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Abstract

Advanced persistent threats (APT) combine a variety of different attack forms ranging from
social engineering to technical exploits. The diversity and usual stealthiness of APT turns
them into a central problem of contemporary practical system security, since information on
attacks, the current system status or the attacker’s incentives is often vague, uncertain and
in many cases even unavailable. Game theory is a natural approach to model the conflict
between the attacker and the defender, and this work investigates a generalized class of
matrix games as a risk mitigation tool for an advanced persistent threat (APT) defense.
Unlike standard game and decision theory, our model is tailored to capture and handle the
full uncertainty that is immanent to APTSs, such as disagreement among qualitative expert
risk assessments, unknown adversarial incentives and uncertainty about the current system
state (in terms of how deeply the attacker may have penetrated into the system’s protective
shells already). Practically, game-theoretic APT models can be derived straightforwardly
from topological vulnerability analysis, together with risk assessments as they are done in
common risk management standards like the ISO 31000 family. Theoretically, these models
come with different properties than classical game theoretic models, whose technical solu-
tion presented in this work may be of independent interest.

1 Introduction

The increasing heterogeneity, connectivity and openness of today’s information systems often
lets cyber-attackers find ways into a system on a considerably large lot of different paths.
Today, security is commonly support by semi-automated tools and techniques to detect and
mitigate vulnerabilities, for example using topological vulnerability analysis (TVA), but this
progress is paired with the parallel evolution and improvements to the related attacks. APTs
naturally respond to the increasing diversity of security precautions by mounting attacks in a
stealthy and equally diverse fashion, so as to remain “under the radar” for as long as is required
until the target system has been penetrated, infected and can be attacked as intended. Counter-
measures may then come too late to be effective any more, since the damage has already been
caused by the time when the attack is detected.
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Mitigating APT's is in most cases not only a matter of technical precautions, but also some
sort of fight against an invisible opponent and external influences on the system (coming from
other connected systems but primarily due to the APT remaining hidden). Thus, any security
measure taken may or may not be effective on the current system state, depending on how far
the APT has evolved already. The question of economics then becomes particularly difficult
and fuzzy, since the return on security investments is almost impossible to quantify in light of
many factors that are outside the security officer’s scope of influence.

1.1 Related Work

In the last decade, the number of APTs [1] increased rapidly and numerous related security
incidents were reported all over the world. One major reason therefore is that APTs are not
focusing on a single vulnerability in a system (which could be detected and eliminated eas-
ily), but are using a chain of vulnerabilities in different systems to reach high-security areas
within a company network. In this context, adversaries often exploit the fact that most of
the protection efforts go into perimeter protection, so that moving inside the infrastructure
is much easier and the attacker has a good chance to go unnoticed once being inside. Over-
coming the perimeter protection by social engineering or malware (even unknowingly) car-
ried inside by legitimate persons (bring-your-own-device problem) are only two ways to
penetrate the perimeter security. Once the perimeter has been overcome, insider attacks are
considered as an even bigger threat [2]. Extensive guidelines and recommendations exist to
secure this internal area [3], e.g., the demilitarized zone (DMZ) but the intensity of the sur-
veillance is limited. Specialized tools for intrusion detection or intrusion prevention require
a large amount of administration and human resources to monitor the output of these
systems.

APTs are characterized by a combination of several different attack methods (social engi-
neering, technical hacks, malware, etc.) that is being tailored to and optimized for the specific
organization, its IT network infrastructure and the existing security measures therein. Often,
even yet not officially reported weaknesses, known as zero-day vulnerabilities, of the network
infrastructure are in additional use. Especially the application of social engineering in the
beginning stages of an APT lets the attacker bypass many technical measures like intrusion
detection and prevention systems, so as to efficiently (and economically) get through the outer
protection (perimeter) of the IT network. A prominent APT attack was the application of the
Stuxnet malware in 2008 [4-6], which was introduced into Iran’s nuclear plants sabotaging the
nuclear centrifuges. In the following years, other APT attacks, like Operation Aurora, Shady
Rat, Red October or MiniDuke [1, 7, 8] have become public. Additionally, the Mandiant
Report [9] explicitly states how APTs are used on a global scale for industrial espionage and
that the attackers are often closely connected to governmental organizations.

The detection of APT attacks has therefore become an object of extensive research over the
past years. As perimeter protection tools are occasionally failing to prevent intrusions, anom-
aly detection methods have been inspected to provide additional protection [10, 11]. The main
idea is to detect the presence of an adversary inside an organization’s network, based on the
adversary’s actions when it moves from one spot to another, or tries to access sensitive data
(honeypots). Often, the detection rests on log file analysis, with data collected from all over the
network and applications therein. Designated logging engines (e.g., syslog (http://tools.ietf.
org/html/rfc5424) or logging management solutions (e.g., Graylog (http://graylog2.org/) are
usually in charge here. Nevertheless, the detection of exceptional events in these log files alone
is insufficient, since anomalies are often exposed not before events are correlated with each
other [12, 13]. Since today’s systems are heavily connected and interchange a large amount of
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data on a regular basis, the size of the logging information increases drastically, making an
evaluation quite difficult.

An example for a tool realizing this approach is AECID (Automatic Event Correlation for
Incident Detection) [14, 15]. AECID enforces white-lists and monitors system events, their
occurrences as well as the interdependencies between different systems. In the course of this,
the system is able to get an overview on the “normal” behavior of the infrastructure. If some
systems start to act differently from this normal behavior, an attack is suspected and an alert is
raised.

Whereas AECID (and similar tools) are detective measures (as they trigger alerts based on
specific events that have happened already), our approach in the following is preventive in the
sense of estimating and minimizing the risk of a successful APT from the beginning (cf. 1.2).
Game theory is here applied to optimize the defense against a stealthy invader, who attempts
to sneak into the system on a set of known paths, while the defender does its best to guard all
these ways simultaneously. This is the abstract version of the situation that is normally summa-
rized under the term APT.

Game theory appears as a natural tool to analyze conflicts of interest, such as obviously arise
between the defender and the attacker mounting an APT. Powerful techniques to defend
against stealthy takeover have been defined (partially originating from [16, 17] but also based
on a variety of precursor and independent approaches, such as collected in [18]), but a method
that fits into established risk management processes and can be instantiated with vague, fuzzy
and qualitative risk assessments (such as uttered by domain experts) is demanding yet missing.
Particularly intricate are matters of social risk response, say, if an enterprise seeks to minimize
losses of reputation besides direct costs; assessing the public community’s response to certain
actions being taken is a vague and difficult issue, to which sophisticated game theoretic [19-22]
and agent based models [23] can be applied for an analysis and risk quantification. A recognized
feature of any game-theoretic treatment of APT and in general every cyber-security scenario is
the lack and asymmetry of information (say, the absence of knowledge about the attacker’s strat-
egy spaces or payoffs, cf. [24, 25], while the attacker may have full information about the target
system). This asymmetry is even stronger than what can be captured by many game-theoretic
models, since organizational constraints may enforce the defender to act only at certain points
in time, while the attacker is free to become active at any time. That is, the game is discrete time
for one player, but continuous time for the other player—a setting that is hardly considered in
game-theoretic literature related to security, and as such a central novelty in this work.

As we will show later (cf. Section 10.1 and Lemma 9), matrix games are nonetheless a
proper model to account for what the defender can do against an APT, if we confine ourselves
with the goal of playing the game to the best of our own protection and allow the outcomes to
be random and unpredictable. Under this relaxation over the conventional game theoretic
modelling, we can account for the outcome to be dependent on an action that is taken at differ-
ent points in time, and especially also for actions that were interrupted before they could carry
to completion. This addresses the issue identified by [26], who pointed out that moves may
take a variable amount of time rather than being instantaneous (and thus atomic).

Ultimately, a significant obstacle for practitioners in the application of any game theoretic
model is the lack of understanding of the ingredients to the game. That is, no matter how
sophisticated the model may be, it nevertheless needs to be instantiated with whatever data is
available. In many cases, this data is either qualitative (fuzzy) expert knowledge (formulated in
some taxonomy, e.g., [27]) or obtained from simulation (see [28] for one example). Either may
not be suitable to instantiate the proper APT model, even though the APT-game model would
be quite sophisticated and powerful (such as [29]) in its capabilities for risk mitigation. In any
case, this takes us to empirical game-theoretic models; a category into which this work falls.
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1.2 Our Contribution

We present a novel form of capturing payoff uncertainty in game theoretic models. We deviate
from standard games in the conceptual way of measuring the outcome of a gameplay not in
crisp terms, but by an entire probability distribution object. That is, we play game theory on
the abstract space of distributions for the following reasons:

1. The specification of losses and payoffs in a game is often difficult: how would we accurately

quantify the results of a defense in light of an attack? Do we count the number of infected
machines (such as done in [16])? Shall we work with monetary loss (causing difficulties in
how to “price-tag” loss of reputation or consumer’s trust)? Conversely, can we play games
over a categorical scale of payoffs, such as risk is being quantified in many standards like
ISO 31000 [30] or similar?

We can elegantly avoid any such issue by letting the game being defined by any outcome
that can be ordered (as in conventional game theory), but in addition, allowing an action to
have many different random outcomes (this is usually not possible in standard games). In
doing so, we gain a considerable flexibility and degree of freedom to tackle a variety of
issues, which we will discuss later on.

. There is a strong asymmetry in the player’s information in many senses: first, the game

structure itself is not common knowledge, since the defender knows only little about the
opponent, while the opponent knows very much about the defender’s infrastructure (as lies
in the nature of APTs, since these typically include an a-priori phase of investigation and
espionage). Second, the game play is different for both players, since moves are not mutu-
ally observable, nor must happen instantaneously or even at the same times.

Again, this can be captured by letting the effects of action be nondeterministic and random
even if both, the attacker’s and defender’s action were both known.

. Any game-theoretic model for security may itself be only part of an outer risk management

process, and as such must be “compatible” with the surrounding workflows, which cover
APT mitigation among other aspects. That is, the game theoretic model’s input and output
must be useful with what the risk management process can deliver and requires. Our APT-
games will be designed to fulfil this need.

. Conventional stochastic models like Bayesian games indeed also capture uncertainty, but

do so by letting the modeler describe a variety of different possible game structures, among
which nature chooses at random in the actual gameplay. While different such structures
can embody different outcomes, and the likelihood for these can be specified as a distribu-
tion (similar to what we do), each of these possible game structures must be specified in the
classical way, thus effectively “multiplying” the problems of practitioners (if one game is dif-
ficult to specify, the specification of several ones does not appear to ease matters). Our
approach avoids these issues by working with empirical data directly, and keeping the game
models simple at the same time.

In light of the last point in particular, we will restrict our attention in the following to the

problem of how to define games over qualitatively assessed outcomes that may be random.
That is, the central question that this work discusses is essentially a form of reasoning under
uncertainty:

Given some possibilities to act, what would be the best choice if the consequences of an
action are intrinsically random?

PLOS ONE | DOI:10.1371/journal.pone.0168675 January 3,2017 4/43



@° PLOS | ONE

Defending Against Advanced Persistent Threats Using Game-Theory

We will show how to answer this question if the randomness can be modeled in the most
general form by specifying probability distributions for the outcome. However, unlike normal
optimization that maximizes some numeric quantity derived from the distribution of a ran-
dom variable X, our games will optimize the shape of X’s distribution itself.

The presentation will heavily use examples for illustration, yet the concepts themselves will
be described and also defined in a general form. To get started, consider the following example
of decision making under the setting that we consider. Example 1 is about the protection of
intellectual property rights (IPR), whose theft can be a reason to mount an APT.

Example 1 (Assigning IPR Responsibilities). Assume that an enterprise runs a project and is
worried about protection of IPR. To mitigate this issue, one or more persons shall be put in charge
of IPR protection. For this, say, three options are available:

1. Assign IPR responsibility to one person: This will increase the workload of the employee, and
must be made w.r.t. available resources and skills. Neither is precisely quantifiable nor may be
sufficient at all times. Thus, even assuming a strong commitment of the person to its role, some
residual risk of damage occurring remains (human error of subordinates cannot be ultimately
ruled out despite any strong supervision).

2. Assign IPR responsibility to a team of two or three persons: Resources and skills may be
much richer in this setting, but there is a danger of mutual reliance on one another, such that
in the worst case, no-one really does the job (as a result of social coordination failure). Chances
for this worst case to occur may be even higher than for option 1.

3. Do security/ IPR training sessions: here, we would completely rely the joint behavior of the
employees and their commitment to the confidentiality of project content and adherence to
the training’s messages. Nevertheless, chances for IPR loss due to human error (e.g., an unen-
crypted email leaking confidential information, or similar) may be lowered only temporarily,
so that the training would have to be repeated from time to time.

