of

two matrices, one of which is fully-separable cropped Wavelets and the other is sparse, bring-

ing to a double-sparsity format.

In this work we propose R-SVD (Rotate-SVD), an algorithm for dictionary learning in the

sparsity model, inspired by a type of statistical shape analysis, called Procrustes method [25]

(named after the ancient Greek myth of Damastes, known as Procrustes, the “stretcher”, son of

Poseidon, who used to offer hospitality to the victims of his brigandage compelling them to fit

into an iron bed by stretching or cutting off their legs), which has applications also in other

fields such as psychometrics [26] and crystallography [27]. In fact, it consists in applying

Euclidean transformations to a set of vectors (atoms in our case) to yield a new set with the

goal of optimizing the model fitting measure. While maintaining the alternating scheme,

R-SVD algorithm splits the dictionary into several groups of atoms and applies the Orthogonal
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Procrustes analysis simultaneously to all the atoms in each group capturing more complex

data structures and being more efficient. The technique is able to find an optimal dictionary

after few iterations of the scheme. Notice that the proposed method differs from K-SVD [28],

which instead updates one atom at a time together with the corresponding sparse coefficients.

Several experimental sessions show that R-SVD is effective and behaves better than several

well known dictionary learning algorithms such as K-SVD, ILS-DLA and the online method

OSDL.

In Sec. 2 we describe the problem and the proposed R-SVD algorithm. In Sec. 3 we conduct

an experimental analysis studying the group size parameter of the method (sec. 3.1), showing

results on synthetic data (sec. 3.2), investigating the role of the sparse decomposition method

(sec. 3.3), and comparing with other dictionary learning algorithms (sec. 3.4). In Sec. 4 we

report applications to ECG signal compression (sec. 4.1), EEG signal representation (sec. 4.2),

and image modeling (sec. 4.3). Finally, we draw some conclusions in Sec. 5.

2 Method

In this section we use the notation A ¼ faig
q
i¼1
2 Rp�q to indicate a p × q real-valued matrix

with columns ai 2 R
p; i ¼ 1; :::; q. Suppose we are given the training dataset

Y ¼ fyig
L
i¼1
2 Rn�L. The dictionary learning problem consists in finding an overcomplete dic-

tionary matrix D ¼ fdig
m
i¼1
2 Rn�m (n<m), which minimizes the least squares errors

k yi � Dxi k2
2
, so that all coefficient vectors xi 2 R

m are k-sparse. Formally, by letting X ¼
fxig

L
i¼1
2 Rm�L denote the coefficient matrix, this problem can be precisely stated as

argmin
D2Rn�m ;X2Rm�L

k Y � DX k2

F subject to k xi k0 � k; i ¼ 1; :::; L: ð1Þ

One can multiply the i-th column of D and divide the i-th row of X by a common non-null

constant to obtain another solution attaining the same value. Hence, w.l.o.g. atoms in D are

constrained to be unit ℓ2-norm, corresponding to vectors di on the unit (n − 1)-sphere Sn� 1

centered at the origin.

The search for the optimal solution is a difficult task due both to the combinatorial nature

of the problem and to the strong non-convexity given by the ℓ0 conditions. We tackle this

problem adopting the well established alternating optimization scheme [21], which consists in

repeatedly executing the two steps:

Step 1. Sparse coding: solve problem (1) for X only (fixing the dictionary D)

Step 2. Dictionary update: solve problem (1) for D only (fixing X).

In particular, for sparse decomposition in Step 1 we use the greedy algorithm OMP because

of its simplicity yet efficiency. Clearly, other sparse recovery methods could be adopted (e.g.

BP, Lasso, k-Limaps, SL0). Experimentally, we observe that this choice does not substantially

affect R-SVD performances in comparison with K-SVD.

Step 2 represents the core of the R-SVD method as detailed in the following.

2.1 Dictionary learning by Procrustes analysis

Let us first recall the idea of the Procrustes analysis. It consists in applying affine transforma-

tions (e.g., moving, stretching and rotating) to a given geometrical object in order to best fit

the shape of another one. When the admissible transformations are restricted to orthogonal

ones, it is referred to as Orthogonal Procrustes analysis [25].

Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation
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Basically, in the proposed method R-SVD, after splitting the dictionary D into atom groups,

the Orthogonal Procrustes analysis is applied to each group to find the best rotation (either

proper or improper) that minimizes the total least squares error. Consequently, each group is

updated by the optimal affine transformation thus obtained. Formally, let us denote by [m]≔
{1,. . .,m} the set of first m positive integers and let I� [m] denote a set of indices for matrix

columns or rows. Given any index set I of size s = |I|, let DI 2 R
n�s be the submatrix (subdic-

tionary) of D formed by the columns indexed by I, that is DI = {di}i 2 I, and let XI 2 R
s�L be the

submatrix of X formed by the rows indexed by I; hence s is the size of atom group DI. In this

setting, we can decompose the product DX into the sum

DX ¼ DIXI þ DIcXIc

of a matrix DIXI dependent on the group I and a matrix DIc XIc dependent on the complement

Ic = [m] \ I. Therefore, the objective function in Eq (1) can be written as

k Y � DX k2
F¼k Y � DIcXIc � DIXI k

2
F .

Now, after isolating the term DI XI in k Y � DX k2
F and setting E≔ Y − DIcXIc, one can con-

sider the optimization problem

argmin
S2Rn�s

k E � SXI k
2

F subject to S � Sn� 1
ð2Þ

that corresponds to solving a subproblem of Step 2 by restricting the update to group DI of

unit ℓ2-norm atoms.

Our method aims at yielding a new atom group S ¼ D0I , in general suboptimal for problem

(2), by an orthogonal transformation matrix R (i.e. RT R = I) applied on DI, namely D0I ¼ RDI .

The set of orthogonal matrices R of order n, called orthogonal group O(n) (not to be confused

with group of atoms), can be partitioned into the special orthogonal subgroup SO(n) formed

by proper rotations, i.e. those with detR = 1, and the set O(n) \ SO(n) of improper rotations (or

rotoreflections), i.e. those with detR = −1. Therefore, the search for such an optimal transfor-

mation can be stated as the following minimization problem

min
R2OðnÞ

k E � RH k2

F ð3Þ

where H≔DIXI 2 R
n�L. Notice that in denoting E and Hwe omit the dependence on I. The

problem (3) is known as theOrthogonal Procrustes problem [25] and can be interpreted as finding

the rotation of a subspace matrix HT to closely approximate a subspace matrix ET [29, §12.4.1].

The orthogonal Procrustes problem admits (at least) one optimal solution R̂ which is [29]

the transposed orthogonal factor QT of the polar decomposition EHT = QP, and can be effec-

tively computed as R̂ ¼ QT ¼ VUT from the orthogonal matrices U and V of the singular

value decomposition EHT ¼ USVT 2 Rn�n.

Hence the rotation matrix we seek is R̂ ¼ VUT , the new dictionary D0 has the old columns

of D in the positions Ic and the new submatrix D0I ¼ R̂DI in the positions I, while the new non-

increased value of reconstruction error is

k Y � D0X k2

F ¼k Y � DIcXIc � VU
TDIXI k

2

F �k Y � DX k
2

F :

At this point the idea of the whole algorithm is quite straight-forward:

1. at each dictionary update iteration (Step 2) partition the set of column indices [m] =

I1 t I2 t . . . t IG into G subsets,

2. then split D accordingly into atom groups DIg, g = 1,. . .,G, and

Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation
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3. update every atom group DIg.

These updates can be carried out either in parallel or sequentially with some order. We

have chosen the sequential update with ascending order of atom popularity, i.e. sorting the

indices i 2 [m] w.r.t. the usage of atom di, computable as ℓ0-norm of the i-th row in X. For sake

of simplicity we set uniformly the group size to s = |Ig| for all g, possibly except the last group

(G = dm/se) if m is not a multiple of s: |IG| = m − Gs. Regarding this choice, we have seen exper-

imentally that our method is agnostic w.r.t. grouping criteria such as random balanced group-

ing, cumulative coherence based partitioning, and clustering by absolute cosine similarity.

