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Abstract

Background

Motor imagery (MI) with real-time neurofeedback could be a viable approach, e.g., in reha-

bilitation of cerebral stroke. Magnetoencephalography (MEG) noninvasively measures elec-

tric brain activity at high temporal resolution and is well-suited for recording oscillatory brain

signals. MI is known to modulate 10- and 20-Hz oscillations in the somatomotor system. In

order to provide accurate feedback to the subject, the most relevant MI-related features

should be extracted from MEG data. In this study, we evaluated several MEG signal fea-

tures for discriminating between left- and right-hand MI and between MI and rest.

Methods

MEG was measured from nine healthy participants imagining either left- or right-hand finger

tapping according to visual cues. Data preprocessing, feature extraction and classification

were performed offline. The evaluated MI-related features were power spectral density

(PSD), Morlet wavelets, short-time Fourier transform (STFT), common spatial patterns

(CSP), filter-bank common spatial patterns (FBCSP), spatio—spectral decomposition

(SSD), and combined SSD+CSP, CSP+PSD, CSP+Morlet, and CSP+STFT. We also com-

pared four classifiers applied to single trials using 5-fold cross-validation for evaluating the

classification accuracy and its possible dependence on the classification algorithm. In addi-

tion, we estimated the inter-session left-vs-right accuracy for each subject.

Results

The SSD+CSP combination yielded the best accuracy in both left-vs-right (mean 73.7%)

and MI-vs-rest (mean 81.3%) classification. CSP+Morlet yielded the best mean accuracy in

inter-session left-vs-right classification (mean 69.1%). There were large inter-subject differ-

ences in classification accuracy, and the level of the 20-Hz suppression correlated signifi-

cantly with the subjective MI-vs-rest accuracy. Selection of the classification algorithm had

only a minor effect on the results.
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Conclusions

We obtained good accuracy in sensor-level decoding of MI from single-trial MEG data. Fea-

ture extraction methods utilizing both the spatial and spectral profile of MI-related signals

provided the best classification results, suggesting good performance of these methods in

an online MEG neurofeedback system.

1. Introduction

Motor imagery (MI) augmented with real-time feedback of the modulated brain activity could

be an effective method for rehabilitation of motor function in patients who are unable to per-

form overt limb movements [1–3]. MI, as well as overt motor acts and somatosensory stimula-

tion, is associated with a suppression of 10- and 20-Hz oscillations over the sensorimotor

cortex and a rebound of these after the end of MI, motor activity or stimulation [4]. These

oscillations are often referred to as the mu rhythm, or more generally as sensorimotor rhythms

(SMR). Movement-related suppression and rebound of this rhythm are often referred to as

event-related desynchronization (ERD) and event-related synchronization (ERS), respectively.

ERD and ERS during overt hand movements were detected in magnetoencephalography

(MEG) by Salmelin and Hari [5]. Later, such dynamics has been observed in MEG and electro-

encephalography (EEG) also during MI [6,7], attempted movements [8], and movement

observation [9]. Because the neural activation patterns during MI and executed movements

are highly similar [7,10,11], MI-based neurofeedback training could serve as an alternative or

ancillary to physical therapy. Regular MI training could facilitate neural plasticity and improve

motor skills in e.g. patients suffering from stroke.

The majority of studies on noninvasive MI-based brain—computer interfaces (BCI) have

been conducted with EEG. MEG has also been utilized due to its better source localization

accuracy compared to EEG [12] and it has already demonstrated its usefulness in neurofeed-

back [13–15]. Advances in machine-learning and signal-processing algorithms have enabled

BCIs which detect users’ intentions by classifying brain activity in real time and by giving feed-

back according to the classification results [16]. In particular, BCIs based on classification of

limb MI have been studied and developed, since they have many potential applications in both

neurobehavioral experiments and clinical interventions.

In recent years, there has been rapid development of noninvasive MI-based BCI systems

(see a review by He a colleagues [17]). SMR are used as a control signal in many rehabilitative

and assistive devices, as they offer the possibility for continuous control of direction, velocity

or acceleration of the external device. Other types of control signals, e.g. steady-state visual

evoked potentials (SSVEP) or P300, do not readily allow continuous control, and are therefore

less popular in movement-related BCI systems. Control of two-dimensional [18] and even

three-dimensional [19–21] movement has been achieved with EEG-based BCIs utilizing SMR.

However, current classification algorithms could be still improved in terms of accuracy, gener-

alizability and learning time; especially the latter is critical in patient studies as the time needed

for calibrating the classifier should be as short as possible. As many different methods have

been developed for decoding brain activity, it is important to compare their performance to

find out the most effective one. Comparison and further development of the existing decoding

algorithms is the main motivation for our research.

Extracting the relevant brain activity from MEG or EEG is the main challenge in the classi-

fication of neurophysiological measurements. The number of extracted signal features (e.g.
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amplitude values, frequency content, spatial patterns) quickly becomes much higher than the

available number of single-trial samples corresponding to the task of interest. As most classifi-

cation algorithms require only a few relevant features for reliable discrimination between clas-

ses, it is necessary to reduce the dimensionality of the feature space without losing relevant

discriminative information. Dimensionality reduction can be performed with spatial filtering

methods, such as Common Spatial Patterns (CSP), which have yielded promising results in

discriminating MI patterns in EEG [22–26]. CSP filters project the original signals to compo-

nents having maximum differences in covariance between two classes. Several extensions,

such as Filter Bank CSP (FBCSP, [27]) and Common Spatio—Spectral Pattern (CSSP, [28]),

have been suggested for improving the robustness of CSP. Spatio—Spectral Decomposition

[29] is a novel spatial filtering method, which maximizes the signal power at a frequency of

interest while simultaneously minimizing it at the neighboring frequencies. The method leads

to the optimization of signal-to-noise ratio at the selected frequency band and extraction of

signal components with a desired spectral profile.

Features extracted by time—frequency analysis are efficient for characterizing changes in

oscillatory brain activity, such as those occurring during motor execution and MI [30–32].

