
RESEARCH ARTICLE

Localization and diagnosis framework for

pediatric cataracts based on slit-lamp images

using deep features of a convolutional neural

network

Xiyang Liu1,2☯*, Jiewei Jiang1☯, Kai Zhang1, Erping Long3, Jiangtao Cui1, Mingmin Zhu4,

Yingying An1, Jia Zhang1, Zhenzhen Liu3, Zhuoling Lin3, Xiaoyan Li3, Jingjing Chen3,

Qianzhong Cao3, Jing Li3, Xiaohang Wu3, Dongni Wang3, Haotian Lin3*

1 School of Computer Science and Technology, Xidian University, Xi’an, China, 2 School of Software, Xidian

University, Xi’an, China, 3 State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-

sen University, Guangzhou, China, 4 School of Mathematics and Statistics, Xidian University, Xi’an, China

☯ These authors contributed equally to this work.

* gddlht@gmail.com (H.T.L); xyliu@xidian.edu.cn (X.Y.Liu)

Abstract

Slit-lamp images play an essential role for diagnosis of pediatric cataracts. We present a

computer vision-based framework for the automatic localization and diagnosis of slit-lamp

images by identifying the lens region of interest (ROI) and employing a deep learning convo-

lutional neural network (CNN). First, three grading degrees for slit-lamp images are pro-

posed in conjunction with three leading ophthalmologists. The lens ROI is located in an

automated manner in the original image using two successive applications of Candy detec-

tion and the Hough transform, which are cropped, resized to a fixed size and used to form

pediatric cataract datasets. These datasets are fed into the CNN to extract high-level fea-

tures and implement automatic classification and grading. To demonstrate the performance

and effectiveness of the deep features extracted in the CNN, we investigate the features

combined with support vector machine (SVM) and softmax classifier and compare these

with the traditional representative methods. The qualitative and quantitative experimental

results demonstrate that our proposed method offers exceptional mean accuracy, sensitivity

and specificity: classification (97.07%, 97.28%, and 96.83%) and a three-degree grading

area (89.02%, 86.63%, and 90.75%), density (92.68%, 91.05%, and 93.94%) and location

(89.28%, 82.70%, and 93.08%). Finally, we developed and deployed a potential automatic

diagnostic software for ophthalmologists and patients in clinical applications to implement

the validated model.

Introduction

Pediatric cataract is a common ophthalmic disease seriously causing permanent visual

impairment and thus dramatically reducing the quality of life [1]. A world health report [2]
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indicates that pediatric cataract is one of the major causes of childhood blindness; it affects

approximately 200,000 children worldwide, with an estimated prevalence of 4.24 per 10,000

live births [3]. The asymptomatic progression of pediatric cataracts patients is hard to be real-

ized and detected at early age, which is difficult for their parents to identify as well [4]. Once

pediatric cataracts enter a more severe stage, current intervention procedures are no longer

available to prevent vision impairment [5]. Therefore, it is critical to diagnose pediatric cata-

racts with high accuracy at early stage, which can help ophthalmologists arrange appropriate

and timely treatment to prevent disease progression.

In clinical practice, comprehensive evaluation of pediatric cataracts is often manually

assigned by well-experienced ophthalmologists to each slit-lamp image [6, 7]. However, this

manual diagnosis scheme is not only a waste of resource of excellent ophthalmologists, but

also is subjective and time-consuming. In recent decades, combined with slit-lamp images and

other ocular images, computer aided diagnosis (CAD) methods have become the dominant

alternatives for controlling ophthalmic diseases and early treatment and have been initially

investigated by scientists, ophthalmologists, and computer vision researchers [8]. A ranking

method based on slit-lamp images proposed by Wei Huang [9] achieved an acceptable grading

for nuclear cataracts. The senile cataracts classification and grading system based on fundus

images was presented in [10], which extracted local features using the wavelet transformation

and sketch and provided a possible method to reduce the burden of experienced ophthalmolo-

gists. Shaohua Fan et al. proposed an automatic classification method for nuclear sclerosis

from slit-lamp images using linear regression [11]. Huiqi Li et al. extracted local features from

slit-lamp images and considered the nuclear cataract grading task as a support vector regres-

sion [12]. In addition, there are still some reasonable CAD methods based on other ocular

images achieving effective results [13–15].