After processing all G groups, the method moves to the next iteration, and goes on until a

stop condition is reached (eg. the maximum number of iterations as commonly chosen, or an

empirical convergence criterion based on successive iterates). The main steps can be summa-

rized in Algorithm 1 (the Matlab code implementing the algorithm is available on the website

http://phuselab.di.unimi.it/resources.php).

Algorithm 1 R-SVD

Input:Y 2 Rn�L: column-vectorsignalsfor trainingthe dictionary
Output:D 2 Rn�m: traineddictionary;X 2 Rm�L: sparseencodingof Y
1: InitializedictionaryD pickingm examplesfrom Y at random
2: repeat
3: Sparsecoding:X ¼ argminX k Y � DX k

2
F subjectto kxik0� k for i = 1,. . .,L

4: Partitionindices[m] = I1 t I2 t . . . t IG sortingby atom popularity
5: for g = 1,. . .,G do
6: J = Ig
7: E = Y − DJcXJc
8: H = DJXJ
9: R ¼ argminR2OðnÞ k E � RH k2

F¼ VUT by rank-sSVD EHT = UΣVT

10: DJ = RDJ
11: end for
12: returnD, X
13: until stop condition

Notice that in our method the renormalization of atoms to unit length at each iteration is

not necessary since they are inherently yielded with such a property from this Procrustes anal-

ysis, and hence in practice some large part of renormalizing computations as in ILS-DLA [22]

and K-SVD [28] can be avoided.

2.2 Computational time analysis

A useful computational speedup in the update of every group DI can be described as follows.

Let us pre-compute XYT 2 Rm�n and XXT 2 Rm�m at the beginning of each dictionary update

(Step 2). The matrix EHT undergoing the SVD can be computed as

EHT ¼ DI ½XIY
T � XIðXIcÞ

T
ðDIcÞ

T
�

where DI and DIc come from previous update step, and the term XIYT is the submatrix formed

by rows I of XYT, while XI(XT)Ic by rows I and columns Ic of XXT. With elementary matrix

products this computation requires O(sn(n + m − s)) flops, which is lower than O(nmL) since s
< n<m� L.

Notice that, since rank HET� rankH� s, it is not necessary to obtain the full SVD of HET,

but rather truncate the decomposition to the first s singular vectors ui, vi:
R̂ ¼ VUT ¼

Ps
i¼1
viuTi . We thus use the truncated SVD algorithm by [30] based on structured

random matrix that requires O(n2 log s) flops. The computation of HET and its SVD is repeated

Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation
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G = dm/se times. The computational time of R-SVD is dominated by the pre-computation of

XYT and XXT, and therefore taking into account the sparsity of matrix X the asymptotic estimate

for one iteration of R-SVD is TR� SVDðk; n;m; L; sÞ ¼ O k2

s þ
k
s n

� �
mL

� �
, compared to K-SVD’s

iteration TK-SVD(k, n, m, L) = O((k2 + n)mL). Note that, when s = O(k) we have k2

s þ
k
s n ¼

oðkþ nÞ ¼ oðk2 þ nÞ implying that the computational time TR-SVD is lower than TK-SVD.

3 Experimental analysis

In this section we test the proposed R-SVD algorithm devoting at first an in-depth analysis to

how to choose the group size s defined above. Then we apply the method on synthetic data

conducting extensive experiments on both R-SVD and K-SVD using OMP as sparsifier. A fur-

ther investigation is conducted on two different sparse decomposition methods, namely k-

Limaps and SL0, and alternative dictionary learning methods, namely ILS-DLA by Engan et al.

[20] and OSDL by Sulam et al. [24].

Following [28], the dictionary D 2 Rn�m is randomly drawn, with i.i.d. standard Gaussian

distributed entries and each column normalized to unit ℓ2-norm. The training set Y 2 Rn�L is

generated column-wise by L linear combinations of k dictionary atoms selected at random,

and by adding white Gaussian noise matrix N with various signal-to-noise ratio (SNR), i.e. Y =

DX + N. We measure the performances of the algorithms in terms of the reconstruction error

(or quality) expressed as ESNR ¼ 20 log 10ðk Y kF= k Y � ~D ~XkFÞ dB, where ~D and ~X are the

learned dictionary and the sparse encoding matrix respectively.