With a detailed time—frequency decomposition, one can identify the frequency components

that modulate in response to the events of interest and extract those components to be used as

discriminative features for classification. To focus on the most informative time—frequency

features, both the time window and frequency range of the analysed signal should be chosen

appropriately. As multiple neural processes can produce oscillations with similar frequency

content, one should also know which brain region to target. In short, sufficient prior knowl-

edge about both the experimental protocol and the neurophysiological phenomena under

study is necessary for optimizing feature extraction and classification. Furthermore, in most

real-time feedback applications, the total delay of the system should be minimized [33], which

rules out computationally expensive signal-processing and classification methods.

Another major problem in designing an MI-BCI is to adapt the classifier to the high inter-

subject variability. The most reactive frequency band, the time interval of the most prominent

suppression, and the spatial location showing the largest modulation may all differ between

subjects and different MI tasks. In addition, the MI-related activation even in the same subject

usually varies to some degree between sessions. Despite these sources of variability, the perfor-

mance of the classifier should ideally remain constant to enable repetitive neurofeedback train-

ing over days or weeks. Moreover, an ideal feature set and classifier should generalize across

subjects.

In this study, we aimed at selecting optimal feature extraction methods for classifying sin-

gle-trial sensor-level MEG data of left- and right-hand MI. MI-related feature extraction meth-

ods for MEG have been studied previously by Spüler and colleagues [34] who compared

functional connectivity features and spectral features for discriminating motor imagery from a

mental calculation task. Also, Kang and co-workers [35] compared different CSP methods in

the discrimination of left- and right-hand motor imagery in a simultaneous MEG/EEG mea-

surement. In the current study, we compared features extracted by time—frequency decompo-

sition, spatial filtering methods and by the combination of these two. The tested time—

frequency methods comprised short-time Fourier transform (STFT), continuous Morlet wave-

lets (TFR), and multitaper power spectral density (PSD). Spatial feature extraction methods

included CSP, FBCSP and SSD, followed by the quantification of band-limited power. In addi-

tion, we examined whether using SSD for dimensionality reduction prior to CSP filtering

improves the discriminative power of CSP, as suggested in a recent study [36]. Finally, STFT

and TFR features were extracted from the CSP-filtered data. Each feature extraction method

was evaluated in terms of subsequent classification performance. We also tested four different
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classification algorithms to verify that in MI decoding feature extraction plays a more impor-

tant role than the selection of a particular classifier. The factors underlying the differences in

the classification accuracy were investigated by estimating the correlation between the mu

modulation amplitude and average classification accuracy across subjects.

2. Methods

2.1. Subjects

Nine healthy volunteers (5 females, 4 males, age 25.8 ± 1.4 yrs, all right handed by self-report)

were recruited for this study. None of the subjects reported any neurological illnesses or motor

deficits, and all subjects had normal or corrected-to-normal vision. The study was approved by

the Aalto University Research Ethics Committee. The research was carried out in accordance

with the guidelines of the declaration of Helsinki, and the subjects gave written informed con-

sent prior to the MEG measurements. None of the subjects had previous experience in MI

neurofeedback training.

2.2. MEG measurements

MEG was recorded with a 306-channel Elekta Neuromag™ system (Elekta Oy, Helsinki, Fin-

land) located at the MEG Core of Aalto Neuroimaging, Aalto University. The signals were fil-

tered to 0.1–330 Hz and digitized at the rate of 1 kHz. Four head-position indicator (HPI) coils

were attached to the subject’s scalp for head position estimation and alignment to a common

coordinate frame. The visual cues and feedback (see below) were delivered on a screen located

approximately 50 cm in front of the subject’s eyes by a projector outside the shielded room.

During the recording, the raw MEG data were continuously written in 300-ms segments to a

network-transparent ring buffer [33,37] hosted by the MEG acquisition workstation (6-core

Intel Xeon CPU at 2.4 GHz, 64-bit CentOS Linux, version 5.3). This buffer was read over a

local network connection by another computer (64-bit Ubuntu Linux, version 12.04-LTS),

which processed the data in real time using functions implemented in the MNE-Python soft-

ware [38] and presented the visual stimuli using PsychoPy version 1.83 [39].

2.3. Experimental paradigm

The experiment consisted of two sessions, both of which included 40 training trials for calibra-

tion of the on-line classifier and 40 trials for testing the classification accuracy. In the begin-

ning of each trial, the subject was presented a realistic image of two hands, pictured from

above, on a white background. The subject was instructed to fixate on a small cross at the cen-

ter of the screen throughout the experiment and not to perform any movements. During the

MI task, the subject was instructed by a visual cue (see below for details) to imagine left- or

right-hand finger tapping, i.e. touching their thumb with each finger in a sequential manner at

a pace of 2–3 touches per second. It was specifically emphasized that the subject should per-

form kinesthetic instead of visual imagery. Each subject practiced the task for a few minutes

outside the magnetically shielded room before the measurements.

Each trial began with a black fixation cross presented in the middle of the screen. After 5 s,

the fixation cross turned green to indicate the preparation for the following MI task, and in 2 s

a black cue arrow pointing to left or right appeared on the screen for 3 s, prompting for the MI

task. Thereafter, the trial structure differed for the training and testing phases as follows:

During the training session, a grasp was shown on the same side as the preceding cue

arrow.
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During the test trials, visual feedback of the MI classification was presented for 3 s. The

feedback was graded with 20 levels between a resting open hand and a fully closed fist, based

on a linear transformation of the classification probability, and it was given separately for the

left and right hand. Thus, the movement presented in the feedback was different from the

imagery tapping movement, whose strength cannot be visualized as a static image of a hand.

Yet, we chose finger tapping as the imagery condition, because in pilot studies it elicited stron-

ger mu-rhythm suppression than imagery of a grasping movement. However, the grasping

movement was better for the visual feedback since it could be easily graded according to classi-

fication probabilities for each hand.

The timing and event codes of the stimuli were recorded to the MEG stimulus channel to

ensure the correct timing of epochs in the offline data analysis. For an illustration of the exper-

imental protocol, see Fig 1. After the training trials, there was a 30-s break, during which the

subjects were shown the instructions for the following test trials. The subjects were allowed to

rest eyes closed for 2–5 minutes between the two sessions.

2.4. Preprocessing for offline analysis

The MEG data were processed with MaxFilter software (version 2.0, Elekta Oy, Helsinki, Fin-

land) [40], including signal space separation (SSS), coordinate frame alignment to the default

head position and orientation and automatic bad-channel detection. Only the signals from the

48 gradiometers above the sensorimotor cortices were included in the data analysis, and the

number and locations of the sensors were the same for all subjects; we also tested including all

gradiometer channels but that yielded poorer classification results. Magnetometers were

excluded due to their lower SNR, and sensors outside the parietal area were excluded in order

to reduce data dimensionality and diminish the effect of visual activity, as it has been shown

that visual imagery can decrease the classification accuracy in MI tasks [41].