The optimal choice in Example 1 is not obvious, since consequences are not all entirely
guaranteed for always foreseeable. Intuitively, we would go with the setting under which loss
of intellectual property is least likely. Later, in Section 4, we will construct an ordering relation
= that does exactly this if the loss distributions are defined on a scale of damage whose maxi-
mum is the loss of intellectual property (e.g., quantified by the business value attached to it).
So, if we are somehow able to model possible random outcomes in each of the three scenarios,
we can (algorithmically) compute the “best” (i.e., =-minimal) loss distribution to be the best
choice among the three above. This is a matter of loss distribution specification, which we will
discuss in Section 5.1.

Finally, we remark that all of the theory sketched here has been implemented in R (includ-
ing full fledged support of multi-criteria game theory based on distributions as discussed in
section 8.1), to validate the method and to compute the results for the examples (such as in
Section 9) shown here.

1.3 Organization of the paper

Section 2 briefly introduces the tools and concepts that our models are built upon. We will
strongly rely on TVA (see Section 2.1) and human expertise in our model building, which we
believe to be a viable approximation of how security risk management works in practice. Sec-
tion 3 presents an example, which we will carry through the article to illustrate the concepts
and approach as a whole. Section 4 introduces the theory of how decisions can be made if their
outcome is rated through an entire probability distribution object (rather than a number), and
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Section 5 takes this basis to define games, equilibria and to highlight similarities but also an
important qualitative difference between the so-generalized games and their classical counter-
parts. Sections 6 and 7 apply the framework to APT's by picking up the example from Section
3, and give algorithmic details on how to practically work out results (the aforementioned dif-
ferences between our and classical games call for various mathematical tricks here). Section 8
briefly discusses generalizations towards multi-criteria decision making. Section 9 finishes the
example from Section 3 by presenting results and security protection advices obtained from
our game-theoretic APT mitigation game. Section 10 presents a critical discussion in terms of
answering direct questions that were collected from practical experience with the proposed
method in a research project (see the acknowledgment section at the end of the paper). Con-
clusions are drawn in Section 11.

2 Preliminaries and Notation

Vectors and matrices will be denoted as bold-face letters in lower case for vectors and upper
case for matrices. n x m-Matrices over a set M are denoted as A € M™*", and the symbol
(a,),en = (a,).-, is a shorthand for sequences. We use upper case normal font letters like X to
denote random variables (RVs), and write X ~ F to express that the RV X has the distribution
function F. The respective density belonging to F is the corresponding lower case letter f, and
where necessary, we add the subscript Fx or fx to indicate the related RV for the density or dis-
tribution. For a given (finite) set M, we let S(M) be the set of all discrete probability distribu-
tions (the simplex) over M. Likewise, all families of sets, RVs or distribution functions are

denoted in calligraphic letters (such as ¢/, S or F). Estimates of a value are indicated by a hat,
such as F, f , to mean empirical distributions (normalized histograms). Approximations of an
object x or F (scalar, distribution, etc.) are marked by a tilde, e.g., X, F.

2.1 Topological Vulnerability Analysis

Topological vulnerability analysis [31] is the systematic identification of attacks to a system,
based on the system’s structure and especially its network topology. The process usually con-
sists of creating a complete picture of the infrastructure augmented by all available details
about the components. Modeling the system’s topology as an (undirected) graph G(V, E) with
a designated target node v, € V, we can use standard path searching algorithms to identify
paths from the exterior of G towards the target node v,. Whatever structure is dug up by the
TVA, an immediate question concerns the applicability of known attack patterns to the infra-
structure model (similar to virus patterns being looked up in software). Graph matching tech-
niques (see [32, 33] for example) appear as an interesting tool to apply here. The known (or
suspected) vulnerabilities/exploits related to the nodes in V then determines which paths are
theoretically open to vy to successfully attack the system. These attack paths are thus sequences
of vulnerabilities (augmented with the respective preconditions to exploit a vulnerability), and
are the main output of a TVA. An APT can then (in a slightly simplified perspective) be viewed
as the entirety of attack paths, and is physically mounted by sequentially working along a cho-
sen attack path in a way that avoids detection of the attack at all stages (stealthy). Particular
practical risk arises from exploits of not yet known vulnerabilities, which are commonly called
zero-day exploits. Uncertainty about these partially roots in the complexity of the network, so
that graph entropy measures (see, e.g., [34]) may be considered as a measure to help quantify-
ing the chances of attacks coming over paths that were missed during the analysis. The practi-
cal handling of this residual risk is often a matter of using domain knowledge, collecting
expert opinions, experience and information mining, combined with suitable mathematical
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ftp, rsh, ssh
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o (Machine 1)
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-

ftp, rsh '

Database Server
(Machine 2)

Fig 1. Infrastructure from [38] to illustrate game-theoretic APT modeling.
doi:10.1371/journal.pone.0168675.9001

models (e.g., [35, 36]). Our model immanently includes a zero-day vulnerability measure, as
will be discussed in Section 7.2.

2.2 Attack Graphs and Attack Trees

The entirety of ways into a system, including intersections and alternative routes on attack
paths makes up the attack graph [37]. It is essentially a representation based on the system
topology G, in which outgoing links of a node v are retained only if some exploit on v enables
reaching v’s neighbor (see Figs 1 and 2 for an example). In terms of representation, an attack
graph is to be distinguished from an attack tree, which is usually an AND/OR tree representing
the possible exploit chains in a different way. Regardless of which is available, the main object
of interest for our purposes is the set of attack paths, which directly corresponds to the action
set of player 2 in our APT-games.

2.3 Extensive Form Games

Towards a game theoretic model of APT, we will use extensive form games (EFGs). While a
full fledged formal definition of EFG is lengthy and complex, it will suffice to give a description
of it to highlight the similarities to APTs. Formally, EFG are described by a tree T(V7, E7), with
a designated root node that represents the starting stage in the game. Consequently, T has
edges directed outwards from the root. For an APT, the root corresponds to the (hypothetical)
point representing the exterior of the network graph G. The EFG is played between a set of (for
our purposes two) players, including a hypothetical player “chance” that represents random
moves in the game. Each node v € Vin the game tree T(Vy, Ep) carries an information on
which player is currently at move (including the “chance” player). Furthermore, moves that
are indistinguishable by other players are collected in a player’s information set. This, from the
opponent’s perspective, represents the uncertainty about what a player has currently done in
the game. In an APT model, the information set would correspond to possible locations where
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<:> final result

Fig 2. Example Attack Graph [38].
doi:10.1371/journal.pone.0168675.9002

the attacker could currently be (again, recalling that an APT is stealthy). The EFG description
is completed by assigning a vector of outcomes to the leaf nodes in the game tree. Normally,
the outcomes are real values and specified for all players. Viewing an APT as an EFG, we
would thus require to specify our own damage when the APT has been carried to the end (i.e.,
the target node v, has been reached), but also the payoff to the adversary would needed to be
known. The latter is a practical issue, since the uncertainty in the game is not only due to the
attacker’s moves themselves, but also caused by external influences outside any of the player’s
influences. Shifting all this uncertainty induced exteriorly to the chance-node in the EFG
description appears infeasible, since much of it may depend on the particular action and cur-
rent (even past) moves of both players (defender being player 1 and the attacker being player 2
in an APT game). However, given that the two players have different information on the cur-
rent stage of the game play (only the attacker knows its precise position, the defender knows
nothing; not even the presence of the attacker is assured), defining the information sets
appears hardly doable.
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Since the concept of EFG as being games with imperfect information essentially rests on
information sets, any best behavior in the game play will inevitably rest on hypotheses on the
player’s moves. For an EFG, we would describe these hypotheses as probability distributions
on the information sets. In lack of these, we can only model the outcome based on the known
defender’s actions and assuming the attacker to be possibly everywhere in the system. Practi-
cally, these hypotheses will rarely be available as hard figures and mostly come in qualitative
terms like “low”, “medium” or “high” risk. Classical game theory is not naturally designed to
work in such fuzzy terms.

Finally, an assumption of frequent criticism concerns the game model to be common knowl-
edge to both players. This is certainly questionable in APT scenarios. In fact, a defender may in
practice only have limited and widely uncertain information about the attacker’s incentives,
current moves, current location or even its presence in the game. Thus, the information set
would in the worst case cover the entirety of the game graph, and neither is the payoff to the
attacker precisely quantifiable in most cases.

To avoid all these issues, we propose to replace the attacker’s payoffs by our own losses (in
an implicit assumption of a zero-sum competition), in which an equilibrium behavior is a
provable bound (see Lemma 9) to the payoff for the player having modeled the game. Second,
we avoid difficulties of uncertain payoffs by defining the game play itself as a one-shot event,
in which both players choose their strategies for the round of the game and the payoff is deter-
mined by that choice (thus, shifting all matters of uncertainty about where a player is in the
game entirely to the payoffs). To this end, we will model an APT as a game with complete
information but uncertain payoffs. In fact, the payoffs will be entire probability distributions
rather than numbers.

3 A Running Example

Throughout this work, we will illustrate the steps and concepts using a running example bor-
rowed from [38]. This reference describes a simple version of TVA (see, e.g., [31]) and attack
graph modeling, based on a small infrastructure that is shown in Fig 1: The system consists of
three machines (numbered as 0, 1 and 2), with several services being open on each node (such
as file transfer protocol (FTP), remote shell (RSH) and secure shell (SSH)). The adversary
attempts to gain access to machine 2, hereafter denoted as (the predicate) full access

(2) . Towards its goal, the attacker may run different exploits from various points in the net-
work, such as:

o FTP- or RSH-connections from a node x to a remote host y, hereafter denoted as
ftp rhosts(x, y),and rsh (x, y), respectively.

« a secure shell buffer overflow at node y, remotely initiated from node x, hereafter denoted as
sshd bof (x, y).

« local buffer overflows in node x, hereafter denoted as 1local bof (x).

The actual APT is the attempt to use these exploits (and combinations thereof) in a stealthy
fashion to penetrate the entire system towards establishing full access to the target machine 2.
Naturally, exploits of any kind are subject to preconditions holding on the machine from
which the exploit is initiated. We denote such a precondition on machine x to target a
machine y in predicate notation as ftp (%, y), rsh(x, y) and ssh (x, y), w.r.t. the pro-
tocol being used. Depending on which services are enabled and responsive on each machine, a
TVA can then be used to compile an attack graph (see Eq 2), which roots at the initial condi-
tion of having execution privileges on machine 0, denoted as execute (0), from which

PLOS ONE | DOI:10.1371/journal.pone.0168675 January 3,2017 9/43



@° PLOS | ONE

Defending Against Advanced Persistent Threats Using Game-Theory

attacks can be mounted under the relevant preconditions. A particular APT scenario can be
viewed as a path in the graph that starts from the root (execute (0) ) via trust relations estab-
lished between connected machines x and y (denoted as t rust (x, y) ), until the goal

(full access(2)).

Running the plain task of computing and enumerating all paths in the attack graph from
execute (0) to full access (2) digs up 8 attack vectors in our example. Each of these
corresponds to one particular APT scenario, and the entirety of which makes up the adver-
sary’s action set, denoted as AS, (the subscript is used for consistency with the subsequent
game theoretic model, in which the attacker is player 2. The defender will be player 1,
respectively).

The next step in the risk mitigation process is the derivation of countermeasures from the
identified attacks, such as, for example, the deactivation of services (to violate the necessary
preconditions), or a patching strategy (to remove buffer overflow vulnerabilities), to name
only two possibilities. Alas, none of these precautions is guaranteed to be feasible or even to
work, as for instance:

« services may be vital to the system, say, deactivating an FTP connection may render the ser-
vice offered by machine 1 useless.

o patches may work against a known buffer overflow, but an unknown number of similar
exploits may nonetheless remain (thus enabling zero day attacks upon vulnerabilities found
and offered for sale on the black market).

On the positive side, even unknown malware may be classified as such based on heuristics,
experience or innovative antivirus technologies, all of which adds to the chances for the identi-
fied mitigation strategies to succeed. The practical issue here is, however, to deal with the resid-
ual risks and the inevitable uncertainty in the effectiveness of a protection. Ways to capture
and handle these issues are theoretically described in Section 4 and applied to this example in
Section 6.

For the time being, let us assume that a (non-exhaustive) selection of countermeasures has
been identified and listed in Table 1. We call this list the defender’s action set, denoted as AS; to
indicate the defender as being player 1 in the subsequent APT game (Section 6). We leave this
set incomplete here for the only sake of simplicity (in reality, the analysis would dig up a much
richer set of countermeasures, such as can be based on the security controls catalog of relevant
norms as ISO 27001 [39] or related).

Table 1. Security controls (selection).