3.1 Setting the group size

It is naturally expected that the group size s affects both reconstruction quality and running

time. In order to give some insight on this parameter, we run R-SVD algorithm on synthetic

training sets by setting L = 8000, D 2 R50�100, k = 5 and SNR = 30 dB for noise N and letting s
range in the interval 1� 25. Notice that when s = 1, our method is similar to K-SVD [28]

except in the recovery of the sparse coefficients yielded by SVD decomposition.

In Fig 1 we report the reconstruction error ESNR (solid curve), and the computational times

of both R-SVD (dashed curve) and K-SVD (dotted line), all averaged over 100 trials. It can be

noticed that R-SVD method behaves better near the value s = 10. We thus choose this tradeoff

setting for the experimental assessments of the method in the following sections.

3.2 Comparative results on synthetic data

In order to test the R-SVD method and compare it to the K-SVD algorithm, we first run exper-

iments on random training instances. We consider dictionaries of size 50 × 100 and 100 × 200,

dataset of size up to L = 10000 and sparsity k = {5, 10}. The algorithms K-SVD and R-SVD are

run for T = 200 dictionary update iterations, that turns out to be sufficient to achieve empirical

convergence of the performance measure. For each experimental setting we report the average

error over 100 trials.

In Fig 2 we highlight the learning trends of the two methods, plotting at each iteration

count the ESNR values on synthetic vectors Y = DX + N, varying the additive noise SNR = 10,

30, 50,1 (no noise) dB. It can be seen that, after an initial transient, the gap between R-SVD

and K-SVD increases with the iteration count, establishing a final gap of 2 dB or more in con-

ditions of middle-low noise power (SNR� 30 dB).

In order to explore the behavior of R-SVD and K-SVD in a fairly wide range of parameter

values, we report in Fig 3 the gaps between their final (T = 200) reconstruction error ESNR,

varying L in 2000� 10000, noise SNR in 0� 60 dB, and in case of no noise. Dictionary sizes,

Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation
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sparsity and number of trials are set as above. When the additive noise power is very high (eg.

SNR = 0 or 10 dB) the two methods are practically comparable, probably because the presence

of significant noise would mislead any learning algorithm. On the other hand, when the noise

is quite low the R-SVD algorithm outperforms K-SVD with a gap up to 3 dB.

Moreover, it is useful to evaluate the number of correctly identified atoms in order to mea-

sure the ability of the learning algorithms in recovering the original dictionary D from the

noise-affected data Y. This is accomplished by maximizing the matching between atoms di of

the original dictionary with atoms ~dj of the dictionary ~D yielded by the algorithm: two atoms

Fig 1. R-SVD’s dependency on the group size parameter s. Other experiment parameters are: training size L = 8000,

dictionary size 50 × 100, additive noise of SNR = 30 dB, number of iterations T = 200. The lines (connecting points, for sake of

readability) represent: average final ESNR of the reconstructed dictionary (solid blue curve) w.r.t. the generating dictionary,

computational time of the R-SVD (dashed red curve) and the K-SVD (dotted red line) in the dictionary learning task.

doi:10.1371/journal.pone.0169663.g001

Fig 2. Average reconstruction error ESNR in sparse representation using dictionary learnt by K-SVD (non-solid lines) and R-SVD (solid lines), for

L = 10000 synthetic vectors varying the additive noise power (in the legend). Averages are calculated over 100 trials and plotted versus update

iteration count. Left:D 2 R50�100 with sparsity k = 5, Right:D 2 R100�200 with sparsity k = 10.

doi:10.1371/journal.pone.0169663.g002

Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation

PLOS ONE | DOI:10.1371/journal.pone.0169663 January 19, 2017 7 / 16



ðdi; ~djÞ are considered matched when their cosine distance is small [28], i.e. precisely

1 � jdTi ~djj < d≔0:01:

In Table 1 we report the average number of recovered atoms on random instances. Notice

that R-SVD performs slightly better independently of the additive noise power.