2.5. Data analysis

The objective of the off-line data analysis was to improve the online classification accuracy and

to optimize the analysis pipeline for further real-time measurements. Several different feature

extraction algorithms were compared in terms of their ability to detect relevant features for

classification.

2.5.1. Online decoding. For the online feedback, we applied the same, preselected feature

extraction method to all subjects; power spectral densities in 8–30 Hz (bins of 1 Hz) were cal-

culated with the multitaper method over the whole 3-s MI epoch and the selected channels. 50

Fig 1. The stimulus paradigm representing the timing and display of the visual stimuli. The 5-s rest period was followed by 2 s of

preparation, 3 s of MI of either the left or the right hand, and 3 s of feedback.

doi:10.1371/journal.pone.0168766.g001
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most relevant features determined by chi-square statistics were retained for classification with

LDA.

2.5.2. Classifier selection. The most efficient classifier algorithm for offline decoding was

selected by comparing the classification accuracies obtained with two commonly used feature

extraction methods (CSP and STFT) and four different classifiers implemented in the Scikit-

learn software package version 0.17.1 [42]. The efficiency was tested with the left-vs-right clas-

sification, since it was considered the most difficult classification task. The classifiers included

in this comparison were linear discriminant analysis (LDA), support vector machines with a

linear (Linear SVM) and radial basis function (RBF SVM) kernel, and Naïve Bayes (NB). LDA

yielded the best accuracy among these classifiers, although the difference was not significant

(see Section 3.2). Therefore, LDA was selected for comparing the efficacy of the different

features.

2.5.3. Offline decoding. The accuracy for left-vs-right MI and MI-vs-rest classification

was evaluated with 5-fold cross-validation over each session; the trials were split into five

equally-sized partitions, four of which served as training data to calculate feature transforma-

tions, while the fifth partition was used to test the classification performance. The procedure

was repeated five times and the resulting classification accuracies were averaged.

In addition, inter-session classification over the two sessions of each subject was calculated;

one session served as the training data and the other as testing data, and the classification was

performed twice such that both measurements were used once for training and once for test-

ing. The purpose of inter-session classification was to investigate how the variability of MEG

signals due to e.g. physiological changes over sessions affects the classification accuracy.

When comparing the effectiveness of different features in classification, the goal is to extract

only a sufficient subset of relevant features, i.e. the best possible features from each initial fea-

ture space. Therefore, in contrast to many machine-learning studies, we did not use a fixed

number of features, but instead tried to find the optimal set of features from all different fea-

ture spaces derived from the same data. It is also noteworthy that the initial dimensionality of

the feature space varies between different methods, and therefore also the number of relevant

features is not constant.

2.5.4. Time—frequency analysis. Time—frequency features were estimated by multitaper

PSD, STFT and Morlet wavelets (TFR). Time—frequency features were calculated for the

range 8–30 Hz in 1-Hz bins. Prior to STFT, the data were filtered to this frequency range with

a finite impulse response (FIR) filter (filter length equal to the epoch length, transition band

0.5 Hz). In the case of STFT and TFR, temporal resolution and thus the number of features

was lowered by averaging over the time windows 0.0–1.0 s, 1.0–2.0 s, 2.0–3.0 s and 3.0–4.0 s

with respect to the start of the MI epoch. Furthermore, the features were averaged over fre-

quencies, resulting in four average time—frequency features per measurement channel.

2.5.5. Spatial filtering methods. CSP: These transformations were calculated on epochs

filtered to 8–30 Hz. The 3 most discriminative spatial filters for each of the two classes, i.e. the

3 first and last columns of the CSP transformation matrix were selected, and the original sig-

nals were filtered with them, resulting in 6-component time courses.

FBCSP: The data were filtered to 6 frequency bands of 8–12, 12–16, 16–20, 20–24, 24–28

and 28–32 Hz with FIR filters (filter length equal to the epoch length, transition band 1.0 Hz).

CSP transformations and final features were calculated similarly to the basic CSP implementa-

tion and separately for all frequency bands. 6 features per each frequency band, i.e. 36 features

altogether, were retained. The data dimensionality was further reduced by selecting the 18 best

features, according to chi-square statistics, for the final classification.

SSD: This decomposition was performed as described by Nikulin and colleagues [29]. First,

the frequency range of maximum mu-rhythm suppression was determined for each subject
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and session in sensor space using multitaper PSD. Then, the frequency band of interest was set

at the frequency showing the largest suppression ±2.0 Hz, and 4-Hz wide side bands below

and above the band of interest were set as the flanking frequencies. 20 components in left-vs-

right classification and 30 components in MI-vs-rest classification were selected from the

covariance matrices for filtering the original data. The number of components was chosen

empirically.

SSD + CSP: In this case, SSD was used as a preprocessing method, i.e. for extracting the

mu-band oscillatory activity, for noise reduction and for linear decomposition of the data

before CSP filtering. We used the same frequency of interest and side bands that were used

with SSD alone (see above). The data dimensionality was likewise reduced to 20 components

in left-vs-right and 30 components in MI-vs-rest classification. The SSD-transformed signal

components were further transformed with CSP, and 3 CSP-filtered components per class

were retained.

In all aforementioned spatial filtering methods, the filters were calculated only on the train-

ing trials, and the transformations were applied to the test trials. In each case the final feature

vector was obtained by squaring the extracted component signals, averaging the samples over

the selected time window and taking a logarithm of the average. In order to standardize the

features and prevent classifier overfitting, all covariance matrices were regularized with Ledoit

—Wolf Shrinkage (LWS) before feature extraction and classification.

2.5.6. CSP + time—frequency analyses. Finally, the time—frequency decompositions

were calculated from the CSP-filtered data. Similarly to the previous analyses, 6 CSP compo-

nents were retained, and the original signals were projected on those components. PSD, STFT

and TFR were calculated on the component signals and averaged over 1-s time windows and

1-Hz frequency bins.