Countermeasure Comment
deactivation of services (FTP, these may not be permanently disabled, but could be temporarily turned
RSH, SSH) off or be requested on demand (provided that either is feasible in the

organizational structure and its workflows)

software patches this may catch known vulnerabilities (but not necessarily all of them), but
can be done only if a patch is currently available

reinstalling entire machines this wipes out unknown malware but comes at the cost of a temporary
outage of a machine (thus, causing potential trouble with the overall
system services)

organizational precautions for example, repeated security trainings for the employees. These may
also have only a temporary effect, since the security awareness is
raised during the training, but the effect decays over time, which makes
a repetition of the training necessary to have a permanent effect.

doi:10.1371/journal.pone.0168675.1001
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Table 2. Example assessment of a security precaution.

Countermeasure: patching

Aspect Expert’s assessment

applicability not always available

effectiveness low or high (depending on the exploit)

cost low to medium (e.g., if the system needs to be rebooted)

doi:10.1371/journal.pone.0168675.t002

In general, the effect of an action, precaution, countermeasure, etc. is in most cases not
deterministic and influenced by external factors beyond the defender’s influence and not even
fully determined by the attacker’s actions. Furthermore, actions on both sides are usually not
for free, and costs/losses on the defender’s side are induced by system outages (say, during a
reinstall), staff unavailability (say, when people are in a training that itself may be costly), etc.
Some of these costs may be precisely calculated, but others (say, if the system is offline during a
reinstall) may depend on the current workload and thus be difficult to quantify.

Therefore, a qualitative risk assessment is often the only practical option (and an explicit
recommendation by various standards such as ISO 31000 and by the German Federal Office of
Information Security (BSI)). For a game theoretic analysis, however, this is inconvenient as it
may result in a quite vague assessment of a countermeasure that may look like shown in
Table 2.

Similar assessments can be made for other protective measures as well, with quantitative
figures occasionally being available (such as the costs for a security training, or the cost to
install a new firewall or intrusion detection system). However, ambiguous and even inconsis-
tent opinions may be obtained on the effectiveness and applicability of a certain action. Even if
only one expert does the assessment in categorical terms as shown in Table 2, uncertainty may
at least arise from none of the offered categories being appropriate for the real setting. That is,
with “medium effectiveness” being a vaguely understood term in that context, an expert may
utter a range of possibilities rather than confining her/himself to a specific statement. The
example in Table 2 illustrates this by saying that the effectiveness of a patch can be either high
(if the patch closes precisely the buffer overflow that was intended by the adversary), or even
low, if the exploit has already been used to install a backdoor, so that the buffer overflow—
even if it gets fixed—is no longer needed for the APT to continue. What is even worse, both
assessments are at opposite ends of the scale (low/high), and can both be justified, thus telling
hardly anything informative in this case.

It is this point, where further opinions should be sought, which naturally will create a num-
ber of different assessments, some of which may be even mutually inconsistent (see Fig 3 for
an illustration of how different opinions may accumulate at different points on the risk scale).

All this hinders the application of conventional decision or game theory, since in either
approach (game or decision theoretic), we require a reasonably measurable effect for an action,
and also a way to uniquely rank (order) different effects when a “best” action is sought.

4 Modeling Uncertainty for Decision-Support

If the outcomes of an action are uncertain, even random, then the most powerful model to
express these would be to:

o collect as much data, expert opinions, etc. as is available,

« and compile a probability distribution from the available data, to capture the uncertainty in
the assessments. Though this preserves all available information in the distribution object,
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Fig 3. Agreeing vs. disagreeing expert ratings.

doi:10.1371/journal.pone.0168675.9003

the issue of working with it is more involved and a central technical contribution in this
work.

In the best case, the assessments turn out to be quite consistent, with only a few outliers, in
which case we may be able to define a reasonable representative (say, the average assessment;
see Fig 3a). In other cases, however, the distribution may be multimodal, with each peak corre-
sponding to different answers that may all have their own justification as being plausible (Fig
3b shows an example of many experts agreeing on either low or high effectiveness of the patch-
ing strategy).

Finding a best action is typically done by assigning a utility value u : AS, x AS, — R (see
Section 2.2 in [40]) to the actions to choose from AS;, AS,, and looking for the maximal such
utility for both sides (defender and attacker). In quantitative risk management, a popular
choice for this utility value is the expected damage, computed as

risk = damage x likelihood, (1)

which enjoys wide use throughout the literature (e.g., the ISO 31000 [30] or ISO 27000 [41]
family of standards). This convention is easily recognized as being the first moment of some
(usually not explicitly modeled) payoff distribution, and as such, is not satisfying in practice, as
the mean tells us nothing about possible variations about it (Fig 4 illustrates the issue graphi-
cally). So, the variance would be the next natural value to ask for in addition to Eq (1).
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doi:10.1371/journal.pone.0168675.9004

Continuing this approach, we can describe a distribution more and more accurately by using
more and more moments, and indeed, the mapping

¢: F—0 = (E(L")), .y € R

neN
provides a bijective link between a distribution function F and a representative infinite
sequence of real numbers, provided that all moments exist. In a simple use of this representa-
tion, we could just lexicographically compare the sequences, letting the first judgement be
based on the mean, and in case of equality, compare the variances, and so on. Such an order-
ing, however, appears undesirable in light of easy to construct examples that yield quite
implausible preferences. Fig 4 shows an example.

An approach that preserves all information is treating the moment sequence as a hyperreal
number ¢(F) € *R, so that we get a “natural ordering” on the distributions as it exists in the
hyperreal space (R, <); see [42] for a full detailed treatment, which we leave here as being out
of the scope of this work.

Nevertheless, it is important to recognize that the trick of embedding a distribution in the
ordered field ("R, <) of hyperreals equips us with a full-fledged arithmetic applicable to ran-
dom payoff distributions, as well as a stochastic ordering, so that “optimality” of decisions can
be defined soundly (later done in Definition 3). This implies that many well known and useful
results from game and decision theory remain applicable in our setting (almost) as they are.
Essentially, this saves us the labour of re-establishing a lot of theory, as would be necessary if
another stochastic order (such as one in [43]) would be used.

Definition 2 will suitably restrict the class of loss distributions to ensure that all moments
exist. Before that, however, let us briefly recap where the loss distributions will come from:

Given the attack graph that describes all APT scenarios and treating it as an EFG game
description, we apply the same conversion of an EFG into the normal form of the game, which
is a matrix. Let n = |AS; |, m = |AS,| be the number of threat mitigation strategies and possible
exploits, which correspond to the action sets of both players (paths through the infrastructure
determined by the possible exploits; cf. Table 3). Whereas a classical game would be described
as a real valued payoff matrix A € R™", the outcome in the APT game is not deterministic

and as such will be described by a matrix of RVs A = (L;);\",. Each variable L; describes the

ij=1°
random loss (effect) of taking mitigation strategy i relative to the unknown j-th move of the

adversary.
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Table 3. APT scenarios (adversary’s action set AS,, based on Fig 2).
1| execute (0) — ftp rhosts(0,1) — rsh(0,1) — ftp rhosts(1,2) — sshd bof (0,1) — rsh
(1,2) — local bof(2) — full access(2)

2 | execute (0) — ftp _rhosts(0,1) — rsh(0,1) —rsh(1l,2) — local bof (2) — full access
(2)

3 | execute (0) — ftp rhosts(0,2) — rsh(0,2) — local bof (2) — full access(2)

4 | execute (0) - rsh(0,1) — ftp rhosts(1l,2) — sshd bof(0,1) — rsh(1,2) — local bof
(2) — full access(2)

5| execute (0) - rsh(0,1) - rsh(l,2) — local bof (2) — full access(2)
6 | execute (0) — rsh(0,2) — local bof (2) — full access(2)

7 | execute (0) — sshd bof(0,1) — ftp rhosts(1l,2) — rsh(0,1) — rsh(1,2) — local bof
(2) — full access(2)

8 | execute (0) — sshd bof(0,1) —rsh(1l,2) — local bof(2) — full access(2)
doi:10.1371/journal.pone.0168675.t003

Definition 2 ((Random) Loss). A real-valued RV L is called a (random) loss, if the following
conditions are satisfied:

o L > 1 (this can be assumed w.l.o.g.)

o The support of L, being supp(L) := {x € R : fi(x) > 0}, is bounded (where the bar means the
topological closure).

o L has a density f; w.r.t. either the counting- or the Lebesgue-measure. In the latter case, we
assume the density f; to be continuous on its support.

Define the set of loss distributions F to contain all distribution functions related to random
losses.

4.1 Optimal Decisions if Consequences are Uncertain

Definition 2 assures that the density function f; of any random loss L admits moments E(L")
of all orders n € N, so that we get a well-defined condition for an ordering based on moment
sequences:

Definition 3 (<-Preference between Loss Distributions). Let L; ~ F;, L, ~ F, be losses
with F|, F, € F. We prefer L, over L,, written as L, < L,, if there is an index k, € N so that
E(LY) < E(LY) for all k > k. We synonymously write F; < F, whenever we explicitly refer to dis-
tributions rather than RVs.

A minor technical difficulty arises from the yet unsettled issue of whether or not there are
non-isomorphic instances of (*R, <), in which case we could get ambiguities in the <-order-
ing. The next result, however, rules out this danger.

Proposition 4 (cf. [44]). The set (F, <) with F as in definition 2 and =< as in definition 3 is a
totally ordered set, where Fy < F, implies $(Fy) < §(F,), with the embedding ¢ : F — (*R, <),
and the <-ordering on F is invariant w.r.t. how (*R, <) is constructed.

While the theoretical definition is easy, important practical questions about this preference
demand an answer, in particular:

1. What is the practical meaning of the <-ordering for risk management?
2. If < is practically meaningful, how can we (efficiently) decide it?

Let us postpone the answer to the first question until Section 4.3, and come to the algorith-
mic matters of deciding < first. The answer to the second question will then also deliver the
answer to the first one.
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Fig 5. Example of <-choosing among two empirical distributions (inconsistent expert opinions).

doi:10.1371/journal.pone.0168675.9005

4.2 Practical Decision of <-Preferences

Let us first discuss the case where the loss distribution is continuous. Common examples in
risk management (cf. [45]) are extreme value distribution or stable distribution (with fat tails).
Although such distributions may not necessarily have a bounded support (thus not corre-
sponding to a random loss in the sense of definition 2), we can approximate the distributions
by random losses via defining a risk acceptance threshold 1 < a € R, and truncating the distri-
bution outside the range [1, a]. The concrete value a can be chosen upon a desired accuracy £
> 0, for which we can choose a large enough to have the residual likelihood of damage > a is
smaller than &, or formally, Pr(L > a) < & (we will come back to the choice of a in section
10.2).

Practically, the risk acceptance threshold is the value above which risks are simply “being
taken” or are covered by proper insurance contracts. Thus, specifying the value 4 and truncat-
ing the loss distributions accordingly makes distributions with fat and/or unbounded tails fit
as approximate versions into definition 2.

If L;, L, have the same compact support [1,a] C R, and since the respective density func-
tions f; , f;, are assumed continuous, both admit limits b, = lim,, _, ,f; (x) and b, = lim, _, ,
fi,(x). For the moment, assume b # b,, i.e., f (a) # f;(a) (the case of equality is treated later).
The continuity of both functions implies that f; (x) # f; (x) holds in an entire left neighbor-
hood (a - &, a] of a for some £ > 0. It is then a simple matter of calculus to verify that (since
both Ly, L, > 1), the speed of divergence of the respective moment sequences (E(L})), ., and
(E(L})),cy is determined by which density function takes larger values in the region (a - &, al,
recalling that both densities vanish at x > a. That is, we have

lim [E(L) — E(L)] € {~o0, +00}, 2)
and the condition of Definition 3 is ultimately satisfied (in either way).

Lemma 5. Let Ly, L, be two random loss variables with continuous distribution functions
F|,F, € F, and let f;, f, denote the respective densities. If both RVs are supported in an interval
[1, a] for a € R, and there is some € > 0 such that f,(x) < fo(x) for all x € (a — €, a], then
L, < L.
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Lemma 5 (see [44] for a proof) offers an easy way to decide preferences based on the RV’s
density functions only. The procedure is the following: Call [1, a] the common support of both
loss variables L;, L,, and consider the density functions f;, f5:

. Iffl(a) <f2(a), then Ll j Lz,
o Otherwise, if f(a) > f,(a), then L, < L.

Upon a tie, i.e., fi(a) = f>(a), we need to either decrease g, truncate the distributions prop-
erly, and repeat the analysis, or we may look at derivatives at a to tell us which density takes
larger values locally near a. The latter approach is further expanded in Section 7.1.