However, relative to senior cataracts and other ophthalmic diseases, the phenotypes of pedi-

atric cataracts are varied and abundant. The slit-lamp images for pediatric cataracts are com-

plex and clinically challenging [1, 16, 17]. The aforementioned CAD methods can’t tackle such

a difficult situation and be directly applied on pediatric cataracts. In our previous study, our

team conducted a series of CAD approaches consisting of feature extraction and classification

for pediatric cataracts and achieved encouraging results. However these conventional CAD

methods are subject to low accuracy and cannot be implemented effectively in clinical applica-

tions. The complexity of pediatric cataract is manifested primarily as high noise levels and

complex disease phenotypes shown in Fig 1. For example, the ratio of the lenses in the two slit-

lamp images of column (a) significantly differs as a result of the amplification factors of the

optical device. The slit-lamp images in column (b) are blurrier due to an uncooperative patient

and the angle of the photographer. The images in column (c) differ from the remaining col-

umns because patients have another ophthalmic disease and pediatric cataracts, and the large

number of eyelashes produces additional noise in column (d). In addition, white highlights

and finger reflections in the lens of almost all slit-lamp images occur from the reflection of the

light source. Therefore, these factors pose significant challenges for computer-aided automated

diagnosis of pediatric cataracts based on slit-lamp images.

Recently, deep learning convolutional neural network (CNN) methods have gained consid-

erable popularity since they offer superior performance in the field of image recognition tasks

[18–22]. The CNN is an end-to-end learning model that avoids image pre-processing, requires

no expert knowledge and extracts relevant high-level features directly from the raw image. The

CNN architecture is inspired by the visual cortex of cats in Hubel’s and Wiesel’s early work

[23]. In particular, Krizhevsky [24] performed object classification and won first prize in the

ImageNet Large Scale Visual Recognition Challenge 2012 using a deeper CNN. This was fol-

lowed by the emergence of many improved algorithms and applications of CNN [25–27], and
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similar CNN architectures can be generalized to solve various image classification tasks. Based

on these factors and research progress, we employ a deep learning CNN method to investigate

slit-lamp images diagnosis in the context of pediatric cataracts. The superior performance

indicates that it can provide an effective solution for clinical characterization of pediatric cata-

racts when related studies are scarce at present; and this approach will probably offer a useful

reference for other ophthalmic diseases researchers. The main contribution of this study

focuses on three aspects. 1) For the characteristics and clinical examination mode of slit-lamp

images for pediatric cataracts, we propose three-degree grading for pediatric cataracts in terms

of morphology and then present an automatic, objective and efficient localization and diagno-

sis method for slit-lamp images that achieves exceptional performance. 2) Detailed comparison

experiments are conducted by exploiting slit-lamp images for pediatric cataracts classification

and grading, where several conventional feature extraction methods and classifiers are used

for comparison with the CNN method. During this process, we combine the SVM classifier

with the deep features extracted from the CNN to further investigate and verify the effective-

ness of deep features of CNN. 3) Finally, we develop and deploy a web-based CAD software

for patients and ophthalmologists based on slit-lamp images to achieve effective clinical

application.

Method

Slit lamp photography method

The slit-lamp-adapted anterior segmental photography (BX900, Haag-Streit AG, Köniz, Swit-

zerland) was used throughout our study. And the pediatric cataract was assessed using the

standard procedure of the operation manual [28]. Detailed protocol description: The slit lamp,

a high-intensity light source instrument, is used to shine a thin sheet of light into the eye to

examine the anterior segment and posterior segment of the human eye [6]. While a patient is

seated in the examination chair, they rest their chin and forehead on a support to steady the

head. Using the slit lamp, an ophthalmologist then proceeds to examine ocular tissues

Fig 1. Examples of various challenges associated with complex slit-lamp images. (a) The different

amplification factors of optical device. (b) The non-cooperation of patient and the different angle of the

photographer. (c) The complications of pediatric cataract. (d) The noise of eyelashes and white highlights.

doi:10.1371/journal.pone.0168606.g001
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including the eyelid, sclera, conjunctiva, iris, natural crystalline lens, and cornea. If medial,

especially that of the cornea, are opaque, optical section images are often impossible depending

on the severity of ophthalmic diseases. In these cases, the direct diffuse illumination is an effec-

tive examination method. For this, we open the slit very widely, and then a diffuse, attenuated

survey illumination is produced by inserting a ground glass screen or diffuser in the illuminat-

ing path. It is applied mainly to illuminate as much of the eye and its adnexa at once for general

observation.