2.5.7. Statistical analysis. The statistical differences of feature extraction methods were

assessed with Friedman’s test, a nonparametric version of two-way analysis of variance. Since

the results of the inter-session classification are independent repetitions of the same test, we

used the variant of Friedman test that considers multiple observations per each feature—sub-

ject combination; in this case the number of observations was two. In the left-vs-right and MI-

vs-rest classification the number of observations was one; since the folds of 5-fold cross-valida-

tion are not independent of each other, these classification tasks did not meet the criteria of

multiple observations.

In addition, we performed a paired-sample t-test for the results from each fold of the 5-fold

cross-validation. The null hypothesis was that the differences between classification results p(i)

= p(a)–p(b) were drawn independently from a normal distribution, i.e. method a did not yield

better results than method b. The alternative hypothesis was that better results were obtained

with method a than with method b. The t-test was performed for each pair of methods, sepa-

rately for left-vs-right and MI-vs-rest classification results.

2.5.8. Level of mu rhythm suppression. The suppression levels of the 10-Hz (actual fre-

quency range 8–12 Hz) and 20-Hz (16–24 Hz) oscillations were calculated for each subject and

session in order to examine whether MI-induced suppression was correlated with the subject’s

average classification accuracy. Average power was calculated for the baseline (–4.0 ––2.0 s

before the start of the MI epoch) and MI (1.0–3.0 s from the start of the MI epoch) for the gra-

diometers above the sensorimotor cortex. In addition, we calculated the average baseline and

MI power for CSP-filtered signals, using the same parameters for CSP as in feature extraction.

The power values were averaged over epochs, gradiometers (or CSP components) and fre-

quencies, separately for the 10- and 20-Hz rhythms, resulting in average power values during
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baseline and MI periods. The suppression percentage was then calculated as [4]:

suppression ¼ ½ðpowerMI � powerrestÞ = powerrest� � 100 %

Pearson’s correlation between 1) 10-Hz suppression and left-vs-right accuracy, 2) 10-Hz

suppression and MI-vs-rest accuracy, 3) 20-Hz suppression and left-vs-right accuracy, and 4)

20-Hz suppression and MI-vs-rest accuracy were calculated. We also estimated the correlation

between MI-vs-rest cross-validated accuracy and the 10/20-Hz power at rest. In addition, we

computed the suppression percentage and correlations between classification accuracies and

suppression individually for each gradiometer, and visualized the single CSP component

showing the highest suppression for each subject.

2.6. Data availability

The data used in the current analyses are available from the authors upon request.

3. Results

3.1. MI-induced MEG signals

In order to illustrate the MI-induced mu-rhythm suppression and rebound, we calculated

time—frequency representations (TFR) over the time course of the MI epoch and the fre-

quency range 5–45 Hz. The TFRs were averaged over subjects, sessions and epochs, and con-

verted to Z-scores: Z = (x– μ)/σ, where μ is the mean and σ the standard deviation of the TFR

values. Mean and standard deviation were calculated separately for each 1 Hz frequency band

in 0.5 s time windows. The resulting grand-average TFRs for left- and right-hand MI (averaged

over channels) and corresponding spatial patterns (averaged over time) are shown in Fig 2. As

MI is cued to begin at 0 s, there is an initial power increase at frequencies below 15 Hz, proba-

bly reflecting preparation for the following MI. The suppression (ERD) begins at around 0.5 s

and changes to a rebound (ERS) after 3.0 s as MI ends. The 0.5-s delay in the beginning of MI

is due to the reaction time.

3.2. Online left-vs-right classification accuracy

The online classification was calculated for the gradiometer data. Left-vs-right accuracy of the

online feedback was fairly low; several subjects remained at the chance level (50%), and the

average accuracy over subjects was 62.4%. The results for online classification are summarized

in Table 1.

3.3. Offline classifier comparison

The accuracies obtained with the four compared classifiers are presented in Table 2. The aver-

age classification over subjects and two feature extraction methods (CSP and STFT) was calcu-

lated. LDA yielded an average accuracy of 68.60% appearing superior to the other classifiers.

However, the difference was not significant.

3.4. Offline cross-validated classification accuracies

The average cross-validated single-trial accuracy over all methods and subjects was 68.7%

(range 35.7–91.4%) in left-vs-right classification and 77.7% (range 49.3–99.4%) in MI-vs-rest

classification. Applying CSP filtering before time—frequency decomposition improved the

mean accuracies of all time—frequency feature extraction methods.
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SSD+CSP combination yielded the best accuracies in both left-vs-right (mean 73.7%, range

59.3–90.2%) and MI-vs-rest (mean 81.3%, range 66.5–99.4%) classification.

Tables 3 and 4 show the mean accuracies of the left-vs-right classification and MI-vs-rest

classification, respectively.

According to the Friedman test, there was a statistically significant difference between the

classification results obtained using different features, both in left-vs-right (χ2 = 25.48,

p = 0.0025) and MI-vs-rest classification (χ2 = 22.39, p = 0.0077). Post-hoc analysis was con-

ducted using Bonferroni correction for multiple comparisons, implemented in MATLAB

Fig 2. MI-induced MEG signals averaged over subjects. (A) Time—frequency maps for left- and right-hand MI,

representing the Z-score with respect to baseline (–2.0–0.0 s from the cue onset), averaged over subjects, sessions, epochs

and parietal gradiometers. (B) Corresponding topographic maps, representing the average Z-score over subjects, sessions,

epochs and time window of 1.0–4.0 s from the cue onset. The set of 48 planar gradiometers included in the analysis is

indicated by a dashed line.

doi:10.1371/journal.pone.0168766.g002

Table 1. Online left-vs-right MI classification accuracies for each subject and session. Multitaper PSD features and an LDA classifier were used in the

online implementation.

1A 1B 2A 2B 3A 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B MEAN

48,8 58,5 67,7 61,0 64,4 48,8 56,1 92,7 82,9 51,2 78,1 51,2 41,5 70,7 63,4 58,5 65,9 62,4

doi:10.1371/journal.pone.0168766.t001
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Table 2. Mean left-vs-right MI accuracy obtained using CSP and STFT for feature extraction and four

different classifiers.

