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Abstract

We make use of ideas from the theory of complex networks to implement a machine learn-

ing classification of human DNA methylation data, that carry signatures of cancer develop-

ment. The data were obtained from patients with various kinds of cancers and represented

as parenclictic networks, wherein nodes correspond to genes, and edges are weighted

according to pairwise variation from control group subjects. We demonstrate that for the 10

types of cancer under study, it is possible to obtain a high performance of binary classifica-

tion between cancer-positive and negative samples based on network measures. Remark-

ably, an accuracy as high as 93−99% is achieved with only 12 network topology indices, in a

dramatic reduction of complexity from the original 15295 gene methylation levels. Moreover,

it was found that the parenclictic networks are scale-free in cancer-negative subjects, and

deviate from the power-law node degree distribution in cancer. The node centrality ranking

and arising modular structure could provide insights into the systems biology of cancer.

Introduction

Epigenetic information is stored in a genome in the form of heritable modifications to the

chemical structure of DNA, such as methylation of CpG di-nucleotides, and a number of

chemical modifications of histone proteins. It can be modulated during the lifetime of an

organism by environmental signals [1–3], and these changes persist in subsequent mitoses, as

an acquired change of phenotype. However, besides the fundamental role of epigenetics in

mediating environmental effects on the genome, it leaves a backdoor for environmental risk

factors.

In particular, variations in DNA methylation (DNAm) accompany the early stages of

human carcinogenesis [1], and could, therefore, manifest as quantitative signatures of such ill-

nesses or as a risk of their development [4–7]. Due to the huge number of individual CpG sites

(of the order of 105) at which methylation levels are assessed, there is a substantial interest in

developing aggregate measures, so as to reduce the dimension of the mathematical problem,

whilst still taking account of the key genomic effects of cancer.
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Recently, it has been demonstrated that gene-specific measures of DNA methylation, such as

mean, variance, mean derivative and suchlike reflect cancer-related changes and enable differ-

entiation between normal and tumour tissue samples [8]. Furthermore, a method to construct a

network representation of the data was proposed, with genes taken as nodes. Edge weights then

quantify the extent to which the methylation profiles of these genes covary in the same way as

the healthy population profiles do [9]. Some edges of this network representation were shown

to be associated with survival outcome for patients with different types of cancer. It was also

found that natural groupings of these prognostic edges could be identified as subnetwork mod-

ules, relevant to a number of biological functions. This indicated that epigenetic network mod-

els and measures do not just technically reduce the complexity of a computational problem, but

naturally reflect intrinsic collective behaviour and interactions of such groups of genes.

Inspired by these findings, we address the problem of constructing epigenetic data net-

works and identifying network measures for distinguishing between normal and cancer cells.

We seek a solution implementing recently developed parenclitic network analysis [10, 11].

This approach identifies generic biomedical measurements with nodes and specifies that an

edge exists between each pair of nodes if their values for a particular subject are significantly

different from the linear regression model for a control “healthy” group (or weight of the edge

is proportional to the mismatch of the regression model). In result one obtains a network for

each subject, which properties are expected to be different in health and disease.

We demonstrate that parenclictic networks built on DNAm data correctly represent source

data, therefore classifiers based on routine network measures (average node degree, diameter,

etc.) can produce approximately 93−99% accuracy. The statistics of parenclictic networks for

healthy tissues exhibits power-law tails in the node-degree distributions, that indicates sub-

stantial natural fluctuations in methylation levels. Remarkably, cancer modifications in

DNAm induce a qualitative change in network topology: heavy-tailed too, they show marked

deviations from power-law scaling. Exceptions are found in one case only, where the network

architecture does not change noticeably and at the same time the performance of the respective

classifier drops to about 90%.