3.3 Choice of the sparse decomposition method

So far we have used OMP as sparsifier for both R-SVD and K-SVD methods. Here we investi-

gate R-SVD’s performances adopting the sparse decomposition techniques k-Limaps [9] and

SL0 [10]. The former (developed by the authors) has proven its ability to perform better than

other sparsity methods well know in literature (see experimental sections in [9]), while the lat-

ter is particularly suitable for fast applications.

Each method has been applied to compute line 3 of Alg. 1, R-SVD, and the corresponding

operation in the K-SVD algorithm. The SL0 (available on authors’ webpage http://ee.sharif.

edu/*SLzero/) is set up with scale parameter μ0 = 2 and σ decrease factor equal to 4/5, while

k-Limaps is initialized setting to 100 the maximum number of iterations. The experiments of

R-SVD and K-SVD incorporating k-Limaps and SL0 were conducted under the same condi-

tions of subsection 3.2. The resulting gap between final ESNR’s is shown in Fig 4.

Notice that, using k-Limaps as sparsifier, R-SVD provides performances that are almost

uniformly and moderately better than K-SVD, unless the additive noise is very high. In such a

case there is another evidence that the two algorithms are equally misled by noise-affected

data. Moreover, while the behavior of the two algorithms incorporating SL0 is more contrast-

ing, it can be seen however that R-SVD with SL0 usually performs better.

Fig 3. Gap between final (T = 200) ESNR of K-SVD and R-SVD obtained with all parameter combinations L = 2000, 4000, 6000, 8000,

10000 and SNR = 0, 10, 20, 30, 40, 50, 60,1 (no noise). Results are averages over 100 trials; points are interpolated with coloured piece-wise

planar surface for sake of readability. Left:D 2 R50�100 with sparsity k = 5. Right:D 2 R100�200 with sparsity k = 10.

doi:10.1371/journal.pone.0169663.g003

Table 1. Average number of atoms correctly recovered (matched) by K-SVD and R-SVD algorithms at various SNR levels of additive noise on dic-

tionary D of size 50 × 100 and 100 × 200. L = 10000, and remaining parameter values as in Fig 3.

Number of recovered atoms

n × m SNR = 10 SNR = 30 SNR = 50 no noise

K-SVD R-SVD K-SVD R-SVD K-SVD R-SVD K-SVD R-SVD

50 × 100 94.52 97.37 92.15 94.08 92.1 93.84 92.07 94.03

100 × 200 195.82 199.02 192.42 194.98 192.49 194.57 192.87 194.7

doi:10.1371/journal.pone.0169663.t001

Orthogonal Procrustes Analysis for Dictionary Learning in Sparse Linear Representation
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3.4 Alternative dictionary learning methods

Here we extend the comparative experiments considering R-SVD (integrating OMP) versus

the iterative alternating scheme method ILS-DLA, and the on-line dictionary learning method

OSDL by Sulam et al. [24].

In these experiments we refer to random training sets of size L = 5000, 10000, dictionaries

of size 64 × 128 (where the atom size is a perfect square as required in OSDL), various levels of

additive noise (10, 30, 50 dB and the case of no noise), and sparsity set to 10% of the atom size.

The methods are run for 200 dictionary update iterations and the obtained results are averaged

over 100 trials. In Table 2 we report the average gaps between the ESNR of R-SVD and each of

ILS-DLA and OSDL, respectively. We can notice that R-SVD systematically demonstrates

Fig 4. Comparison of K-SVD and R-SVD errors when k-Limaps (top) or SL0 (bottom) sparse decomposition methods are used. The surface

represents the gap between final (T = 200) ESNR of K-SVD and R-SVD obtained with all parameter combinations L = 2000, 4000, 6000, 8000, 10000 and

SNR = 0, 10, 20, 30, 40, 50, 60,1 (no noise). Results are averages over 100 trials; points are interpolated with coloured piece-wise planar surface for sake

of readability. Left: D 2 R50�100 with sparsity k = 5. Right:D 2 R100�200 with sparsity k = 10.

doi:10.1371/journal.pone.0169663.g004

Table 2. Gap between ESNR of R-SVD and each of the algorithms ILS-DLA [20] and OSDL by Sulam et al. [24] at various SNR levels of additive noise

on dictionary D of size 64 × 128, and training size L = 5000, 10000.