Classifier CSP STFT MEAN

SVM, RBF kernel 69,56 65,23 67,39

SVM, linear kernel 70,39 65,46 67,92

Naive Bayes 67,42 61,70 64,56

LDA 70,07 67,13 68,60

doi:10.1371/journal.pone.0168766.t002

Table 3. Left vs. right hand 5-fold cross-validation accuracy for each subject and session. The best accuracy for each session is in bold.

SUBJECT/ SESSION STFT Morlet PSD FBCSP SSD CSP SSD+CSP CSP+STFT CSP+Morlet CSP+PSD SUBJECT MEAN

1A 75,3 70,3 69,2 76,6 70,4 82,7 82,8 80,4 81,5 79,0 76,8

1B 75,2 71,5 74,0 76,5 60,3 75,1 65,2 74,0 70,4 70,4 71,3

2A 59,4 63,4 70,2 54,1 66,4 66,3 67,5 59,4 65,0 52,9 62,5

2B 70,4 79,0 69,2 67,7 51,8 65,2 66,5 66,5 70,4 66,6 67,3

3A 69,0 74,1 73,8 68,6 62,9 59,6 77,9 57,4 58,4 59,4 66,1

4A 76,5 75,2 79,0 72,9 60,4 75,1 76,8 70,4 71,6 67,9 72,6

4B 58,1 63,0 56,8 64,1 58,0 79,0 76,5 76,5 79,1 72,8 68,4

5A 80,2 77,7 68,0 77,6 81,5 69,3 80,2 75,3 77,9 74,1 76,2

5B 79,0 82,9 77,9 74,2 82,9 86,6 90,2 89,0 84,1 77,9 82,5

6A 66,6 67,9 71,8 65,7 56,6 67,7 75,2 74,3 71,5 75,3 69,3

6B 86,5 91,4 91,4 86,4 59,4 84,0 90,2 87,7 88,9 86,5 85,2

7A 59,3 65,6 62,9 57,1 65,5 65,4 66,6 63,1 61,9 61,8 62,9

7B 49,2 59,0 56,5 56,5 35,7 61,8 59,3 65,4 65,5 65,6 57,5

8A 55,4 64,0 66,5 57,9 45,5 60,4 65,4 65,4 62,9 67,9 61,1

8B 64,6 61,9 61,8 60,7 61,6 57,0 65,7 65,7 60,7 64,6 62,4

9A 66,8 59,3 61,7 65,4 53,1 69,0 76,5 76,6 73,0 79,0 68,0

9B 49,4 55,4 59,2 44,4 65,4 53,3 70,4 64,3 63,0 55,6 58,0

MEAN 67,1 69,5 68,8 66,3 61,0 69,3 73,7 71,3 70,9 69,3 68,7

doi:10.1371/journal.pone.0168766.t003

Table 4. MI-vs rest 5-fold cross-validation accuracy for each subject and session. The best accuracy for each session is in bold.

SUBJECT/ SESSION STFT Morlet PSD FBCSP SSD CSP SSD+CSP CSP+STFT CSP+Morlet CSP+PSD SUBJECT MEAN

1A 74,0 78,9 79,5 97,5 82,9 95,1 94,4 95,7 94,4 93,8 88,6

1B 83,8 86,3 80,7 99,4 80,2 98,2 99,4 95,7 96,3 92,6 91,3

2A 71,2 69,2 73,8 70,0 70,4 73,2 73,1 72,5 73,2 73,8 72,0

2B 72,1 71,8 72,3 61,5 64,3 71,5 75,2 67,1 67,1 67,1 69,0

3A 85,5 86,5 87,5 70,2 81,5 76,9 79,3 86,1 86,5 80,8 82,1

4A 78,9 80,2 80,2 83,2 72,9 88,2 85,1 85,7 87,6 87,0 82,9

4B 82,6 80,7 85,7 76,3 53,0 87,5 85,7 82,0 83,2 82,6 79,9

5A 67,7 70,2 71,4 73,3 53,0 70,2 68,3 72,1 76,4 73,3 69,6

5B 63,9 67,0 63,3 69,6 67,8 67,8 66,5 63,4 65,2 66,5 66,1

6A 91,3 91,3 88,8 93,2 87,7 90,7 93,2 88,8 90,7 87,6 90,3

6B 78,2 85,7 80,7 88,2 85,2 83,2 85,1 84,5 86,3 78,2 83,5

7A 71,5 72,7 73,9 78,3 64,1 85,1 79,5 85,1 86,4 85,1 78,2

7B 70,2 77,6 74,5 79,5 70,3 84,4 83,2 86,9 87,5 78,2 79,2

8A 73,9 75,2 73,9 68,9 79,2 65,2 80,8 63,9 67,6 64,5 71,3

8B 85,7 86,3 84,5 83,3 82,7 74,5 88,2 71,4 70,7 65,8 79,3

9A 60,5 70,1 68,3 64,6 49,3 58,4 69,5 57,2 62,1 59,0 61,9

9B 80,0 80,8 83,2 63,3 62,9 67,6 75,1 77,0 77,6 74,5 74,2

MEAN 75,9 78,3 77,8 77,7 71,0 78,7 81,3 78,5 79,9 77,1 77,6

doi:10.1371/journal.pone.0168766.t004
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(R2015a; Mathworks Inc., MA, USA) function multcompare. In the case of left-vs-right classifi-

cation, there were significant differences between the mean ranks of SSD and SSD+CSP

(p = 0.0018) and FBCSP and SSD+CSP (p = 0.0029). Other pairwise comparisons of the meth-

ods did not yield significant differences. In case of MI-vs-rest classification, a significant differ-

ence was found between the results of SSD and SSD+CSP (p = 0.0113) and between SSD and

CSP+Morlet (p = 0.0156).

The p-values from paired-samples t-test for the cross-validation folds are shown in Table 5

(left-vs-right) and Table 6 (MI-vs-rest). The results represent the significance level for the

hypothesis that the method on each row is better than the methods on the columns. According

to these results, CSP+STFT and CSP+Morlet were significantly better than most of the other

methods in left-vs-right classification. SSD+CSP yielded significantly better results compared

to SSD, but not to any other methods, probably due to the high variance in the folds of cross-

validation. On the other hand, SSD+CSP was significantly better compared to all other meth-

ods on MI-vs-rest classification.

3.5. Inter-session accuracy

CSP+Morlet yielded the best results in inter-session left-vs-right MI classification (mean

69.1%, range 50.0–85.2%), and the average accuracy over all methods and subjects was 65.4%.