Methods

Data

Methylation data, collected via the Illumina Infinium Human Methylation 450 platform, were

downloaded from The Cancer Genome Atlas (TCGA) project [12] at level 3. Data were

obtained from ten different healthy and tumour tissues: Bladder Urothelial Carcinoma

(BLCA), Breast Invasive Carcinoma (BRCA), Colon Adenocarcinoma (COAD), Head and

Neck Squamous Cell Carcinoma (HNSC), Kidney Renal Clear Cell Carcinoma (KIRC), Kidney

Renal Papillary Cell Carcinoma (KIRP), Lung Adenocarcinoma (LUAD), Prostate Adenocar-

cinoma (PRAD), Thyroid Carcinoma (THCA), and Uterine Corpus Endometrioid Carcinoma

(UCEC). The number of samples for each data set is shown in Table 1. Raw data were pre-pro-

cessed as described in [8], briefly summarised as follows. First, probes were removed if they

have non-unique mappings or map to SNPs (as identified in the TCGA level 3 data); probes

mapping to sex chromosomes were also removed; in total 98384 probes were removed in this

way from all data sets. After removal of these probes, 270985 probes with known gene annota-

tions remained. Individually for each data set, probes were then removed if they had less than

95% coverage across samples; probe values were also replaced if they had corresponding detec-

tion p-value greater than 5%, by KNN (k nearest neighbour) imputation (k = 5). Methylation

level has been considered across the whole gene, as a way of simplifying the large quantity of

data. And whilst some information will undoubtedly be lost by rescaling all methylation values
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into range [0, 1] and characterising each gene by the average level of methylation, we still

found that changes in methylation level across the whole gene were indicative of disease. In

future work, it will be important to refine the analysis by considering mean methylation across

specific functional regions within the gene, such as the promoter, the first exon, et cetera. The

total number of genes of interest was 15295.

Construction of networks

We utilize the parenclictic network approach [10, 11] in order to construct and analyze graphs

from gene methylation data. The resulting network is a complete weighted graph: each vertex

corresponds to a specific gene, and edge weight is proportional to the variation of methylation

levels in specific gene pair in cancer-positive and negative phenotypes. The procedure is aimed

at unveiling hidden relations between methylation levels of gene pairs and discovery of global

dependencies.

The procedure originally applied to different biomedical data [10, 11] includes the follow-

ing steps:

1. Select a control group from healthy tissue samples.

2. Adjust methylation levels for each pair of genes, mi and mj, to a linear regression based on

the control group subjects:

mj ¼ ai;j þ bi;jmi; ð1Þ

where αi, j and βi, j are regression coefficients.

3. Build complete weighted graph for each cancer-positive and negative sample, excluding the

control group, such that each vertex corresponds to a particular gene, and edges are

weighted according to

wi;j ¼
jxj � ðai;j þ bi;jxiÞj

si;j
; ð2Þ

where xi and xj are respective methylation levels, and σi, j is the standard deviation of errors

in the linear regression model for control objects Eq (1).

This process is illustrated in Fig 1 through the use of the two genes ZFP106 and NEUROD1

for BRCA data. Each point corresponds to gene methylation levels in the control group

Table 1. Number of samples obtained from normal tissue (healthy subjects) and tumour tissue (can-

cer subjects), see the text for abbreviations. The data were downloaded from TCGA portal.

Type of cancer Number of healthy subjects Number of cancer subjects

BLCA 18 126

BRCA 98 586

COAD 38 258

HNSC 50 310

KIRC 160 283

KIRP 50 98

LUAD 32 306

PRAD 49 176

THCA 50 357

UCEC 36 334

doi:10.1371/journal.pone.0169661.t001
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(green), and other BRCA-negative (blue) and BRCA-positive (red) subjects. The data points

for the subjects with the disease are substantially more distant from the linear regression

model (solid line), as compared to the data points for the healthy ones. Thus at least some of

the edge weights in the parenclictic networks for the former group will be considerably greater,

potentially introducing detectable modifications in global network characteristics [10, 11].