L SNR = 10 SNR = 30 SNR = 50 no noise

ILS-DLA OSDL ILS-DLA OSDL ILS-DLA OSDL ILS-DLA OSDL

5000 0.25 2.09 2.72 0.22 2.13 4.00 3.92 4.80

10000 0.32 3.39 3.21 0.34 4.11 4.10 3.68 3.92

doi:10.1371/journal.pone.0169663.t002
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better performances than ILS-DLA and OSDL. More specifically, ILS-DLA shows a regular

behavior, with a considerable rise of the gaps with the increase of additive noise’s SNR. Con-

cerning OSDL, we have even more significant gaps in favor of R-SVD, but with a less regular

distribution, which is not easy to be interpreted. This may be in part due to OSDL having been

originally conceived for learning of large dimension image patches.

4 Experiments on natural data

In order to assess the applicability of the R-SVD method to various domains and tasks, we test

it on ECG compression, EEG sparse representation, and image modeling. All the experiments

are conducted on publicly available data, comparing the R-SVD and K-SVD performances,

and adopting OMP as sparse decomposition method.

4.1 ECG compression

Sparsity techniques have been already applied to the compression of electrocardiogram (ECG)

signals [31, 32]. To highlight the benefit of the dictionary learning approach in this task, we

tested the two methods K-SVD and R-SVD recasting the compression as a problem of sparse

approximation with a dictionary.

In this experiment, the compression process is broken down into three stages. The former

is a preprocessing step consisting in R-peak detection of the signal, and its normalization (i.e.,

filtering, zero-padding and centering) so as to split it into n-length normalized RR-segments.

The second stage focuses on the dictionary learning where either R-SVD or K-SVD are used to

train a dictionary on a group of RR-segments taken from an initial transient of the signal

(train chunk). The latter stage concerns the encoding via sparse reconstruction of all RR-seg-

ments belonging to a broader interval of the signal (test chunk). This step is carried out refer-

ring to the learnt dictionaries, and applying the OMP algorithm. Naturally, in order to make

the coding step easier, magnitudes and positions of non-null sparse coefficients are handled

separately.

The compression level achieved by each method is measured as compression rate (CR), that

is the ratio between the number of bits of the original signal and that of the compressed repre-

sentation. Assuming that the test chunk y is composed of N q-bit resolution samples forming

M RR-segments, we have

CR ¼ qN= kq̂M þM log 2

m
k

� �� �

where k is the sparsity level, q̂ denotes the bit resolution of the quantized coefficients, m is the

number of the atoms in the dictionary, and log 2
m
k

� �
is the binary coding length of coefficient

positions. Being ŷ the reconstructed version of y, the overall reconstruction quality measure is

here specialized for ECG signal as ESNR ¼ 20 log 10

kyk2
kŷ � yk2

dB (this technical change is due to the

necessity of measuring the quality of signals formed by variable length segments).

We conducted the experiments on two ECG records taken from the Long-Term ST Data-

base in PhysioNet [33]. They are 24 hours long recordings taken from different subjects with

the aid of Holter portable devices, all sampled at fs = 250 Hz and q = 12-bit resolution. Perfor-

mances are reported in Fig 5. Upper plots show the ESNR vs CR obtained from OMP, referring

to dictionaries learnt by R-SVD or K-SVD, and to an untrained dictionary (i.e. randomly pick-

ing m RR-segments from the train chunk). Lower plots report the computational time spent

by the two techniques in the learning stage. To make the experiment realistic, we set n = fs,
m = 5n and q̂ ¼ q, the dictionary training is carried out on L = 5000 RR-segments (about 120
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minutes), while the test chunk is composed of M = 15000 RR-segments (about 4 hours). In

order to analyze the methods at several rates, we varied k in the interval 5� 80 with step size 1.