Table 7 represents the results of the inter-session classification. The session indicated in the

Table 5. Statistical tests (p-values) of the differences of the tested methods (first column vs. other columns) in the left-vs-right classification (5

cross-validation folds). Significant (p < 0.05) values are in bold.

STFT Morlet PSD FBCSP SSD CSP SSD+ CSP CSP+ STFT CSP+ Morlet CSP+ PSD

STFT 0.973 0.916 0.180 0.003 0.896 0.350 0.991 0.990 0.875

Morlet 0.027 0.315 0.016 0.000 0.503 0.085 0.906 0.900 0.499

PSD 0.084 0.685 0.038 0.000 0.613 0.121 0.937 0.921 0.602

FBCSP 0.820 0.984 0.962 0.021 0.988 0.638 1.000 1.000 0.991

SSD 0.997 1.000 1.000 0.979 1.000 0.996 1.000 1.000 1.000

CSP 0.104 0.497 0.387 0.012 0.000 0.041 0.966 0.956 0.495

SSD+CSP 0.650 0.915 0.879 0.362 0.004 0.959 0.997 0.995 0.943

CSP+STFT 0.009 0.094 0.063 0.000 0.000 0.034 0.003 0.403 0.016

CSP+Morlet 0.010 0.100 0.079 0.000 0.000 0.044 0.005 0.597 0.015

CSP+PSD 0.125 0.501 0.398 0.009 0.000 0.505 0.057 0.984 0.985

doi:10.1371/journal.pone.0168766.t005

Table 6. Statistical test (p-values) of the differences of the tested methods (first column vs. other columns) in the MI-vs-rest classification (5

cross-validation folds). Significant (p < 0.05) values in bold.

STFT Morlet PSD FBCSP SSD CSP SSD+ CSP CSP+ STFT CSP+ Morlet CSP+ PSD

STFT 0.993 0.860 0.487 0.000 0.961 1.000 0.910 0.984 0.615

Morlet 0.007 0.099 0.156 0.000 0.789 0.999 0.610 0.889 0.200

PSD 0.140 0.901 0.304 0.000 0.926 1.000 0.824 0.971 0.392

FBCSP 0.513 0.844 0.696 0.001 0.982 1.000 0.923 0.993 0.640

SSD 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000

CSP 0.039 0.211 0.074 0.018 0.000 0.991 0.145 0.765 0.001

SSD+CSP 0.000 0.001 0.000 0.000 0.000 0.009 0.001 0.044 0.000

CSP+STFT 0.090 0.390 0.176 0.077 0.000 0.855 0.999 0.997 0.008

CSP+Morlet 0.016 0.111 0.029 0.007 0.000 0.235 0.956 0.003 0.000

CSP+PSD 0.385 0.800 0.608 0.360 0.000 0.999 1.000 0.992 1.000

doi:10.1371/journal.pone.0168766.t006
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first column of the table was used as the training data and the other session for the same sub-

ject as testing data. Subject 3 had only one session recorded due to technical problems and was

thus excluded from this analysis.

According to the Friedman test, there was a statistically significant difference between the

results obtained using different features (χ2 = 20.79, p = 0.014). However, the post-hoc test

conducted with Bonferroni correction did not reveal any significant differences between the

methods.

3.6. The effect of individual mu-rhythm characteristics on classification

accuracy

We investigated how 1) 10- and 20-Hz amplitudes at rest, 2) the suppression of 10- and 20-Hz

rhythms during MI were related to the subject’s average MI classification accuracy. The corre-

lation was calculated both on gradiometer and CSP-filtered data.

For the data averaged over parietal gradiometers, no correlation was found between left-vs-

right mean accuracy and suppression of sensorimotor rhythm during MI (for 10 Hz, r = 0.143,

p = 0.584; for 20 Hz, r = 0.324, p = 0.204). MI-vs-rest mean accuracy was significantly corre-

lated with the 20-Hz suppression amplitude (r = 0.510, p = 0.037) but not with the 10-Hz sup-

pression (r = –0.088, p = 0.737). The level of sensorimotor rhythms during baseline was not

correlated with MI-vs-rest mean accuracy (for 10 Hz, r = –0.260, p = 0.314; for 20 Hz, r =

0.123, p = 0.639). The results were very similar for the CSP-filtered data averaged over compo-

nents. Left-vs-right mean accuracy did not correlate with suppression of SMR (for 10 Hz,

r = 0.182, p = 0.484; for 20 Hz, r = 0.326, p = 0.202), nor did SMR power at rest (for 10 Hz, r =

–0.351, p = 0.168; for 20 Hz, r = –0.200, p = 0.441). Also in this case MI-vs-rest mean accuracy

was significantly correlated with the 20-Hz suppression amplitude (r = 0.582, p = 0.014) but

not with the 10-Hz suppression (r = 0.008, p = 0.977).

Correlations were also calculated separately for each gradiometer included in the analyses

as well as for each CSP-filtered component. Fig 3 illustrates the correlations between mu-

rhythm suppression at each gradiometer and average classification accuracy in left-vs-right

Table 7. Inter-session accuracy for each subject. The indicated session was used as the training data. The best accuracy for each session is in bold.