If the distribution is discrete, say, if the available data is not continuous but qualitative (e.g.,
categorical), then things are even simpler: if L,, L, are both distributions over the same catego-
ries, then L; < L,, if L, puts less likelihood to categories of large damage than L, (see Fig 5 for
an example).

Formally, < thus boils down to a humble lexicographic ordering whenever the losses have
categorical distributions.

Definition 6 (lexicographic ordering). For two vectors X = (x,,%,,...) andy = (¥, ¥y, - - .)
of not necessarily the same length, we define x <,y if and only if there is an index iy so that
xi, < yi, and x; = y; whenever i < i.

For two categorical distributions given in matrix notation and letting the support be given
in descending order of risk levels r,, > r,,_; > ... > r;, we observe that
F,=F, < (p,,---,P1) =P <19 = (4> - - -, 4, )» when the distributions are:

p1;<1’" pl>7andF2:<qn ql>
r, > ... > n r, > ... >

That is, the action with the higher likelihood of extreme damage is less favorable, and upon
a tie (equal chances of large damages), the likelihood for the next smaller risk level tips the
scale, etc.

4.3 Practical Meaning of <-Preferences

Summarizing the previous discussion in concise form directly takes us to the practical mean-
ing of <-preferences:

We have L, = L,, if large damages (near the maximum a) are more likely to occur under L,
than under L.

This is just an intuitive re-statement of Lemma 5. However, and remarkably, the converse
to it is also true, which is the following:

Theorem 7 (Thm 2.14 in [44]). Let Ly, L, be two RV with distribution functions F,, F, € F.
If Ly = Ly, then a threshold x, exists such that Pr(L; > x) < Pr(L, > x) for every x > xo.

Restating this intuitively again, Theorem 7 tells that:

a =-minimal decision among two choices with respective consequences L, and L, minimizes
the chances for large damages to occur.

This is exactly what we are looking for: Risk management is in many cases focusing on
extreme events rather than small distortions (which the system’s “natural” resilience is
expected to handle anyway), and the focus of the <-relation to prefer distributions with lighter
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tails perfectly accounts for this. Having < as a total ordering with a practical interpretation as
being “risk-averse”, this already addresses the simple case of decision making among finitely
many choices (as discussed in the next Section 5).

5 Practical Decision-Making

Remembering our example of APT mitigation, suppose that as an initial attempt, we would
consider the installation of permanent security precautions, such as (additional) firewalls,
access controls, physical protection, etc. Moreover, organizational changes such as were dis-
cussed in example 1 may be under discussion. However, all of these may have uncertain effec-
tiveness, but the <-relation now helps out.

In general and abstractly, the decision problem and procedure is the following:

« A set of choices (e.g., security precautions) d;, d,, . . ., d,, € AS; is available (e.g., defense
actions for APT mitigation), each of which comes with a random consequence/effect cap-
tured by random losses L;, Ly,. . ., L,..

o Bylooking for the <-minimum among the distributions of Ls,. . ., L,,, we can take an optimal
decision under uncertainty.

An open issue so far is where to get the losses from, an issue that will be revisited several
times throughout this paper.

5.1 Constructing Loss Distributions

The simplest approach to construct loss distributions that satisfy definition 2 is to either:
« collect as much data as is available, and compile an empirical distribution from it,

o or define the loss distribution directly based on expertise (say, if the action’s incurred loss
has a known distribution), if this is possible.

The latter case may occur seldom in practice, unless the particular threat has been studied
specifically (such as disaster management or value at risk calls for extreme value distributions,
etc.), and the “adversary” is nature itself. Against a rational adversary such as business compet-
itors, hackers, etc., threat intelligence and expertise is the fundament upon which loss may be
measured. Often, this assessment is made in qualitative terms for several (good) reasons, such
as:

« Human reasoning is neither numeric nor crisp, i.e., experts may find it simpler to give
assessments like “high risk” instead of having to specify a hard figure.

« Numerical precision can create the illusion of accuracy where there is none. There are only
few types of incidents on which reliable statistical data is available, and having huge amounts
of data on APTs attacks on general cybersecurity incidents may be unrealistic (and also
undesirable if the incidents concern oneself).

In practice, rating actions w.r.t. their outcomes is naturally a matter of expert surveys, with
answers possibly looking like shown in Table 2. Collecting many such opinions and putting
them together in an empirical distribution L about a precaution’s performance may give distri-
butions whose shape is unimodal (if a consensus among opinions is found), or multimodal, if
disagreeing opinions are reported. Whatever happens or whether or not the outcome looks
like illustrated in Fig 3, the <-preference relation now allows for an elegant deal with this kind
of uncertainty.
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5.2 Games and Equilibria

With the uncertain outcome in a scenario of defense i vs. attack j being captured by a (perhaps
empirical) probability distribution L;, and the complete set of distributions being totally
ordered w.r.t. =, it is a simple and straightforward manner to define matrix games and equilib-
ria in the well-known way. For convenience of the reader, we give the necessary concepts and
definitions here.

Let AS;, AS, be the action spaces for player 1 and 2, respectively, with cardinalities n and m.
Let A = (L;);", be a matrix of RVs that are all supported on the same compact set

Q = [1,a] C R. Let F; be the distribution function of the random loss L;;. In each round of the
game, the random outcome R is conditional on the chosen actions of player 1 and player 2,
and has the distribution R ~ L;; if player 1 chooses action i € AS; and player 2 chooses action j
€ AS,.

We consider randomized choice rules p = (p,,...,p,) € S(AS,) and
q=(q,,---,9,) € S(AS,), i.e, the vectors p, q describe the likelihoods of actions being taken
by either player. In that case, the random outcome has a distribution R ~ F (p, q) computed
from the law of total probability, which is

Fp.)() = PrR<n) = D PR < oli) - Prlif) = RO pog ()

assuming a stochastically independent choice of actions by both players. This is the utility func-
tion in case of random outcomes (note that Eq (3) is exactly the same formula as is familiar
from matrix game theory). So, the actual gameplay is not about maximizing the average reve-
nue (as usual in game theory), but towards optimally “shaping” the outcome distribution

F (p, q) towards <-minimality. That is, in a zero-sum competition, player 1 and player 2 seek
to choose their actions in order to minimize/maximize the likelihood of extreme events.
Speaking differently again, player 1 attempts to shift the mass allocated by the respective den-
sity f (p, q) towards lowest damages, whereas player 2 tries his best to shape the density f
towards putting more likelihood on larger damages. This is the essential technical process of
our game-theoretic APT risk mitigation strategies, whose optimality is that of (standard)
game-theoretic equilibria in zero-sum matrix games (see [46] for a formal treatment).

As for standard games, it can be shown that the saddle-point value V(A) =
MAaX,, 545, MiNgcs(as,) F (P> Q)is invariant w.r.t. different equilibria, and that equilibria defined
w.r.t. < exist (and can be generalized to Nash-equilibria in n-person games in the canonic
way). The way of proving it makes use of the embedding of distributions into the hyperreal
space *R, where all the known results necessary to re-establish the fundament of game theory
are available (yet further substantiating our loss representation by a moment sequence).
Unfortunately, however, not all properties are directly inherited, such as a central computa-
tional feature of zero-sum games is absent in our setting:

Proposition 8. There exist zero-sum matrix games A € F™" for which fictitious play
(according to [47, 48]) does not converge.

Proposition 8 is proved by constructing a concrete example (see [49]) of a game that cannot
be solved using fictitious play. Thus, it is an unfortunate obstacle in applying well-known
game theory to our new setting. The formal fix relies on yet another representation of the loss
densities, which admits converting a matrix game over F into a set of standard matrix games
over R, which can be solved by fictitious play again. The details of this are postponed until Sec-
tion 7, culminating in the main Theorem 14 that assures that we can ultimately escape the situ-
ation that proposition 8 warns us about. Interestingly, this fix has a useful side-effect, whose
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physical meaning is a heuristic account for zero-day exploits. We will revisit this aspect in
more detail later in Section 7.2.

6 APTs as Games

Suppose that a TVA has been done and that an attack graph is available. Towards a game-theo-
retic model of APTs, let us think of the attack graph as sort of an extensive form game (EFG)
with perfect information. Although the attack graph or tree may not follow the proper syntax
of an EFG, we can nevertheless convert it into syntactically correct normal form game in the
same way as we would do with an EFG. That is, we would traverse the graph from the initial
stage of the game until the stage where payoffs are issued to all players. From the exhaustive
list of all these paths, we can define the strategies of both players as rules about what to do at
which stage, given the other player’s move. Likewise, an APT would in this view be mounted
along any of the existing paths from the root of the attack graph down to the goal, with the dif-
ference to EFG mostly being the fact that the “game” does not clearly define when the players
are taking their moves (this is a conceptual difference to EFG, where the assignment of which
player’s move it is part of the EFG description).

In both cases, EFG and APT attack graphs, we can compile a set of paths from the start to
the finish, from which strategies for both players can be identified. While this identification
comes from the definition of the EFG, for APTs, the strategies are delivered only for the oppo-
nent player 2, which is the attacker. Player 1, the defender, needs to derive its action set AS;
based on player 2’s actions AS,. Table 4 summarizes the correspondence between EFG and
APT attack trees.

The nature of APTs induces a difficulty in the game specification here, since we usually do
not know how deep the attacker may have penetrated into the system, and because of this, the
current stage of the game is expectedly unknown to the defender. Countermeasures against
exploits in each stage may be identified, but not always possible, feasible or successful. Allow-
ing for a random outcome with the possible event of an action to fail elegantly tackles this
issue in our setting.

If countermeasures have no permanent effect or are likely to fail, then we may need to
repeat them. For example, a security training may cause only temporarily raised security
awareness. Likewise, updating a software once is clearly useless unless the system is continu-
ously kept up to date.

Given that the defense actions in AS; must be repeated, we can set up a matrix game to tell
us the best way to do so. Since precautions cannot be applied everywhere at all times, we need
to define the game as one where the defender takes random moves, based on a hypothesis
where the attacker may currently be. Alas, it would probably not be feasible to rely on Bayesian
updating towards refining our hypotheses, since this assumes much data, i.e., many incidents
to occur, and hence is exactly what APT mitigation seeks to prevent. Thus, many popular tools
from game theory like perfect Bayesian equilibria or related appear unattractive in our setting.

Table 4. Correspondence of Attack Trees/Graphs and Extensive Form Games.

Extensive form game Attack tree/graph

start of the game root of the tree/graph

stage of the gameplay node in the tree/graph

allowed moves at each stage (for the adversary) | possible exploits at each node

end of the game leaf node (attack target)

strategies paths from the root to the leaf (= attack vectors)
information sets uncertainty in the attacker’s current position and move

doi:10.1371/journal.pone.0168675.t004
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To simplify the issue in general, let us assume that the defender can access all parts of the
system (thus, take moves related to any stage of the game as defined by the attack tree),
whereas the attacker can move only from its current location (node) to the successor (child
node) location. The game play is thus a matter of the defender seeking the optimal way of
applying its threat mitigation moves anywhere at random in the infrastructure, in an attempt
to keep the adversary away from its target. Unlike a Bayesian or sequential game approach, the
application of defense actions is not based on hypotheses of where the attacker currently is, but
will assume a worst-case behavior of the attacker (thus, switching from the Bayesian towards
the minimax decision theoretic paradigm).

For example, applying a patch at some point may close a previously established backdoor
and send the adversary back to the start again. However, if the patch is currently unavailable,
not effective or simply applied to the wrong machine, the defense move will have no effect at
all. Towards modeling this uncertainty, let us first become more specific on what the payoffs in
the example game will be.

Following the common qualitative risk assessments, we may define categories of risk
depending on “how far away” the adversary is from its destination in the attack graph. Collect-
ing the lengths of all paths listed in Table 3, we see that their lengths range between 4 and 8
nodes (including the start execute (0) and finish node full access (2)).In any such
case, we may simply map the distances to qualitative scores, such as Table 5 proposes here.

The concrete mapping of distances to risk levels can, however, already induces uncertainty.
For example, assume that an attacker has already gained execution privileges on machine 1
(denoted as execute (1) in the attack graph), then it may either continue its way on path 4
in Table 3 (via a remote FTP connection from machine 1 to machine 2; node ftp rhosts

(1, 2))oron path5in Table 3 (via an RSH connection from machine 1 to machine 2; node
rsh (1, 2)).On path 4, the distance to full access (2) is4nodes (ftp rhosts (1,
2) — sshd bof (0, 1) — rsh(l, 2) — local bof (2)),while on path 5, the distance
isonly 2 nodes (rsh (1, 2) — local bof (2)).In light of the a-priori specified mapping
of distance to risk levels as in Table 5, the risk would be classified as either “medium” or
“high”, depending on which path has been chosen. The usual stealthiness of APTs hence causes
uncertainty in the risk assessment, which needs to be captured by a proper decision- or game-
theoretic APT mitigation approach.