Such experiments, besides confirming that trained dictionaries behave better than

untrained one, prove the effectiveness of the R-SVD training method that outperforms K-SVD

both in training ability and learning time.

4.2 EEG sparse representation

Electroencephalogram signals (EEG) are exploited in several Brain-Computer interfaces (BCI)

mainly due to their high temporal resolution. An element of difficulty when dealing with this

kind of signal is its non-stationary temporal behavior, an unwanted property that has negative

consequences on common tasks such as classification. Several adaptive techniques and updat-

ing rules have been proposed to produce compelling dictionaries [34, 35]. Here we touch upon

how dictionary learning can help in tackling these undesired aspects, allowing to produce

compact and faithful signal representations.

Operatively, we split the task into three stages. The former aims at producing a pool P of n-

length normalized EEG chunks corresponding to a given motor imagery (e.g. left hand, right

foot). The second stage concerns the dictionary learning in the strict sense: starting from a ran-

dom dictionary Dinit of dimensions n × 2n, both the R-SVD and K-SVD methods are adopted

to specialize Dinit on the basis of a pool of EEG chunks randomly taken from P. Finally, the

quality of the learnt dictionaries, let’s say DK-SVD, DR-SVD, is evaluated applying the OMP algo-

rithm on a distinct pool of EEG chunks also taken from P.

We conducted the experiments referring to the dataset IVa from BCI competition III [36]

(http://www.bbci.de/competition/iii/desc_IVa.html): EEG portions of signal corresponding to

one motor imagery (either right foot or right hand) are extracted according to the given signal

labelling, normalized to zero-mean signals and set into the pool P. The learning phase is car-

ried out by setting the atom dimensions n = 150 or 300, the number of iterations T = 150, and

expressing the sparsity k as various percentages of n. The cardinality of training set and test set

is L = 2n and M = 4n respectively.

Fig 5. Experiments on the ECG recordings s20011 and s20031 taken from the Long-Term ST Database. (Upper plots) ESNR vs CR achieved by the

sparsity-based OMP compressor on dictionary learnt by R-SVD, K-SVD or on a random untrained dictionary. (Lower plots) Computational time spent by the

two techniques in the learning stage.

doi:10.1371/journal.pone.0169663.g005
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In Fig 6 we plot the ESNR trends of the learning phase on the training sets. We can observe

that, R-SVD has a markedly fast gain, showing a significant gap with respect to K-SVD since

the very first iterations. In Table 3 we report the reconstruction quality in terms of ESNR

attained in the test phase using the dictionaries DK-SVD and DR-SVD for sparse coding (using

OMP). All results in the two phases are averaged on 50 trials. It is evident that the R-SVD

method systematically exceeds K-SVD on both EEG chunk sizes. Moreover, the reconstruction

quality increases with k, as well as the gap between the performances of K-SVD and R-SVD.

4.3 Image modeling

Sparse representation of images via learnt overcomplete dictionaries is a well-known topic in

the fields of image processing and computer vision [37]. In particular, in problems such as

image denoising or compression [2, 38], we are interested in constructing efficient representa-

tions of patches (i.e. small portions of images) as a combination of as few as possible typical

patterns (atoms) learnt from the data themselves. Naturally, the referred dictionary is crucial

for the effectiveness of the method. Here, we compare performances achieved referring to the

patch dictionaries learnt by either the well-known K-SVD or the R-SVD methods.

Fig 6. Average reconstruction error ESNR for EEG signal chunks of length n = 150 and n = 300 using dictionary learnt by K-SVD (dashed lines) and

R-SVD (solid lines) of dimensions n × 2n. Averages are calculated over 50 trials and plotted versus update iteration count. Considered sparsity levels:

k = 5%, 10%, 20%, 30% of n.

doi:10.1371/journal.pone.0169663.g006

Table 3. Average ESNR obtained on the EEG test sets. n: chunk dimension. %n: sparsity expressed as a

percentage of n. k: sparsity level. DK-SVD: ESNR obtained referring to the dictionary learnt by K-SVD. DR-SVD:

ESNR obtained referring to the dictionary learnt by R-SVD.