Linear regression approach is quite clear and gives good results in many cases. However, at

least for data of interest, it does not always yield a decent estimation of the closeness between

the control and cancer subjects. Indeed, changing one of the genes in the example above, that

is, considering ZFP106 and TRIM9 methylation levels in BRCA data, we find that all three of

the clusters (control, BRCA-negative and positive) match the linear regression model (1) well

(see Fig 2). Consequently, for all sample classes the ZFP106-TRIM9 edge weights Eq (2) will,

typically, be relatively small and of the same order of magnitude. At the same time, the BRCA-

negative and positive clusters are visibly distinct.

To overcome this problem we implement the Mahalanobis distance [13], which, essentially,

measures separation between data sets. In particular, instead of Eq (2) the edge weight wi, j is

caclulated as:

wi;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi;j � mi;jÞ
TS� 1

i;j ðxi;j � mi;jÞ

q

; ð3Þ

where, as before, xi and xj are gene methylation levels in an investigated sample, μi and μj are

the gene methylation levels in the control group, xi, j = (xi, xj), μi, j = (E(mi),E(mj)), and Si, j =

cov(mi, mj). In this way, the abnormal modifications in methylation of gene pairs are better

captured, which, in turn, improves sample classification accuracy for our data by 1−3%.

Metrics of network topology

The massive number of edges in constructed graphs makes a straightforward solution of

machine learning classification problem intractable in practice, also manifesting a huge imbal-

ance between the number of features and available samples. Therefore, we utilize a number of

Fig 1. Determining the edge weight between ZFP106 and NEUROD1 genes. Each point corresponds to gene methylation

levels in the control group (green), other BRCA-negative (blue) and BRCA-positive (red) subjects. The solid line shows the

linear regression model (1). The mismatch to Eq (2) is, in general, a good discriminator between healthy and tumour samples.

doi:10.1371/journal.pone.0169661.g001
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topology metrics, widely used for characterising complex networks [14–16], appropriately gen-

eralised for weighted graphs G≔ (V, E) with |V| vertices and |E| edges:

• Node degree deg(v) as the sum of incidental edges weights.

• The distance d(vi, vj) between the nodes vi, j 2 V, defined as the sum of the edge weights in

the shortest path.

• The diameter of the graph G as the maximal distance between a pair of vertices.

• The degree centrality CD(G) of the graph G defined as the normalised graph degree centrality

H(G)

CDðGÞ ¼
HðGÞ
Hmax

; ð4Þ

which is

HðGÞ ¼
XjVj

i¼1

jCDðv
�Þ � CDðviÞj; ð5Þ

based on the node degree centrality CDðvÞ ¼
degðvÞ
jVj , and where v� is the node with the maxi-

mal degree centrality, and Hmax = (|V| − 1)(|V| − 2) is the maximal graph degree centrality,

obtained for the star topology.

• Graph efficiency EC(G) defined as [17]

ECðGÞ ¼
CCðGÞ

jVjðjVj � 1Þ
; ð6Þ

Fig 2. Determining the edge weight between ZFP106 and TRIM9 genes. Each point corresponds to gene methylation

levels in the control group (green), other BRCA-negative (blue) and BRCA-positive (red) subjects. The solid line shows the

linear regression model (1). While the data sets for healthy and tumour samples are quite distinct, the mismatch Eq (2) is of the

same order of magnitude for both classes. Employing the Mahalanobis distance Eq (3) overcomes this problem.

doi:10.1371/journal.pone.0169661.g002
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based on the graph centrality measure

CCðGÞ ¼
X

i6¼j

1

dðvi; vjÞ
: ð7Þ

• Betweenness centrality CB(vk) of a node as the number of the shortest paths the particular

node vk belongs to:

CBðvkÞ ¼
X

k6¼i6¼j

svi ;vj
ðvkÞ

svi;vj

; ð8Þ

where σvi,vj is the number of the shortest paths between the nodes vi and vj, among which

σvi,vj(vk) passing through vk.

These quantities in one way or another should reflect the expected differences between the

sample classes. For instance, increasing separation of data sets produces greater edge weights

and may result in substantial decrease of the graph diameter. Likewise, nodes with large cen-

trality scores signify their key role is class distinguishing and give us a hint at biological

importance.