SUBJECT/ SESSION STFT Morlet PSD FBCSP SSD CSP SSD+CSP CSP+STFT CSP+Morlet CSP+PSD SUBJECT MEAN

1A 60,5 56,8 58,0 54,3 64,2 71,6 69,1 69,1 71,6 69,1 62,2

1B 69,1 71,6 65,4 61,7 69,1 74,1 72,8 71,6 69,1 79,0 64,7

2A 52,6 55,1 52,6 53,9 44,9 50,0 50,0 50,0 50,0 50,0 52,7

2B 54,6 58,4 54,6 59,7 35,1 55,8 55,8 55,8 55,8 55,8 55,4

4A 67,9 74,1 77,8 72,8 58,0 81,5 75,3 79,0 81,5 81,5 73,3

4B 70,4 75,3 72,8 59,3 56,8 69,1 69,1 72,8 75,3 66,7 66,8

5A 81,5 80,3 82,7 71,6 82,7 82,7 84,0 84,0 81,5 77,8 79,5

5B 81,5 84,0 85,2 91,4 82,7 82,7 80,2 82,7 85,2 81,5 81,8

6A 85,2 86,4 84,0 84,0 59,3 70,4 82,7 80,3 81,5 72,8 71,0

6B 66,7 66,7 71,6 81,5 69,1 70,4 66,7 65,4 67,9 64,2 70,1

7A 56,8 67,9 61,7 58,0 56,8 58,0 64,2 63,0 56,8 58,0 56,9

7B 58,0 64,2 58,0 63,0 44,4 61,7 56,8 63,0 66,7 55,6 59,6

8A 63,0 64,2 63,0 54,3 55,6 58,0 64,2 54,3 55,6 51,9 61,3

8B 55,6 60,5 60,5 60,5 55,6 64,2 64,2 61,7 63,0 59,3 59,3

9A 66,7 69,1 65,4 71,6 63,0 60,5 76,5 64,2 65,4 63,0 63,4

9B 65,4 64,2 69,1 69,1 75,3 75,3 72,8 70,4 79,0 75,3 68,7

MEAN 66,0 68,7 67,7 66,7 60,8 67,9 69,0 68,0 69,1 66,3 65,4

doi:10.1371/journal.pone.0168766.t007
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and MI-vs-rest classification tasks. The level of beta-band suppression over the sensorimotor

cortex shows high correlation with both left-vs-right and MI-vs-rest accuracy. Alpha-band

suppression in occipital areas has a fairly high correlation with left-vs-right accuracy. Fig 4

shows, for each subject and session, the spatial pattern of the CSP component showing the

highest mu-rhythm suppression in alpha and beta bands.

4. Discussion

The main objective of this study was to validate optimal feature extraction methods for charac-

terizing single-trial hand MI in the context of an MEG-based neurofeedback system. Multiple

spatial filtering and time—frequency analysis methods, commonly used for feature extraction

from EEG/MEG signals, were evaluated in terms of their ability to capture relevant features for

subsequent classification.

4.1. Evaluation of feature extraction methods

According to our results, spatial filtering methods in general outperformed time—frequency

methods in all single-trial classification tasks. In addition, time—frequency features extracted

from CSP-filtered signals yielded better classification than the corresponding time—frequency

features extracted from gradiometer signals. Among the evaluated methods, the best was the

combination of SSD and CSP, which outperformed other decomposition methods (SSD, CSP

and Filter-Bank CSP) in both left-vs-right and MI-vs-rest classification. CSP has been found

efficient for discriminating single-trial MI patterns [22–24], and our results agreed with these

findings, since already the basic CSP yielded good accuracies in the current study. However,

adding SSD filtering prior to CSP further improved the classification. As has been shown by

Fig 3. Correlations of classification performance and measures of 10/20-Hz activity at each gradiometer. Correlations between (A)

left-vs-right and (B) MI-vs-rest cross-validated accuracy and 10/20-Hz suppression level at 48 parietal gradiometers (left) and all

gradiometers (right). In the case of 48 gradiometers, the black contour lines show the outlines of non-zero correlation values.

doi:10.1371/journal.pone.0168766.g003
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Fig 4. Spatial patterns of the CSP components showing the highest 10/20-Hz suppression for each subject (S) and

session (s). Components showing the highest (A) alpha-band and (B) beta-band suppression during MI. The scale is

normalized to 0–1 (arbitrary units) for clarity. The outermost black contour lines show the outline of non-zero values.

doi:10.1371/journal.pone.0168766.g004
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Blankertz and colleagues [24], CSP is the optimal method for the extraction of variance differ-

ences between two classes, and a prior linear decomposition does not add any new informa-

tion to that. The increase in classifier performance was most likely due to decreased overfitting

compared to CSP alone [36]. The superior performance of SSD+CSP on both left-vs-right and

MI-vs-rest indicates the flexibility of the method in discriminating the relevant oscillatory

activity from noise. Another advantage of spatial filtering with linear decomposition is low

computational cost: the computation time of the proposed methods was negligible (below 0.5 s

per epoch for all methods) and thus they are suitable for a real-time interface. In the real-time

setup, additional time could be saved if the filters were fitted to the training data only in the

beginning of the experiment.

4.2. Accuracies in different classification tasks

As expected, the discrimination between baseline and MI yielded better accuracy than left-vs-

right-hand MI classification. Regarding the possible application of these methods in neuro-

feedback rehabilitation, the classification between baseline and MI might be as important as

left-vs-right classification. Many stroke patients with motor disabilities have difficulties in mu

rhythm modulation in the affected hemisphere. Instead, the unaffected hemisphere shows

increased motor-related activity due to reduced intracortical inhibition, as shown during vol-

untary movements [43] and using paired-pulse transcranial magnetic stimulation [44]. Thus,

in the early phase of rehabilitation it might be more useful to target discriminating rest and

MI, and once the patients are capable of producing a detectable mu-rhythm suppression dur-

ing MI of the affected limb, the training could focus on differentiating right- and left-side MI.

Despite the good results obtained with healthy subjects, it is yet impossible to predict the

performance of the presented methods in patients. Sensorimotor brain activity is often dis-

rupted and variable in patients with a stroke in the territory of middle cerebral artery. There-

fore, training the classifier with individual MEG/EEG data might not be the optimal approach.

Tangwiriyasakul and colleagues [45] reported that using motor execution -related EEG signals

from the unaffected hemisphere of acute hemiparetic stroke patients was sufficient for training

a classifier that differentiated rest from MI. One could also train the classifier with a large data-

base of healthy subjects’ MI-related signals. In this case, the neurofeedback-assisted rehabilita-

tion could be initiated without first collecting the individual (likely low-quality) training data

from each patient. However, decoding one subject’s brain activity using data transferred from

another subject is challenging and requires additional regularization of the spatial filters [46].

Yet another plausible solution for training the classifier might be to use data collected during

passive movements, as suggested by Kaiser and co-workers [47], or during functional electrical

stimulation of the target muscles [48].

The within-session left-vs-right accuracies were higher than the inter-session classification

accuracies, indicating that there was some variation in the measured brain responses between

the two sessions of the same subject. Spatial filtering methods involving CSP performed well

also in this situation, yielding above-chance decoding accuracies for most subjects. These find-

ings suggest that spatial filtering increases the robustness of MI classification also over sessions.

It should be noted that LWS regularization of the covariance matrix was applied to all spatial

filters, as such regularization is known to reduce classifier overfitting.