Reconstruction quality ESNR

n %n k DK-SVD DR-SVD

150 0.05 8 4.78 5.21

150 0.1 15 6.55 7.19

150 0.2 30 10.08 10.84

150 0.3 45 14.05 14.78

300 0.05 15 7.73 8.47

300 0.1 30 10.92 11.88

300 0.2 60 16.73 17.82

300 0.3 90 21.38 22.64

doi:10.1371/journal.pone.0169663.t003
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Given a pool of image patches P, a pre-processing is first applied aiming at both removing

the patch mean intensity and reshaping all the patches to vectors inRn.

The learning phase is carried out by setting the number of iterations to 50, and varying the

sparsity k in 5� 30. The initial dictionaries for the two algorithms have size n × 1.5n, while

training and test sets have size L = 2n and M = 4n respectively; they are all made up of ran-

domly selected patches from P.

Experimentally, we considered patches of size 9 × 9 (n = 81) and 16 × 16 (n = 256). In both

cases we randomly extracted 100,000 patches from 500 images of Caltech 101 [39] and Berke-

ley segmentation image database [40]. In Fig 7 we plot the ESNR trends of the learning phase

on the training sets. We can observe that, since the first iterations, R-SVD behaves better than

K-SVD, maintaining a positive gap at convergence, especially in the cases of lower sparsity. In

Table 4 we report the reconstruction quality in terms of ESNR attained in the test phase using

the dictionaries learnt by K-SVD and R-SVD, and then applying OMP. All results in the two

Fig 7. Average reconstruction error ESNR for patches 9 × 9 and 16 × 16 using dictionary learnt by K-SVD (dashed lines) and R-SVD (solid lines).

Averages are calculated over 50 trials and plotted versus update iteration count. Considered sparsity levels: k = 5, 10, 20, 30.

doi:10.1371/journal.pone.0169663.g007

Table 4. Average ESNR obtained on the image test sets. n: linear patch dimension. k: sparsity level. Last

three columns are ESNR achieved with initial untrained dictionary (Dinit), dictionary learnt by the K-SVD method

(DK-SVD) and dictionary learnt by the R-SVD method (DR-SVD).

Reconstruction quality ESNR

n k Dinit DK-SVD DR-SVD

81 5 16.76 19.74 20.16

81 10 18.34 21.94 22.22

81 20 20.78 24.73 25.12

81 30 22.88 27.38 27.65

256 5 14.84 17.40 17.74

256 10 15.91 18.96 19.27

256 20 17.49 20.96 21.21

256 30 18.45 22.02 22.34

doi:10.1371/journal.pone.0169663.t004
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phases are averaged on 50 trials. As we can observe, the R-SVD method systematically exceeds

K-SVD referring to both patch sizes and to several sparsity degrees. These results further con-

firm the effectiveness and generality of the R-SVD method.

5 Conclusions

In this paper we have proposed a new technique, namely R-SVD, of dictionary learning for

sparse coding. It preserves the well established iterative alternating scheme adopted for exam-

ple in the K-SVD algorithm: one step is for the coding of sparse coefficients, and the other one

is for the dictionary optimization promoting sparsity. The main novelty of R-SVD concerns

how it tackles the dictionary optimization step: instead of choosing single best atoms via SVD,

it transforms groups of atoms through the best rotations found in the spirit of the Orthogonal

Procrustes analysis, so as to minimize the representation error.

Extensive experiments have been conducted on both synthetic and natural data. In the for-

mer case, we investigated the behavior of R-SVD varying the atom group size and the sparse

decomposition method, and we set up extensive simulations to assess the robustness and feasi-

bility of the method, also in comparison with alternative dictionary learning algorithms. In the

latter case, we considered the signal and image processing domain, showing good perfor-

mances on the tasks of ECG compression, EEG sparse coding, and image modeling.

Some open issues remain to be studied. The main one is how to tackle problem (2), i.e. find

the best atom group adopting more general transformations other than rotations with the Pro-

crustes shape analysis approach. Another question concerns the resolution of problem (3) pos-

sibly through approximation techniques guaranteeing a better computational efficiency.
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