Results and Discussion

As we can see from the examples of the pairwise gene methylation level diagrams, there exists

intrinsic variability in both healthy and tumour tissue samples (see Figs 1 and 2). Therefore,

parenclictic networks built from both data classes should have random-like and complex

structure. To get a general idea on the appearance of the resulting networks, we present indica-

tive examples of BRCA-positive and negative donors, plotting the 1000 edges with largest

weights and incident nodes (Fig 3). Remarkably, for cancer subjects they typically comprise

several star-type subgraphs, with the most abnormally methylated genes as vertices. At the

same time, healthy subjects yield considerably more homogeneous networks.

Fig 3. Typical examples of parenclictic networks constructed from gene methylation profiles for cancer (left) and

normal (right) samples from BRCA data. Only a 1000 of the strongest edges and their incident nodes are shown. Note the

pronounced modular structure for the cancer network.

doi:10.1371/journal.pone.0169661.g003
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Distinguishing between cancer-positive and negative DNAm profiles is implemented by

standard machine learning classification algorithms, namely, Support Vector Machine (SVM)

and Random Forest (RF) [18, 19]. The binary classifiers are trained on 12 topological indices

calculated for parenclictic networks as described in Methods:

• mean, variation and maximal values of edge weights,

• mean, variation and maximal values of vertex degree,

• mean and variation of shortest path lengths,

• diameter of graph,

• degree centrality,

• efficiency,

• and betweenness centrality.

In addition, RF was also trained on the original gene average methylation level data. All

code was written in Python 3. For classification we have used Python scikit-learn package.

In order to assess the performance of our classifiers we used the two-step cross-validation

technique. The first step included cross-validation for selecting a control group from healthy

tissue samples. For data sets where the number of healthy subjects was less than 50 instances,

we applied 2-fold cross-validation; otherwise, 4-fold cross-validation was used. The second

step involved factual 10-fold cross-validation for every data set with topology indices.

Limited by the amount of data, we couldn’t make use of AUC as a classification metrics.

Indeed, a quarter or a half of healthy patients data were put aside after the first cross-validation

step. During the 10-fold cross-validation at the second step, the data were divided further and,

after all, each fold contained one or two healthy patients at best. In result, AUC could be calcu-

lated in rare cases only.

The results, summarized in Tables 2 and 3, demonstrate an excellent performance of classi-

fiers trained on network measures for almost all kinds of cancer, with accuracy in the range 93

−99%. Interestingly, the performance does not manifest any considerable dependence on the

type of classification algorithm in most cases, with the only noticeable dissimilarity of RF

observed for BRCA, PRAD and THCA groups. We suggest that the accuracy of classification

would not depend strongly on the particular choice of machine learning algorithm.

Table 2. Classification accuracy of RF machine learning algorithm trained on topology indices of parenclictic networks, along with the RF perfor-

mance on the original gene average methylation level data for different types of cancer.

Classification with topology indices Classification with gene methylation

Cancer Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

BLCA 95.89% 77.77% 99.19% 95.95% 66.66% 98.38%

BRCA 96.96% 91.87% 98.11% 97.82% 87.67% 98.96%

COAD 99.30% 94.73% 100.00% 99.33% 94.73% 100.00%

HNSC 96.70% 85.57% 98.69% 98.60% 92.27% 99.36%

KIRC 98.63% 98.75% 98.92% 98.90% 98.62% 98.14%

KIRP 99.17% 97.72% 100.00% 96.03% 95.89% 95.80%

LUAD 99.43% 93.75% 99.01% 99.39% 93.72% 100.00%

PRAD 90.40% 71.58% 89.65% 92.58% 85.12% 94.76%

THCA 93.12% 70.03% 96.60% 94.33% 71.90% 97.40%

UCEC 98.62% 91.67% 99.10% 99.20% 91.67% 100.00%

doi:10.1371/journal.pone.0169661.t002
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Comparing performance of the RF classifier built on the network measures and the original

average methylation levels of 15295 genes, we do not notice systematic weaknesses of the latter.