Ethical approval

The slit-lamp images collection and label setting were implemented mainly by the ophthalmol-

ogists in Zhongshan Ophthalmic Center. The research protocol involving patients was

approved by the Institutional Review Board/Ethics Committee of Xidian University and

Zhongshan Ophthalmic Center of Sun Yat-sen University. Meanwhile, we also need to empha-

size that all of the sensitive information of patients has been removed beforehand in this study.

Therefore, we strictly ensure the personal information of patient is confidential and anony-

mous. For all involved patients, we have obtained the written informed consents from their

parents according to Childhood Cataract Program of the Chinese Ministry of Health

(CCPMOH) [29].

Overall diagnosis framework for slit-lamp images

The proposed CAD framework for slit-lamp images is shown in Fig 2 and primarily consists of

three parts: automatic localization for lens ROI, classification and three-degree grading. First,

the lens ROI is localized accurately using twice-performed Candy detection and Hough trans-

formation and is then fed into the CNN model to extract high-level features and implement

classification and grading. If one sample is predicted to be normal, we record this determina-

tion in the formation of the normal subset. Otherwise, the remaining three classifiers are per-

formed to determine its severity, thus forming another grading subset. Finally, these two

Fig 2. Flow chart of the automatic diagnosis process for slit-lamp images. The gray, blue and green block diagram represent the ROI

of lens localization, classification and grading procedure respectively. (ROI: region of interest).

doi:10.1371/journal.pone.0168606.g002
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results are sent to ophthalmologists to determine which therapeutic schedule will be adopted

for the patient based on the severity of the slit-lamp image.

For the three-degree grading, in general, the researcher and ophthalmologist divide the cat-

aract into four grades [10, 12] (normal, mild, moderate and severe), but this grading is too

vague and subjective for effective individualized treatment. By investigating the lens opacity

and morphology, we proposed three grading degrees of the slit-lamp containing opacity area

(limited and extensive), density (dense and transparent) and location (central and peripheral)

in conjunction with three leading ophthalmologists to evaluate severity. In clinical classifica-

tion, the slit-lamp image of which the cataract region is more than half of the pupil is defined

as extensive, otherwise limited. If the cataract density of patient blocks the external light

completely, this case is defined dense, otherwise transparent. If the visual axis of the pupil is

covered completely by the pediatric cataract, this case is defined central, otherwise peripheral.

The final therapeutic schedule was determined by the results of these three grading degrees.

For each binary classification assessment, each slit-lamp image was assessed by three experi-

enced pediatric ophthalmologists independently. And the agreement results were determined

by these three ophthalmologists after discussion. As is shown in Fig 3, comparative samples of

the three grading types—area, density, and location in columns (a) to (c) and two normal slit-

lamp images in column (d)—are illustrated. The upper samples are mild, whereas the lower

samples are severe. For example, column (a) contains two slit-lamp images with limited and

extensive opacity. Generally, the extensiveness and density of the lens opacity is positively cor-

related with severity of the pediatric cataract. And opacity in the central part of lens indicates a

serious condition.

Lens localization based on the candy operator and hough transform

It is well recognized that slit-lamp images are complex and contain large amount of noise.

Pediatric cataracts occur only in the lens rather than other regions such as eyelids and sclera. If

the entire original slit-lamp image were analyzed using the deep learning model, a number of

features irrelevant to pediatric cataracts would be extracted, seriously affecting the accuracy

Fig 3. Examples of slit-lamp images of three-degree grading. From (a) to (c) are area, density, and

location grading, in which the upper images represent mild disease and the lower images are severe. (d) The

normal images for comparison.

doi:10.1371/journal.pone.0168606.g003
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rates of classification and grading. We therefore obtain the region of interest (ROI) in the orig-

inal slit-lamp image by careful cropping that maintains only the whole pupil and minimizes

the noise around the pupil area. Moreover, the user-defined manual cropping of the lens area

is so time-consuming and laboursome that an automatic localization method is urgently

required.