6.1 Identifying Mitigation Strategies

Having the attack graph and once attack vectors have been derived from it, all of which are col-
lected in the adversary’s action space AS,, the next step is the identification of mitigation strate-
gies. This process is a standard phase in many risk management practices, and often based on
known countermeasures against the identified threats (accounting for unexpected events is a
matter of zero-day exploit handling, which we will revisit shortly in Section 7.2). Since the pro-
cess of defining countermeasures is a task that highly depends on the attack vectors AS,, we can-
not define a general purpose procedure to identify AS; here (it is individual and different for

Table 5. Possible mapping of graph distance to risk categories.

Distance Risk
7...8 low
3...6 medium
0...2 high

doi:10.1371/journal.pone.0168675.t005
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various infrastructures). For the sake of generality and conciseness of presentation in this work,
let us therefore assume that all relevant defense actions are available and constitute the action set
AS, for the defender. It may well be the case that not all actions are effective against all threats,
and neither may a designated countermeasure i be necessarily effective against threat j. In that
case, we may pessimistically assume maximal damage to be likely in scenario (3, j). Matching all
defenses in AS; against all attack vectors in AS, is a matter of defining the game’s loss distribu-
tions, which is the next step towards completing the game model in Section 6.2. To simplify the
notation in the following, let us abstractly denote the action spaces as AS; = {1, 2, ..., n} and
AS, =11, 2, ..., m}, with the specific details of the i-th defense and the j-th attack for all 7, j being
available in the risk management documentation (in the background of our modeling).

6.2 Defining the APT Game

Towards a matrix game model of APTs, it remains to specify the outcome of each attack/
defense scenario. To capture the intrinsic uncertainty here, we will resort to a qualitative
assessment like sketched above and/or arising from vague opinions like Table 2 illustrates. The
APT game is then defined upon loss distributions according to definition 2 to describe the
potential loss in each scenario (i, j) € AS; x AS,. In cases where we are unable to come up with
a reasonable guess on the distributions, a pessimistic approach towards a worst-case assess-
ment could work as follows (we will later revisit the issue in the discussion Section 10.2):

1. Fix a particular position in the network, i.e., a certain point where an attack is considered.
Let the hypothesized attack be the one with index j, € AS,.

2. Fix a defense action i € AS;.

3. Inlack of better knowledge, assume a uniform distribution of all possible j, including jo,
and rate the success probability p; of the defense conditional on j = j, (i.e., if your guess was
right). This rating can also be made conditional on the expected “doability” of the current
defense (e.g., if the defense means patching, the patch may not be available at all times, or it
may be ineffective). Fig 6 displays the process as a decision tree, in which the worst case out-
come (highlighted in gray) is taken if either the countermeasure is considered as possibly
effective but may still fail (with a certain likelihood), or if the countermeasure is not applica-
ble at all. In any case, the expert—based on the assumed attacker’s behavior—is not bound
to confine her/himself to a single answer, and may rate all the possibilities with different
likelihoods

4. If possible, collect many such assessments (say, from surveys, simulations, etc.), and com-
pile an empirical distribution from the available data. This empirical distribution is then
nothing else than a histogram recording the number of uttered opinions (shown as the bar
chart in Fig 6) Note that the uniformity assumption on the attacker’s location can be
replaced by a more informed guess, if one is available. For example, the adversarial risk
analysis (ARA) framework [50-52] addresses exactly this issue.

This procedure is repeated for the entirety of scenarios in AS; x AS,, i.e., until the full
game matrix has been specified. Fig 7 illustrates the three sub-steps per entry of this proce-
dure in the game matrix (note that the right-most decision path (bold-printed in Fig 6) is
reflected as the fourth choice option in the example survey shown in Fig 7). We stress that
the full lot of |AS,| - |AS,| may hardly be necessary to put to a survey, since not all actions
are effective against one another (defenses may work against specific threats, so only a few
combinations in |AS,| - |AS,| need to be polled explicitly, and others can rely on default
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Fig 6. Loss Assessment of Counteraction vs. Threat.

doi:10.1371/journal.pone.0168675.9006
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settings; cf. Fig 6). Furthermore, some loss distributions can be equally well computed from
simulations (cf., e.g., [53]).

By construction of the total ordering, the game that we define to minimize the loss would
then be played towards minimizing the likelihood for large damages (by Theorem 7).

action space AS,

1 2 3 j m
1
2
k-th matrix
g game Ay defined
@ < over ((-1)“f%%@a));
S I
3
@ i fi(a)
o
©
@
n
game (primarily) played decisions based on higher order
on the matrix game Ag derivatives only in case of ties

Fig 7. Specification of an APT Game (Example Workflow Snapshot).
doi:10.1371/journal.pone.0168675.9007
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Table 6. Benefits of Distribution-Valued Game-Modeling over Classical Game-Modeling.

Issue Classical game-theoretic modelling How this is handled in distribution-valued games
Payoff uncertainty Either switching to special forms of equilibria (disturbed, No consolidation or representation needed; we can simply
trembling hands, etc.) or agreeing on a simultaneously work with the (normalized) histogram of all possible outcomes

representative value for all possible outcomes (“consolidation | (or opinions on what could happen)
of different opinions”)

Non-realizable strategy Separating out cases where a strategy can be played or not. | Since actions can by construction have many different
This would amount to specifying two versions of the strategy | outcomes, success and failure are just two realizations of the
(one that is successful and one that fails) corresponding loss RV L, each of which may occur with a

known (or estimated) probability. The entirety of these
probabilities makes the sought density function fof the RV L.

Imperfect information Working with hypotheses on expected moves in stages of the | Is directly incorporated in the uncertainty of the outcome,
game where no precise information is available. The since an unknown move corresponds in a perceived random
hypotheses can be learnt from past history and are taken into | payoff; thus, there is no intrinsic conceptual difference here
account when defining the optimal behavior (e.g., Bayesian
perfect equilibrium)

Random changes in the Resorting to special forms of equilibria, such as distorted or | As long as the outcome remains identically (stationarily)
game-play (stochastic trembling hands equilibria or stochastic games [46, 56] distributed across several rounds of the gameplay, there is no
games [56]) specific treatment required upon random changes in the

doi:10.1371/journal.pone.0168675.t006

gameplay. The known theory of Markov chains can be used
here to analyze the changes in the gameplay for stationarity.

Returning to our example sketched in Section 3, the uncertainty in a risk level quantification
based on distance in the graph would thus mean that the gameplay is such as to keep the adver-
sary “as far away as possible” from its target. This is indeed what we would naturally expect,
and the <-relation acting on loss distributions that are based on distance achieve precisely this
kind of defense.

Although this modeling of APTs is heavily based on (subjective) expertise and manual
labour, it fits quite well into standard risk management processes (such as ISO 31000 [30] or
ISO 27005 [54]), and nevertheless greatly simplifies matters of modelling over the classical
approach, as a variety of issues are elegantly solved. A selection is summarized in Table 6, with
a complementary discussion given in Section 10.2. Additional help in the specification of risk
assessments is also offered by thinking about costs of an exploit or known ratings of vulnerabil-
ities such as by common vulnerability scoring system (CVSS) [55]. Such ratings are commonly
delivered along with the TVA (e.g., by tools like OpenVAS).

7 Practical Computation of Optimal Defenses

Essentially, our APT game model is a matrix game A € F**1*2l in which each defense i €
AS; vs. each attack in j € AS, is rated in terms of a probability distribution (uncertain out-
come) F; € F. By defining the losses in the gameplay to be the gain for the adversary (i.e.,
making the competition zero-sum), we obtain a valid worst-case approximation that enjoys
the following useful property:

Lemma 9. Let AS;, AS, be the action spaces for the defender and the attacker, respectively,
with cardinalities n and m. Furthermore, let B be the (unknown) matrix of true payoffs for the
attacker, and let A be the loss matrix for the defender. If the saddle-point values of the zero-sum
matrix game A is V (A), and V (A, B) is any equilibrium payoff in the bimatrix game induced by
A, B, then we have:

V(A,B) 2 V(A), (4)

provided that the defender plays a zero-sum equilibrium strategy (induced by A) in both games,
the zero-sum game A and the bi-matrix game (A, B).
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Lemma 9 directly follows from the definition of equilibria, and is a well known fact; cf. [18]
for a more elaborate discussion.

Intuitively, Lemma 4 says that the worst case attack occurs when the adversary’s incen-
tives are exactly opposite to our own interest. In particular, observe that the upper bound
Eq (4) is independent of the adversary’s payoff/incentive structure B. The irrelevance of B
in the upper bound tells that we do not require any information about the adversary’s
intentions or incentives, as V (A) can be computed only based on the defender’s possible
losses. Thus, in playing the zero-sum defense we obtain a baseline security that is guaran-
teed irrespectively of how the adversary behaves, provided it acts only within its action set
AS,. The case of unexpected behavior, that is, actions outside AS,, corresponds to an
unforeseen zero-day exploit. A remarkable feature of the game model using distribution-
valued payoffs is its natural account for such outcomes, which we will further discuss in
Section 7.2.

Our use of non-standard calculus somewhat limits the practically doable arithmetic, since
for example, divisions in *R require an ultrafilter to fully describe *R (which is unavailable
since *R is defined non-constructively; see [42]). Fortunately, however, these issues do not
apply for our matrix games here, since Nash equilibria can still be computed by fictitious play
(FP) [47, 48, 57] which uses practically doable <-comparisons only. The unpleasant possibility
of non-convergent FP (proposition 8 warns us about this) is escaped by using non-parametric
(kernel density) models for the payoff distributions, and using Lemma 18 to decide <. The
respective details are laid out in section 7.1. This closes a gap left open in [58].

7.1 Computing Optimal Defenses (Equilibria)

To avoid proposition 8 to apply for our APT-games, we need to assure that all loss distribu-
tions share the same support (the counterexample used to prove proposition 8 relies on differ-
ent losses whose supports that are strictly contained in one another). To this end, we will
introduce another representation of a loss distribution as a sequence, so that the lexicographic
ordering <, on the new sequence equals the <-ordering of definition 3.

To make things precise, let us assume that a particular empirical loss distribution L j has
been compiled from the data x;, x,, . . ., xn» as obtained from simulations or expert question-
naires. Moreover, assume that I:ij is categorical, so that the underlying data points (answers)
can be ranked within a finite range (in the example in Fig 7, we have three categories, e.g.,
{“low”, “medium”, “high”}, which correspond to the ordered ranks {1, 2, 3}). The case when
the loss distributions is continuous is in fact even simpler, and discussed later in remark 10.
For now, let us stick with the expectedly more common practical case where risk assessments
are made in categories rather than hard figures.

First, the empirical distribution (normalized histogram) L j is replaced by a kernel density

estimator (KDE) using Gaussian kernels of a fixed bandwidth to define

e =ﬁ;211<("kh‘ 9, 5

where
¢ K(x) = \/% exp (—1x?) is the standard Gaussian function,

« and h > 0 is a bandwidth parameter that can be estimated using (any) standard statistical
rule (of thumb, e.g., Silverman’s formula [59]).
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Although any such nonparametric estimation can be quite inaccurate, yet as the data on which
it is based is subjective anyway, the additional approximation error may not be as significant
(nor in any sense quantifiable; still, Nadaraja’s theorem (see [60]) would assure that a continu-
ous unknown underlying loss distribution would be approximated arbitrarily well in probabil-
ity, as N — oo, provided that /4 is chosen as i(N) = ¢ - N * for any two constants ¢ > 0 and
0<a<1/2)

Using the KDE Eq (5), we can cast the distribution-valued game back into a regular matrix-
game over the reals. Note that in choosing Gaussian kernels, we naturally extend all density
functions to the entirety of R. Such distributions would not be losses in the sense of definition
2, as the supports are no longer bounded.