4.3. Inter-subject differences

Classification accuracies varied substantially across the subjects, even though all of them were

naïve to neurofeedback and BCI training. The best subjects achieved > 90% left-vs-right accu-

racy with several different feature extraction methods, whereas the least successful subjects
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hardly performed over chance level (50%). A likely reason for the low accuracies is the rela-

tively low number of training trials. Previous studies reporting excellent MI classification accu-

racies have used both highly trained subjects and a large number of trials for both training and

testing. For example, the MEG/EEG datasets of Berlin Brain—Computer Interface Competi-

tion [49] include hundreds of MI trials recorded from trained subjects. Foldes and colleagues

[50] reported that only five minutes of training data are sufficient for training an MEG-based

BCI, but they used overt movements instead of MI, and the discrimination was done only

between rest and movement. However, it is noteworthy that in our study up to 91% left-vs-

right MI classification accuracies were achieved despite the small amount of data and

untrained subjects.

We assumed that the inter-subject differences in classification performance could be

explained by the differences in the suppression of mu rhythm during MI. As expected, we

found that the level of the 20-Hz suppression correlated significantly with the subject’s average

accuracy of MI-vs-rest classification. This correlation was slightly stronger on the left hemi-

sphere (Fig 3), probably due to the fact that all subjects were right-handed. In contrast, the left-

vs-right classification accuracy could not be explained by the level of mu rhythm suppression.

A possible reason for this finding is that the spatial patterns could be more relevant in discrim-

inating right- and left-hand MI, and these patterns varied significantly between subjects. This

variation is illustrated in Fig 4, which represents the CSP components with the highest alpha-

and beta-band suppression: the spatial patterns tend to be more similar between sessions than

between subjects.

In contrast to the results of Blankertz and colleagues [51], we did not find a significant cor-

relation between mu rhythm baseline amplitude and classification accuracy. This finding is

probably due to the fact that in our study the baseline amplitude was measured during the

short 5-s rest periods between the MI epochs, whereas Blankertz and colleagues collected the

baseline data in a separate longer measurement during which the subjects were resting eyes

closed. Although in our study the subjects were instructed to perform MI only during the cued

periods, it is possible that movement-related activity was present also during the rest periods.

It has been reported that some subjects are BCI illiterate, i.e. not able to operate an MI-BCI

despite excessive training [51,52], and our results suggest that insufficient mu rhythm suppres-

sion can partially explain this finding. Guger et al. [53] reported that 93% of untrained subjects

achieved over 60% left-vs-right MI accuracy after two sessions of training, and 7% of subjects

remained below 60% performance. Our off-line cross-validated accuracies are not directly

comparable to the aforementioned results, but it is noteworthy that all nine subjects achieved

higher than 59% cross-validated left-vs-right accuracy with SSD+CSP features. It is also likely

that the subjects can improve mu-rhythm modulation, and thus the classification accuracy,

with repetitive BCI training. It would be interesting to examine whether the least successful

subjects are able to achieve sufficient control over the MI-based BCI after several training ses-

sions. On the other hand, unsuccessful subjects could be excluded from further studies by

measuring suppression of sensorimotor rhythms in an initial screening session.

4.4. Limitations and future studies

There were certain limitations in the current study that should be addressed before we can

design a real-time MEG neurofeedback system feasible for e.g. rehabilitation. First, we only

used visual stimuli and feedback in our experimental paradigm. However, proprioceptive feed-

back could enhance the subjective feeling of successful motor imagery and thus be a more nat-

ural feedback modality for neurofeedback learning [54,55], especially during rehabilitation of

motor functions [56]. In a recent study, Piitulainen and co-workers [57] introduced an MEG-
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compatible pneumatic hand/foot stimulator, which would be suitable for delivering the propri-

oceptive feedback. In further studies, we will investigate the effect of simultaneous MI and pro-

prioceptive stimulation to mu rhythm modulation and decoding accuracy.

Second, in the current study we did not apply inverse modeling prior to feature extraction

since our main goal was to examine whether sufficient decoding can be achieved with features

extracted in sensor space and linearly-transformed subspaces. Operating in sensor space and

SSD/CSP-transformed subspaces requires less computation and subject preparation than

source-space analysis; for example, MRI scans prior to MEG measurements are not needed. It

has been argued by Blankertz and colleagues [24] that CSP is an optimal method for finding

variance differences in a given dataset, and inverse modeling does not bring any additional

information to that problem. However, several studies have shown that source-level informa-

tion increases the separability of various MI tasks [17,58,59] and would thus be beneficial in

BCI systems. In addition, source-level analysis would have the spatial specificity required for

targeting specific brain regions. This issue might be especially critical when dealing with classi-

fication tasks with more than two classes, as CSP is often suboptimal for such classification.

Source imaging has been successfully applied to several real-time neurofeedback experiments

using EEG [58,60] and MEG [61–64], and used in an offline classification analysis [65]. The

added value of source-space feature extraction and classification will be evaluated in our fur-

ther studies.

Third, the experimental protocol of this study was synchronous, i.e. the timing of epochs

was pre-determined and the subjects were instructed to follow the visual cues indicating MI

and rest. In recent studies, also asynchronous approaches for MI-BCI feedback have been pro-

posed [66,67], in which the subject is allowed to perform MI at a self-determined pace. In this

case, the data analysis should be done in sliding time windows over the course of the measure-

ment, which requires more computation than processing one epoch at a time. In the current

study, feature extraction and classification were done only during the discrete MI epochs and

the feedback was shown immediately after the epoch. In the asynchronous feedback paradigm,

the output of the classifier should be updated continuously, preferably with a minimal delay.

Although this approach might be computationally more challenging, the asynchronous para-

digm would be more realistic and thus give the user a stronger feeling of control over the neu-

rofeedback system.

5. Conclusions

We compared different feature extraction methods for classifying MI-related MEG signals

measured from healthy, untrained subjects. Spatial filtering with combined SSD and CSP out-

performed other methods in discriminating left- vs. right-hand MI and rest from MI. Other

spatial filtering methods yielded good accuracies as well, and CSP filtering also improved the

discriminability of all time—frequency features. The level of 20-Hz suppression during MI

correlated with the subjective MI-vs-rest classification accuracy, implying the potential use of

20-Hz suppression as a pre-screening tool before BCI training.
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