We observed that the boundary between the iris and lens is approximately a circle in the

original slit-lamp images and that the lens is surrounded by the iris. These characteristics pro-

vided a basis for lens and iris detection. Many studies have identified the ROI of the iris for

personal identification using various computer vision methods [30–32]. In this paper, we

investigated the relatively successful Candy operator and Hough transform approach [33, 34]

and improved them to automatically localize the lens region in the original slit-lamp images,

as is detailed in the figure below.

As is shown in Fig 4, the original slit-lamp images (Fig 4(a)) are first converted into hue,

saturation, and value (HSV) space from red, green, and blue (RGB), and the general contour

of the original image (Fig 4(b)) is found using the Candy operator on the H component of

HSV; then, the general region of lens can be identified as the red circular bounding boxes in

(Fig 4(c)) using the Hough transform. Because of the diversity and complexity of the pheno-

types and characteristics of slit-lamp images, the lens region could not be located accurately by

any one component of the color space. After obtaining the approximate region of the lens

through the above steps, we set all pixel values outside of the circle to be zero to eliminate most

of the noise. Then, the S component of HSV that corresponds to the same located region of the

H component is operated by the Candy operator and the Hough transform, which enables the

Fig 4. Examples of lens localization. (a) Representative original images from Fig 1. (b) Edge detection using

the Candy operator on the H component of the hue, saturation, and value (HSV) color space. (c) The regions of

lens localization using the Hough transform correspond to (b). (d) Edge detection using the S component. (e)

Final lens localization. (f) Cropped images for constructing slit-lamp datasets.

doi:10.1371/journal.pone.0168606.g004
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contour to be detected, as is shown in (Fig 4(d)), and the lens region to be accurately identified,

as is shown in (Fig 4(e)), which is followed by the resizing of all cropped regions to 256×256

pixels (Fig 4(f)) to assemble a pediatric cataract database.

Deep convolutional neural network

The deep CNN was inspired by the Alex network [24, 26] used in the championship of

ILSVRC and was altered to implement the classification and grading for slit-lamp images. The

overall architecture of our CNN, as is shown in Fig 5(a), mainly consists of five convolutional

(see Fig 5(b) and 5(c)) and overlapping max pooling layers (see Fig 5(d)) followed by three

full-connected layers. Adjacent layers can be connected by edges that are trainable parameters;

the inner layer is unconnected. The first seven layers are used to extract multidimensional and

high-level features from the raw input image, and the last softmax layer is applied to classifica-

tion and grading; additionally, we can select the SVM classifier instead of softmax. In this deep

CNN, the following crucial technologies are implemented: convolution, overlapping pooling,

non-saturating rectified linear units (ReLUs), dropout, data augmentation, and softmax or

SVM classifier.

The convolutional layer has two vital merits: local receptive field and shared weights. Each

convolution kernel can be seen as a local feature extractor used to identify the relationships

between pixels of a raw image so that the effective and appropriate high-level features are

Fig 5. The architecture of the deep convolutional neural network. (a) Main layers and connections of the CNN that is employed in

our study. It consists of five convolutional and overlapping max pooling layers, which are indicated by red rectangles and green

rectangles respectively, followed by three fully-connected layers. (b), (d) Convolutional and overlapping max pooling operations are

represented respectively. (c) The non-saturating activation function ReLU was represented. (ReLU: rectified linear units; CNN:

convolutional neural network; SVM: support vector machine; ROI: region of interest; FC: full-connected operation; P1~P4: pixel value

after pooling operation).

doi:10.1371/journal.pone.0168606.g005
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extracted to enhance the generalization ability of the CNN model. Furthermore, shared

weights can greatly reduce the number of trainable parameters. The result of one convolution

operation on xL� 1
i by kLij can be represented as Fig 5(b), in which xL� 1

i stands for the i-th input

feature map in the L-1 layer and kLij indicates the corresponding learnable kernel. Thus, the

convolution output gLj of L layer can be re-written as Eq 1, where Mj represents all the input

maps involved in the convolution operation.

gLj ¼
X

i2Mj

gLji ¼
X

i2Mj

xL� 1

i � kLij ð1Þ

After the convolution operation, the pre-activation gLj combined with the additive bias b

enter into the non-saturating nonlinear activation function ReLU to produce the output fea-

ture map xLj as is shown in Fig 5(c). This function ReLU [35] is significantly faster than saturat-

ing functions such as the sigmoid and hyperbolic tangent. In addition, it can prevent

overfitting and improve accuracy. To be more precise, it is the overlapping max pooling layer

proposed previously [35] instead of the non-overlapping pooling layer that is investigated and

adopted. It aims to achieve spatial invariance and enhance anti-noise capacity by reducing the

data dimension of the feature maps. The operation is shown in Fig 5(d): every 3�3 pixels are

pooled to one pixel. For example, the 9 pixels surrounded by a red circular area are pooled into

P1; then, the blue circular area results in P2 after the pooling kernel moves forward by 2 pixel

steps.