Using the aforementioned risk acceptance threshold a > 1 to truncate all loss distributions
at a, casts the loss distributions into the proper form. We can then expand the (truncated) loss
density fLJ into a Taylor series for every scenario (i, j) € AS; x AS,. To ease notation in the fol-

lowing, let us drop the double index and simply write f to mean the kernel density approxima-
tion of the empirical distribution in the given scenario, based on N data samples. Then, its
Taylor series expansion at point a is

f(a), (6)

k=0

which converges everywhere on [1, a] by our choice of the Gaussian kernel. The k-th inner
derivative is obtained from the kernel density definition Eq (5) as,

10 = v e o (s ) )

Here, our use of Gaussian density pays a second time, since the k-th derivative of the expo-
nential term can be expressed in closed form using Hermite polynomials by exploiting the

relation
B O T TCA N

in which Hy(x) is the k-th Hermite polynomial, defined recursively as Hy.,;(x) :== 2xH(x)
— 2H;_(x) upon Hy(x) = 1 and H,(x) = 2x.Plugging Eqs (8) into (7), and after rearranging
terms, we find

" (—1)k n X=X (x—xj)2
f”(X)Nﬁ—(h_\/i)msz_;llf(h\[)'exp (—w )] )

Evaluating the derivatives up to some order and substituting the values back into Eq (6), we
could numerically construct the kernel density estimator. Fortunately, there is a shortcut here
to avoid this, if we use the vector of derivatives with alternating signs to represent the Taylor-
series expansion, and in turn the KDE, by

fig = ((_1)kﬁ:)(a))zo = (Vo: Y1) ---) €RT, (10)

where the entries of the sequence can be computed from Eq (9).
Interestingly, under the assumptions made (i.e., truncation at a point 1 < a € R and
approximating the empirical distribution by a Gaussian KDE), the lexicographic order on the
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series representation Eq (9) equals the preference order < on the hyperreal representation of
the loss distribution (see Lemma 18 in the appendix for a proof). That is, we can decide <
between two sequence representations (y,),_, and (z,),-, of the form Eq (10) as follows:

o If yo < zp, then Ly < L,. If y > zp, then L, < L;. Otherwise, y, = zo, and we check
o ify; <z, then Ly X L,. If y; > z, then L, < L;. Otherwise, y; = z;, and we check
o ify, < zp,then L; < L, etc.

Remark 10 (Continuous loss models). If a continuous loss model is specified, differentiability
may be not be an issue if the density f has derivatives of all orders. Otherwise, we can convolve f

by a Gaussian density ky, with small variance h > 0 to get an approximation f = f x k, € C™ at
any desired precision. Kernel density estimates are exactly such convolutions and thus provide
convenient differentiability properties here.

Experimentally, we observed that in many cases the preference decision < can be made
already using the first value f{a) in the sequence Eq (10). If the decision cannot be made (upon
atie f; (a) = f;,(a)), then we can move on to the first order derivative, and so on. Thus, we tech-
nically do fictitious play in parallel on a “stack” of matrix games A, A,, A,, ... € R*%14%)
where the k-th matrix is constructed (only on demand) with the k-th entry of the sequence
representation Eq (10). The selection of strategies is herein always made on the first game
matrix Ay, looking at the others only in cases where the decision cannot be made directly
within A (see Fig 8 for an illustration). Since we are now back at a regular matrix game, the
usual convergence properties of fictitious play are restored.

Of course, we cannot run fictitious play on an infinite stack of matrix games, so we are nec-
essarily forced to restrict attention to a finite “sub-stack”. However, depending on how “deep”
the stack is made, we can reach an equilibrium at arbitrary precision. This is made rigorous in
the following definition:

residual outage risk

security
expenses

residual risk, cost

1 2 3 4 5
possible actions
Fig 8. Applying Fictitious Play.
doi:10.1371/journal.pone.0168675.9008
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Definition 11 (Approximate Equilibrium). Let £ > 0, § > 0 be given, and let A = F"*" be a
zero-sum matrix game with distribution-valued payoffs. We call a strategy profile (p*,q*) €
R"™ an (g, §)-approximate equilibrium, if there is an equilibrium (p*,q") € R"™" (in the zero-
sum game A) such that both of the following conditions hold:

ol g

L [(p*,q") — (P",d")ll, <& and
2 |F* — Fr|, <8,

where the equilibrium payoffs F* and F* are defined by Eq (3) upon the approximate and the
(regular) equilibrium, respectively.

Remark 12. By the equivalence of norms on R, the co-norm in condition 1 can be replaced by
any other norm upon, as long as the value of € is chanced accordingly.

Remark 13. The continuous dependence of F(p, q) on (p, q) (in terms of the topologies on
R™™ and L'; the latter space being the one where the payoff distributions live in) as implied by Eq
(3) leads to thinking that letting € — 0 would also cause & — 0. This impression is not necessarily
true, since the -condition in definition 11 can be taken as a convergence criterion when itera-
tively computing equilibria, while the payoff distributions can be approximated at a precision
that is independent of this value €. Indeed, the goodness of approximation is controlled by the
amount of data and the parameter h chosen for the KDE or the mollifier (cf. remark 10), and as
such is independent of €. Hence, asking for a 6-deviation for the payoff distribution accounts for a
nontrivial degree of freedom here.

While existence of equilibria in mixed strategies for all finite games A € F™" is assured
(see [58]), the existence of an approximate equilibrium is not as obvious. In fact, the actual use
of an approximate equilibrium is to find it within the set of regular matrix games, so that
games with payoffs from F can be solved for equilibria just like a standard matrix game would
be treated. Clearly, since R C *R and by virtue of the embedding ¢, the set of matrix games
A € R"" forms a subclass of games of the form A € *R"*", which itself covers games of the
form A € F"*" by virtue of ¢. A practical method to solve games over F is obtained by
approximating the solution from the inner set of equilibria in matrix games with real-valued
payoffs. This is the main theorem of this work, whose proof is delegated to the appendix.

Theorem 14 (Approximation Theorem). For every e > 0, 8 > 0 and every zero-sum matrix
game I') = A € F"" with distribution-valued payoffs, there is another zero-sum matrix game
I'y = B € R™" so that an equilibrium in Ty is an (g, §)-approximate equilibrium in T';.

7.2 Zero-Day Exploits

As a matter of consequence from the KDE approximation of empirical densities using Gauss-
ian kernels, the approximate density in any case is supported on the entire real line. That is,
the density function (5) assigns positive likelihood to the entire range (a, co), where a is again
our risk acceptance threshold. For the specific scenario (i, j), this also means that positive likeli-
hood is assigned to losses in the range Z = (maxy, {x4} , 00), where x;, . . ., xy are the observa-
tions upon which our empirical loss distribution is based, and Z is the range of losses that were
never observed. These are, by definition, exactly the events of zero-day exploits. More impor-
tantly, losses in Z have—by construction—a positive likelihood to occur in scenario (i, j) under
the approximate RV L;; with density function (5).

In other words, no matter of whether or not we explicitly sought to model zero-day
exploits, they are automatically (implicitly) taken into account by the loss density approxi-
mation technique laid out in Section 7. The specific likelihood for a zero-day exploit, as

based on the information available, is simply the mass assigned to Z under f i, (as defined in
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Fig 9. Equilibrium loss distribution for the example APT mitigation game.
doi:10.1371/journal.pone.0168675.9g009

Eq (5)). This value increases, the more observations on higher losses are available, say, if
more experts expect higher damages to occur. In that case, the kernel density estimate will
put more mass on this area, thus fattening the tails of the KDE approximation Eq (5). Fig 9
will later display the equilibrium outcome of an example APT-game model, showing the
“zero-day area” in gray.

In connection with the design of our games to yield optimal behavior that minimizes the
chances for high losses, the likelihood for zero-day exploits is then automatically minimized,
since the <-optimal decisions are those that have all their masses shifted towards lowest dam-
ages as much as possible. Therefore, practically, we can adjust our modeling account for zero-
day exploits by adding more pessimistic observations to the data sets from which we construct
the loss distributions. But from that point onwards, the construction automatically considers
extreme events in the way as we want it without further explicit considerations.

8 Generalizations and Special Cases

The APT modeling can be generalized to deal with multiple relevant interdependent aspects,
such as different security goals (confidentiality vs. integrity vs. availability, etc.) but also taking
costs into account (such as, for example, if the attack graph is enriched with information on
how much an exploit would cost the attacker, or the level of skills required to mount an attack).
By virtue of our embedding into the hyperreals, all the known theory from multi-criteria game
theory carries over to this setting. Specifically, multi-criteria games as have been studied by
[61-64] can be analyzed in exactly the analogous way in our setting. This has been done in
[65], so we confine ourselves to only sketching the approach here.
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8.1 Multiple Goals and Optimal Tradeoffs

Suppose for simplicity that only a choice between finitely many options is to be made, where
risk is decreased upon increasing investments.

Example 15 (Uninterruptible power supplies). Imagine that a company ponders about
installing additional power-supplies to cover for outages. Depending on how many such systems
are available (in different subsidiaries of the company), the risk for an outage will obviously
decrease. Equally clear is the increase of costs per additional system, so putting both of these out-
come measures into a graph, we end up with finding the optimal tradeoff somewhere in the mid-
dle. The question is now how to find the optimum algorithmically.

Formally and generally, let Fj, F}, .. ., thj, be different measures of loss that all need to be
accounted for in the scenario (4, j) € AS; x AS,, and let o1, o, . . ., ad € (0, 1) be weights
assigned to theselosses (identically for all 4, j). Practically, such losses could concern (among
others):

« confidentiality of information (loss distributions F i}),
« availability of systems (loss distributions F’ ijz),
o security investments/costs to run defense actions (loss distributions 3),

o ctc.

Then, [62] has shown that a vector-valued loss referring to multiple interdependent criteria

can be converted into a simple (single-criteria) loss by taking
Fp=o, -F, +o,-F + ...+ o, F, (11)

into the optimization. Technically, the convex combination takes us to the Pareto-front of
admissible actions, and the resulting optima and Nash-equilibria are understood in terms of
Pareto-optimality. In Eq (11), the addition is understood pointwise on the distribution func-
tions, which is mathematically justified since the expectation operator is linear w.r.t. the distri-
butions over which it is computed (hence, the moment sequences arise in the proper form).
Consequently, multicriteria game theory as studied in [61-63] applies without change here.

The only technical constraint that applies here is that all Ff; for all 4, j, k must have the same

support Q C R. That is, we must measure the loss in a common scale, for otherwise, the above
scalarization does not make sense.

Combining Losses of Different Nature. Different goals may be measured in individual
scales (such as monetary loss being expressed as a number, loss of public reputation expressed
in a nominal scale like “low/medium/high confidence” or loss of customers being an integer
count). To harmonize these towards making the convex combination Eq (11) meaningful, we
need to cast all these scales into a common scale € over the reals. While there is no general
method to do this, practical heuristics to achieve this mainly do two steps:

1. Define an ordered set of fixed loss categories that shall apply for all goals of interest, and
define the understanding of each category individually per goal.

2. Map all concrete (e.g., numeric) losses into the so-defined categories.

This approach is, for example, followed in many national risk management standards, such
as [66-68]

Picking up example 15, let us assume that we seek to decide between installing between
zero and five auxiliary power supply systems. Letting the priorities to be “security:
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Fig 10. Optimal Tradeoffs (simple case).
doi:10.1371/journal.pone.0168675.9010

costs = 60:40” (i.e., o = 0.6, a, = 0.4), we find the optimal tradeoff to be between two and three
additional power supplies. Finding the actual optimum is then a simple matter of comparing
calculations for 2 and 3 power supplies since all other options have been eliminated; see Fig 10
(the computation on loss distributions would be identical, only taking a pointwise weighted
sum of the distributions; only the resulting plot would be much less illustrative than the shown
picture of real-valued functions).

8.2 Optimizing a (Permanent) Security Design

Since the concept of Nash equilibrium on which optimal choices are based assumes random-
ized (and thus repeated) actions, the question on how to apply the optimization to “perma-
nent” countermeasures (that are not repeated actions in the classical sense) naturally appears.
Indeed, this case boils down to a special case of a game in which the action space of player 2 is
singleton, |AS,| = 1, and we only look at the performance of different actions, all of which may
be static. Let us give two practical examples:

Example 16 (installing anti malware systems). Installations of anti-virus software is a stan-
dard precaution, however, given inconsistencies between reported performances and the diversity
of threats, it is often advisable to install several anti malware precautions. No system ships with a
guaranteed detection rate, and different systems may be differently fast in identifying and block-
ing threats from the outside. The decision must again be based on empirical data (reported recog-
nition rates) and just installing the full palette of available software will not necessarily increase
the protection. Thus, there is an eventual tradeoff between security and cost, for which an opti-
mum has to be found (see Section 8.1).
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Example 17 (hiring security guards). As with example 15 and as illustrated in Fig 10, hiring
more security guards will increase likelihoods to catch an intrudet, but also will increase costs.
This is a case where one performance indicator is random (the chances to keep intruders outside),
while the other is quite deterministic (the guards salaries). As before, the sought decision is a
mere <-optimal selection among finitely many choices.