Moreover, in some cases, using network measures enhances classification results. Except for

the case with PRAD, which we will discuss hereinafter, the network measures seem to incorpo-

rate cancer modifications of gene methylation levels very well, and the substantial reduction of

the complexity of classification task does not impair the resulting accuracy. Another benefit of

implementing classification on network measures is that in this case the number of features is

considerably smaller than the number of samples, which prevents overfitting.

Let us investigate it in more detail, why the performance of the network measure classifiers

for PRAD is slightly poorer, at about 87−90%. Clearly, the answer must be sought in the less

pronounced differences between the classes in the global network characteristics. To get a

deeper insight we analysed the node degree distributions for parenclictic networks constructed

from the data, corresponding to different types of cancer. Remarkably, the results consistently

revealed that for cancer-negative subjects the networks are scale-free, with the complementary

cumulative degree distributions closely following a power-law (see Fig 4 for representative

cases). On the contrary, parenclictic networks for cancer-positive subjects demonstrate pro-

nounced deviations from power-law scaling, except for PRAD, where the node degree statistics

does not change significantly and network measures give worse classification accuracy (Fig 4).

This suggests that the further work here should primarily focus on modifying the network con-

struction method itself, rather than introducing other network measures.

Conclusions

We demonstrated that the parenclictic network approach can be successfully implemented in

order to obtain graph representations of gene methylation levels for cancer-positive and nega-

tive subjects. These graphs can be characterised by 12 global network measures, which provide

a basis for binary classification by routine machine learning algorithms, Support Vector

Machine and Random Forest. For almost all cancer types the performance of both algorithms

remains much the same so that the particular choice does not seem crucial.

Comparing to performance of Random Forest classifier built on the original average meth-

ylation levels of 15295 genes does not reveal a substantial difference, with the accuracy reach-

ing 90−99% for all the types of cancer. This means that a cardinal reduction to 12 features,

topological indices, does not lead to the loss of important information. Yet another strong ben-

efit of the considerably decreased complexity is the avoidance of overfitting, which could be a

Table 3. Classification accuracy of SVM algorithm trained on topology indices of parenclictic networks, along with the RF performance on the orig-

inal gene average methylation level data for different types of cancer.

Classification with topology indices Classification with gene methylation

Cancer Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity

BLCA 95.89% 77.78% 98.39% 95.95% 66.66% 98.38%

BRCA 93.62% 83.33% 95.21% 97.82% 87.67% 98.96%

COAD 99.33% 94.74% 100.00% 99.33% 94.73% 100.00%

HNSC 95.89% 84.62% 97.40% 98.60% 92.27% 99.36%

KIRC 96.36% 95.00% 97.14% 98.90% 98.62% 98.14%

KIRP 98.75% 100.00% 97.62% 96.03% 95.89% 95.80%

LUAD 99.41% 93.75% 100.00% 99.39% 93.72% 100.00%

PRAD 87.40% 61.33% 94.82% 92.58% 85.12% 94.76%

THCA 96.09% 84.62% 97.73% 94.33% 71.90% 97.40%

UCEC 98.39% 88.89% 99.40% 99.20% 91.67% 100.00%

doi:10.1371/journal.pone.0169661.t003
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serious problem when using the original 15295 gene methylation levels as features, due to the

relatively small number of samples.

Finally, network analysis does not only allow identifying cancer methylation profiles but

provides additional insight into the systems biology of cancer. That is, the nodes with high cen-

trality are good candidates for playing a significant role in cancer development. Strong devia-

tions from scale-free node degree distributions for almost all cancer types is a hallmark of the

global changes in the network topology induced by cancer, which remains to be understood.

Another open question is the modular properties of the arising parenclictic networks, observed

by naked eye inspection, and their correspondence to biological functions.

Fig 4. Average complementary cumulative node degree distribution (the fraction of nodes, for which the degree

exceeds a given value) for HNSC (top) and PRAD (bottom) subjects. Green lines on the log-log plots display the power-law

model best fit.

doi:10.1371/journal.pone.0169661.g004
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