Generally, in both examples, the problem is to find an optimal choice among our options in
AS;, while the effects of a choice are not determined by an adversarial move in the game, but
rather up to our own assessment (formally, we can simulate this by defining AS, to be single-
ton and contain an abstract (not further specified) action). The technical issue illustrated in
both examples is the problem of <-comparing deterministic to random outcomes. This is
indeed easily possible and has been formally proven in [49] to work as follows: let a be a real
value and let B be a real-valued RV, whose distribution is f and is supported on [1, b].

o If a < b, then we <-prefer a (intuitively, this is because having a constant outcome a is more
secure to rely on than on a random effect B).

o If a > b, then we <-prefer B (intuitively, since it in any case admits less damage than g,
whose damage is guaranteed).

o If a = b, then we prefer B (intuitively, this is because B admits damages less than a, while the
other action entails aguaranteed loss > anything that can happen under B).

This procedure works on single criteria decisions only. If multiple criteria are to be taken
into account, then we must again resort to a kernel density approximation to uniformly repre-
sent all values as RV (thus, adding a controllable/reasonable degree of uncertainty) to the vari-
able g, to be able to use the lexicographic comparisons on the convex combination of utility
functions as sketched in Section 8.1.

9 Example Application

Continuing our running example from Section 3, much of the modeling has already been
done along the vulnerability analysis described in Section 3. Indeed, the action sets AS; and
AS, are already available in Tables 1 and 3, which makes the game a 4 x 8-matrix over yet to be
specified outcomes. To simplify matters of demonstration here, let us use only two strategies
out of the sets AS;, AS,, leaving the full case of our example or more extensive lists of attacks
and countermeasures as an obvious matter of scaling the matrix to a larger shape. The process
of finding the optimal risk mitigation strategy, however, remains unchanged between a 2 x 2-
and an n x m-game, so we will illustrate the results on the smaller example without loss of gen-
erality. We stress that even though 2 x 2-games admit closed form solutions over R, the same
formula in “R holds but cannot be practically evaluated in lack of an explicit ultrafilter (alas,
the existence of { is assured only non-constructively). Our chosen strategies are in abbreviated
form shown in Table 7.

Note that these chosen attacks are indeed generic, as buffer overflows and remote access is
part of every attack listed in Table 3. In fact, this modeling appears practically reasonable, since
the respective countermeasure may “break” the attack vector at any stage (as long as it breaks
it at all). However, depending on how deeply the attacker has penetrated the system already,
the respective countermeasures may not be effective any more. In light of this, let us follow the
procedure outlined in Section 6 and assume that we have asked a group of six domain experts
about their opinions on the effectiveness of countermeasures. With answers given in qualita-
tive terms of saying that the residual risk after mitigation is either (H)igh, (M)edium or (L)ow,
assume that the answers were as listed in Table 8 (using the abbreviations from Table 7). The
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Table 7. Selected Strategies for the Example.

Attack strategies Defense actions
ay: buffer overflow exploits dy: patching
ao: remote access exploits d,: deactivation of services

doi:10.1371/journal.pone.0168675.t007

concrete rating of the risk can be based on the graph-theoretic distance between the attacker
and its goal (as discussed in Section 6). This view lets us convert the qualitative ratings into
numeric ranks, which are L +— 1, M +— 2 and H + 3, expressing that a “low” rating is based on
the belief that the attacker has penetrated only one access control so far (e.g., gained access to
machine 0), while a “high” rating means that it is already quite close to its goal (penetrated
three access control systems already up to only one exploit left towards full access on machine
2; cf. Fig 2).

Note that Table 8 shows empty cells, which correspond to cases where an expert was silent
(without explicit opinion) on a specific scenario. Such missing information is only an organi-
sational inconvenience, yet causes no technical difficulties, as in that case, we simply compile
the loss distributions from the data that is available.

We define a KDE using Eq (5) for each scenario, using the data from Table 8, such as the
loss distribution for the scenario (a;, d,) would, for example, be constructed from N = 4 data
points (x1, X2, X3, x4) = (3, 3, 3, 2).

We practically implemented this scheme in R [69], using the available heuristics for band-
width selection that R provides (concretely Silverman’s rule), and obtained the distribution-
valued matrix game shown in Fig 11, with the label “1oss (i, j) ” indicating the scenario (d;,
a;) for i, j € {1, 2}, with meanings as told by Table 7.

To obtain a solution, we implemented a standard fictitious play algorithm (see, e.g., [57]),
with the only modification of minima and maxima being selected w.r.t. the lexicographic
ordering of the derivative sequences Eq (10). The derivatives themselves are computed by eval-
uating Eq (9). The used risk acceptance threshold a > 1 in our implementation defaults to the
largest observation (data point) available. That is, we consider any event with consequences
above “high damage” as residual zero-day exploit risk, which by construction of the <-relation
is minimized (cf. Theorem 7).

Taking 1000 iterations of fictitious play and rounding the result to three digits after the
comma, we obtain the approximate equilibrium (p*, q*) = ((0.875,0.125), (0.238,0.762))
along with the resulting equilibrium loss distribution as shown in Fig 9, and formally given as
the derivative of the distribution function F(p*, q*) defined by Eq (3). Conceptually, this den-
sity is the same as the (well known) saddle-point value of a regular game (it plays the same role
and the random loss corresponding to it satisfies the equilibrium condition w.r.t. the
=<-relation).

Now, let us look at the practical meaning of the outcome of the game-theoretic analysis:

Table 8. Example Expert Assessments.

Scenario | / Expert — 1 2 3 4 5 6
a d; L L M M M H
db H H M
a d H H M L H
d> M L L M M

doi:10.1371/journal.pone.0168675.t008
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Fig 11. r-plot of our example APT matrix game.
doi:10.1371/journal.pone.0168675.9011

« The optimal way of mitigating the APT as modeled by the game in Fig 11 is to do defense
action d, with likelihood 0.875 and defense action d, with likelihood 0.125. That is, if actions
are taken daily, then we would temporarily turn down a service (or enforce a disconnection)
every 8th day on average, while applying patches in the meantime, whenever they are avail-
able. Note that the randomness in the modeling accounts for situations where a patch may
not be available at all (in that case, the event of failure of the patch occurs, and high damage
may be expected. This is, however, already captured by our modeling of a random outcome,
which can have different effects, including a working and failing patch at different iterations
of the gameplay).

If the system administrator adheres to the equilibrium behavior p* = (0.875,0.125) in
choosing her/his actions, then Fig 9 is by Lemma 9 a guarantee concerning random damages,
irrespectively of how the attacker actually behaves. Indeed, a (non-unique) worst-case attack
behavior is delivered as the second part of the equilibrium q* = (0.238, 0.762), which tells
that approximately every fourth attack “should” be a buffer overflow, while trying remote
access in the remainder of the time. If our modeling was incorrect on assuming the attacker’s
behavior but correct on the possible actions (depending on how accurate the topological vul-
nerability scan was), then any behavior different from q* will give us only less chances of
high damage (as follows from the definition of an equilibrium; see [18]).

« Conversely, the same also holds for the system administrator. The equilibrium condition
tells that any attempt to do better by patching more often or deactivating services more or
less frequently will render the loss bound ¥ = F(p*, @*) void (in the sense that losses are no
longer optimally distributed), and may enable stronger worst-case attack scenarios (cf.
Lemma 9).

From the full equilibrium distribution that is returned by the fictitious play, we can easily
compile other risk measures of interest like averages (see Eq (1)) or similar. In particular, tak-
ing the expectation of the distribution F(p*, q*) directly returns a quantitative risk estimate
according to the common formula (1). What is more, however, is our ability to obtain addi-
tional information from the outcome, such as the variance as a measure of “stability” of the
risk estimate (quantified by the fluctuation around the expected damage), or the danger of
zero-day exploits, for which the area within [a, co) can be computed (shown in gray in Fig 9)
as an indication and decision support. The considerable size of the gray area relative to the rest
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is due to the expert’s majority suspecting the risk to be high (cf. Table 8). This puts a lot of
mass on the right tail of the constructed loss distributions, thus fattening the tails (induced by
the KDE Eq (5)) accordingly. A less pessimistic expert assessment underlying the risk analysis
would result in a smaller zero-day likelihood, respectively.

These possibilities extend much beyond the usual capabilities of (quantitative) risk
management.

10 Discussion
10.1 Actions in Continuous Time

Typically, cyber warefare and APTs are not games that take rounds, but a process of actions in
continuous time with no defined “stages” in the game. More precisely, we have the situation of
one player likely being forced to take actions at discrete times, while the other player is free act
continuously over time. For example, the security officer may be unable to become active at
any (prescribed optimal) time of the day, since s/he must adhere to organizational constraints
of the daily business. On the contrary, the adversary is only bound to the business organiza-
tional matters as far as it concerns the mounting of an attack. In any case, the attacker can act
at any point in time (during night, during peak hours of work, etc.), while the defender must
use the proper time slots to become active to minimize distortions in the actual enterprise
business.

This is a remarkable qualitative difference to both, discrete and continuous time game mod-
els, covering matrix games (discrete in time) and others (e.g., [16] as a continuous time
model). Our specific APT model is discrete in time (as being a matrix game), but can account
for randomness in the outcome caused by a continuously acting opponent. This is a mere
change to the outcome (loss) distributions to cater for an action to be interrupted, distorted or
to cause more damage the longer it has happened in the past.

Theoretically, the embedding of the payoff distributions into *R equips us with the full spec-
trum of mathematical tools as are known and applied to construct continuous time games
(this is a direction of future research from this work). Practically, we believe the application of
discrete time games to more properly match the possibilities of a real-life security officer, who
may take actions only at particular times, i.e., outside peak-hours of work, when devices are
temporarily idle, or similar. Invoking Lemma 9 here tells us that if the defense is optimized for
discrete time actions of the defender, a “continuous time attacker” may nevertheless only devi-
ate and as such cause less damage than what the matrix game predicts.

10.2 On Some Modeling Issues

This section is similar to many well-known collections of “frequently asked questions”, and
indeed can be taken as a guideline on how to overcome a set of usual modeling obstacles when
the model shall be applied practically:

How to deal with large attack graphs?

As a matter of fact, attack graphs can get huge even for small infrastructures. Enumerating
all strategies by finding all paths can thus become an infeasible task (as there is usually an expo-
nential number of them). Instead, we may either simulate attacks on the nodes directly, thus
defining the attack strategies not as paths in the attack graph but rather as the set of possible
exploits in our infrastructure, and ask for a qualitative risk assessment based on the exploits
only. Even if the infrastructure is large, having the freedom to work with qualitative assess-
ments in our game-theoretic model eases matters of risk assessment essentially up to the same
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complexity as a normal risk and vulnerability assessment would require. That is, there is no
conceptual obligation in our APT game model definition to work with paths in the attack
graph (this is only one option among many), and the APT game can be defined on aggregated
parts of an infrastructure, or using any other condensed or high-level view on the system.

Where to get the losses/probabilities from?

Probability—in general—is a notoriously opaque concept for many practitioners, and spec-
ifying probability in our model, as for any probabilistic model, is a crucial initial task. How-
ever, unlike many other techniques, our requirements are different in an important way: we
do not ask an expert for a numeric estimate of a probability, but instead it suffices to ask several
experts for a qualitative rating of likelihood concerning certain attacks. That is, the expert is
not challenged to tell a precise number to quantify how likely an attack is, but can rather resort
to saying that the success for an attack or mitigation strategy may be “low”, “medium” or
“high”. This is even in alignment with recommendations of the German Federal Office for
Information Security (BSI), which explicitly warns about “precise probabilities” which can
misleadingly take estimates as being objectively accurate. Asking several experts about their
opinions and re-normalizing the absolute frequencies into probabilities avoids the common
problems of calibrating probabilistic models and naturally delivers the necessary loss distribu-
tions as we need them (see Fig 7).

Moreover, the criticism uttered against probabilities (the difficulty to specify them and the
illusion of accuracy created by them) applies much more generally to many statistical models,
but not as such in the model proposed here.

An explicit alternative to surveys or mere expert opinions is the use of simulation. Models
like [28] explicitly define a continuous time simulation for a moving target defense that can be
adapted. Similar models from disease spreading analysis based on percolation theory can also
be used to probabilistically assess the outcome of a malware infection (say via a bring-your-
own-device scenario) [53] may also directly deliver the sought loss distributions. The appeal of
any such simulation is the automatism that they provide to reduce the modeling labour.

What if a defense fails?

Normal game theory assumes defenses to be effective in general, for otherwise, an ineffec-
tive defense could be deleted from the game on grounds of strategic dominance (cf. [70]). In
admitting defense strategies to have random effects, the failure of a defense is yet merely
another form of failure of an action. Thus, upon proper modeling of the chances for an action
to fail, such events are naturally covered by our random loss RVs admitting multiple different
outcomes, including a complete failure. For example, if patches or updates are not available
with known frequencies (say, if the vendor has a “patch day”), we can assign this likelihood as
the probability of high damage despite the action. Note, however, that this is not the freedom
of choosing not to do the defense action at the prescribed time. Doing so would mean to devi-
ate from the equilibrium, which results in a worse protection. Adhering to the equilibrium
behavior strategy yet failing in the defense action itself is, however, covered by the allowed like-
lihoods for an action to fail at random.

How to handle one-shot situations?

The existence of optimal decisions is often based on randomized actions, which means that
actions and the entire game can be repeated. Practically, we may not be able to reset the
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infrastructure to a defined initial condition after a damage happened. That is, the game actu-
ally changes (at least temporarily) upon past actions. Such situations are covered by the notion
of dynamic (stochastic) games, which allow future instances of the game play to depend on
past rounds. So, an action may be one-shot and upon failure, may create a completely new sit-
uation. Assuming that the entirety of possibilities admits a finite number of game-theoretic
descriptions, we technically have a stochastic game in Shapley’s sense [56]. The usual notion of
equilibrium (optimal defense) in such competitions is, however, more intricate and its exis-
tence is often tied to additional assumptions or modifications to the game (e.g., by resorting to
dynamic games, or similar). The practical issue here is the concrete choice of equilibrium out-
comes (discounted, averaged, etc.) to retain a practical meaning in the APT context. We avoid
such difficulties here by allowing the outcome to be different in each round and determined by
past iterations of the game, as long as the outcome remains identically distributed between
rounds. If we think of the game structure itself following a stochastic process, then the loss dis-
tributions constituting the game structure may be taken as the stationary distribution of the
process, under any known condition of convergence (e.g., see [71]). We will leave this as a
route for future work, and close this discussion with the statement that one-shot situations are
conceptually equivalent to dealing with repeatable situations, as we do not optimize the cumu-
lative long-run average (which would assume a repeated gameplay), but rather optimally shape
the distribution of the outcome for every repetition and thus also for “one-shots”.

Is Knowledge about the Adversary’s Incentives or Intentions Required?

Adversary modeling is often perceived necessary or at least useful in defending assets, espe-
cially in APT scenarios. However, defenses tailored to a specific guess about the adversary’s
intentions or incentives may perform only suboptimal depending on the accuracy of the guess.
Although a game-theoretic model can be designed to take into account adversarial payoffs if
they are known, we do not actually require an accurate understanding of the adversary’s inten-
tions or incentives.

It is important, however, to understand who the adversary is, because this is what deter-
mines its action set AS,. The more we know about the attacker, the more accurate we can
model its actions, and thus reduce the possibilities for unexpected incidents. Therefore, we
must stress that Lemma 9 only spares us to understand the adversary’s intentions, but we can
in no case ignore its capabilities. Thus, we do require an adversary model here, yet being accu-
rate only on the adversaries possible actions and on our own loss upon these.

How to set the risk acceptance threshold a?

The risk acceptance threshold a > 1 is here required primarily for technical reasons, i.e., to
assure the boundedness of supports to ease deciding preferences among actions. Thus, as long
as any such value is being defined, the theory and results remain intact. Physically, this param-
eter corresponds to the maximal damage that we expect to occur ever, or otherwise said, cases
of damage that are covered by insurances or considered so unlikely that the risk is simply
taken.

Quite obviously, the concrete choice of the threshold a has a substantial influence on the
decisions and computed equilibria. Indeed, cutting off tails at different locations can even
reverse the preference under <. Therefore, this value should be chosen based on trial compari-
sons between actions to look for a paradoxical/counter-intuitive outcome of < (see [58] for an
illustration), so that the value a can be set accordingly. Technically, it determines the region of
loss that we would relate to zero-day exploits (as was discussed in the context of Fig 9). In any
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case, the particular choice of a is up to expertise, experience, and is seemingly out of the scope
of any default procedure to choose it.

Several rule of thumbs may be defined, such as choosing a as a maximum quantile over all
loss distributions (similar to a value at risk (VaR) approach outlined in [72]), or directly taking
a as the worst risk assessment made or possible. Our implementation in R takes the maximum
observation or most pessimistic loss assessment as the cutoff point, assuming that no more
than the worst expected outcome may be expected. However, if losses are quantified in mone-
tary terms or general business value, the lot of insurance coverage may determine the accept-
able risks that can be taken.

11 Conclusion

Mitigating APTs on game theoretic grounds appears as a quite natural model of the competi-
tion between a defender and an attacker. The stealthiness of APT adds an element of uncer-
tainty that original game theory covers with extended notions like stochastic games or games
with incomplete information. Since these are conceptually more involved to define, we pro-
pose staying with a simpler and easier to set up model of matrix games. Deviating from classi-
cal game theory at this point, we defined a concept that allows for “direct use” of vague and
uncertain information that risk management normally has to deal with. Specifically, lifting
game theory from real-valued payoffs to games whose outcomes are described by entire proba-
bility distributions creates aspects of twofold interest: practically, this model equips us with the
full armoury of game and decision theory to do risk management based on uncertain and even
qualitative information. Theoretically, the so-generalized games come with substantially differ-
ent properties than their classical counterparts, such as the non-convergence of fictitious play
for a certain class of zero-sum games. The way in which these issues are tackled is not tied to
applications of security and may thus be of independent interest in game theory. Finally, in
using matrix games with distributions as payoffs, we tackle another aspect of APTs, which is
the game being discrete time for one player but continous time for the other player. This aspect
was hardly discussed in precursor work.

For security, the game theoretic perspective lets us not only compute optimal risk mitiga-
tion strategies almost directly starting from the available information, but also elegantly saves
us from some matters of adversary modelling. Especially, we only need to know the attacker’s
possible actions, but can work out a (multi-criteria) optimal defence in terms of our own risk
scale. This is particularly useful in the context of guarding against APTs, since uncertainty is
“ubiquitious” in the attacker’s capabilities, incentives, induced damages, etc. Having models
that spare us the need to model all these aspects, while dealing with uncertainty in the way it
comes (such as expert opinions on risk or expectations on zero-day exploits) appears as a
demanding issue. Our work is intended as a first step into this direction.

Appendix: Proof of the Approximation Theorem 14

The following arguments are partly based on [49] and close some open gaps in this preliminary
draft presentation of results. The proof of Theorem 14 rests on the following lemma:
Lemma 18. Let f, g € C*°([1, a]) for a real value a > 1 be probability density functions. If

(=1 (@) <ieel (= 1) 8%(@) e

then f< g.

Proof. The proof repeats the arguments in [49], and is essentially based on Lemma 5. That
is, it suffices to determine which density is taking lower values in a right neighborhood of the
cutoff point a. To this end, let us “mirror” the functions around the vertical line at x = a and
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look for which of f(x), g(x) grows faster when x becomes larger than a, using an induction
argument on the derivative order k. Clearly, whichever function grows slower for x > a in the
mirrored view is the <-preferable one by Lemma 18. Furthermore, we may assume a = 0 with-
out loss of generality (as this is only a shift along the horizontal line). For k = 0, we have
f(0) < g(0) clearly implying that f < g, since the continuity implies that the relation holds in an
entire neighborhood [0, £) for some £ > 0. Thus, the induction start is accomplished.

For the induction step, assume that f(i)(O) = g(i)(O) forall i <k, f(k)(O) < g(k)(O), and that
there is some £ > 0 so that f(k) x) < g(k)(x) is satisfied for all 0 < x < &. Take any such x and
observe that

o>/me%W

— F0() — FE(0) ~ [g*(x) — g1(0)
= f() ~ g ()

since f<k’1)(0) = g(k’l)(O) by the induction hypothesis. Thus, f(k’l)(x) < g(k’l)(x), and we can
repeat the argument until k = 0 to conclude that f{x) < g(x) for all x € [0, £).

For returning to the original problem, we must only revert our so-far mirrored view by con-
sidering f(—x), g(—x) in the above argument. The derivatives accordingly change into
4 f(—x) = (—=1)*f® (x), and the proof is complete.

Proof of Theorem 14. This is an actually easy matter of collecting what we have obtained in
Section 7.1. First, note that w.L.o.g., we can represent the losses in A by distribution functions
F; fori=1,2,...,nandj=1,2,... m. To ease notation in the following, let i, j be arbitrary,
and abbreviate F;; as F. We will go through a sequence of approximations of F, denoted as
F,,F,, F,,and F, respectively, and prove that the L'-approximation error of the final approxi-
mation F, can be made bounded by & upon proper constructions of the intermediate
approximations.

To get started, let us get back to the mollifier approach outlined in remark 10: we choose
some h > 0 and define first approximation F, (h):=F % K, € C*. Note that this already makes
the sequence representation Eq (10) well-defined. Moreover, it is known that letting i — 0, the
sequence F, (h) is L'-convergent to F by known approximation theorems (e.g., on page 321 in
[73]). That is, we can choose a sufficiently small #* > 0 to have F,:=F * K,,. satisfy
|F — Fll, < /4.

Note that since Kj- is supported on the entire real line, so is F,. To recover the required
bounded support, we choose some value a > 1 and truncate the distribution F, outside the
interval [1, a]. Call the result F,. Since F, is a probability distribution, it satisfies
lim,___F,(x) = 1, so that we can choose a sufficiently large to make the truncated distribution
F, satisfy |F, — F,||,, < 9/4 again.

Since F, € C*([1, a]) by construction and the derivatives are all continuous (and as such
bounded on the compact interval [1, a]), we can approximate F, at the point x = a by a Taylor-

k i

polynomial F, = 3" =% (x — a)". The i-th derivative is analytically given by F § = FxK)

and computed numerically by virtue of Eq (9). The accuracy of the Taylor polynomial approxi-
mation is governed by choosing the order K of the polynomial sufficiently large. In our case,
we take K large enough to make the approximation satisfy ||F, — F,||,, < 6/4.
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Finally, observe that the Taylor polynomial F, can be represented by a finite sequence of its
coefficients (a,, a,, ... ,a;) € R with a;=F (a). To the end of recovering a finitely trun-
cated representation as in Eq (10), define the coefficients with alternating signs b; := (-1)'a; for
i=0,..., K. Let us choose fixed integers m, n and round all b; to m places before and n binary
digits after the comma, padding with leading and trailing zeroes. Call the resulting approxi-
mate coefficients b, and define the respective binary number ¢:=0.b, || b, || ... || by by simply
concatenating the bitstrings representing all b; in ascending order of indices and omitting the
decimal points.

Observe that the number c is now a real value that encodes a Taylor-polynomial F, with
approximate coefficients d, which differ from the coefficients a; in F, only by a rounding

error. Consequently, the maximal difference between F, and F, comes to

K
= = la, — a,| i
max|F,(x) — F,(x)] < max]| E o (x —a)'|
i=0

x€[1,a] x€[l1,a]

o]

Fo3 .
max| E 2. (x—a)|<eg, ¢,
x€ll,a] il

i=0

IN

where g, is the maximal numeric roundoff error depending on the number # of digits after the

comma. Since a is a constant, we can choose # sufficiently large to make ||F, — F,|| 1((1.a) Suf-
ficiently small, and hence also cause ||F, — F,| () < 0/4 ultimately (this is a consequence

of using Holder’s inequality to show that convergence in the function space L” implies conver-
gence in L? for g < p if the underlying support is compact; see page 233 in [74]).

Collecting the approximations obtained along, we end up finding that
IF —Flly < IF=Fllu + [IF, =Fylly + |Fy = Fylly + [[Fy —Fyflp <4-3=0,as
required.

Indeed, repeating these steps for every entry in the matrix A = (F;) € 7"", we end up
with a matrix of respective values B = (c;) € RY representing finite sequence approximations
of F;. Moreover, observe that the construction of the matrix B is such that the numeric order
between two entries is exactly the lexicographic order on the sequence of rounded coefficients
(this is due to the concatenation and the fact that all numbers b; are represented use the same
number of digits before and after the comma). Hence, Lemma 18 tells that the order of choices
made in the game B equals the <-order of choices that would be made in the game A. Conse-
quently, an equilibrium in B is also an equilibrium in A since < on the so-obtained c-values in
B equals =< on the original loss distributions in A.

Since B is a regular matrix game, we can invoke fictitious play (or linear optimization) to
compute an approximate (or even accurate) equilibrium (p*, g*) in B at any desired precision
£. Byconstruction of B and Eq (3), an equilibrium (p*, q*) will approximate the equilibrium
payoff in A (whose existence is assured by Nash’s theorem holding in the hyperreal space *R
by the transfer principle [42]). This completes the proof.

As a final remark, note that the representation of the Taylor-polynomial within the real
number c is compatible with the multi-criteria optimization as outlined in Section 8.1. To see
this, observe that the convex combination Eq (11) is a linear operation whose result remains
within the same bound as the inputs. Thus, there will be no “overflow carry” from one coeffi-
cient to the next in the representation ¢ of the Taylor-polynomial.
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