It should be clear that the quantity of samples directly affects the depth, accuracy and num-

ber of parameters of the CNN model. It is more inclined to be overfitting when few samples

are used. Thus, two data augmentation methods (namely, transformed images and horizontal

reflections [36]) are adopted to artificially enlarge the slit-lamp dataset. By randomly extracting

224�224 patches from the original image and horizontally flipping them, the training dataset is

enlarged by a factor of 2048. By this scheme, the CNN can be trained on slit-lamp images. To

further address the overfitting problem, the powerful and efficient technology “dropout” [37]

was adopted. Specifically, during the training phase half of the neurons of the hidden layer are

selected randomly to be involved whereas during the test phase the output of all neurons are

calculated and multiplied by a factor of 0.5. By this technique, co-adaptations of different neu-

rons can be considerably reduced and the performance of the whole network can be enhanced.

When the training sample is smaller, the improvement is greater.

In this paper, these is a training set {(x(1),y(1)),. . .,(x(m),y(m))} of m labeled samples in one

training phase, where the input features are x(i)2Rn and the labels are y(i)2{1,. . .,K}. As the soft-

max classifier is used in CNN network, the overall loss function J(w)for a mini-batch training

is defined as the Eq 2, which is the cross-entropy cost function adding a weight decay term.

JðwÞ ¼ �
1

m

Xm

i¼1

Xk

j¼1

IfyðiÞ ¼ jglog
ew

T
j x
ðiÞ

Xk

s¼1
ewTs xðiÞ

2

4

3

5þ
l

2

Xk

i¼1

Xn

j¼1

w2

ij ð2Þ

where w, m, k and n represent the trainable weights, the mini-batch size, the number of catego-

ries and the number of input nodes of softmax function respectively. The I{�} is the indicator

function (I{a true statement} = 1, and I{a false statement} = 0), and l

2

Xk

i¼1

Xn

j¼1

w2

ij is a weight

decay term which penalizes large values of the weights. To achieve the minimization of the loss

function, the stochastic gradient descent (SGD) with mini-batch [38], a very simple and effi-

cient method, is employed to optimize the parameters of the CNN (Details on the network

Localization and diagnosis framework based on slit-lamp images
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parameters can be found elsewhere [24, 26]). To apply the SGD with mini-batch algorithm, we

also need solve the derivative of the loss function J(w) as the Eq 3, and the weights of the other

layers can be obtained by an application of the back-propagation chain rule.

rwj
JðwÞ ¼ �

1

m

Xm

i¼1

xðiÞðIfyðiÞ ¼ jg � pðyðiÞ ¼ jjxðiÞ;wÞÞ
� �

þ lwj ð3Þ

By minimizing J(w)with respect to w, we will obtain the optimal weights w� as Eq 4.

w� ¼ arg min
w

JðwÞ ð4Þ

In this study, we set the size of the stochastic mini-batch to one eighth of the entire training

samples, accelerating parameter training convergence. The learning rate was initialized at 0.01

and successively decreased to one tenth of the original per 500 iterations, and the maximum

number of iterations was 2000. These parameters are ideal for our datasets in preventing the

CNN model from divergence. The CNN was trained using an NVIDIA TITIAN X GPU in

Ubuntu 14.04 based on the Caffe toolbox [39].

Results and discussion

Dataset

The slit-lamp image datasets were obtained from the Zhongshan Ophthalmic Center in Sun

Yat-sen University, the leading eye hospital in China, which has collected comprehensive elec-

tronic medical records (EMR) for ophthalmic diseases. The sharing of datasets for pediatric

cataracts and other rare diseases was proposed by Haotian Lin [29] in Science in September

2015. These datasets and studies provided an ideal basis for our research. To avoid duplicates

and ensure the representative and accurate images, each image was discussed and confirmed

by three experienced ophthalmologists to determine whether it was correctly enrolled and cat-

egorized. There is no special demand for slit-lamp images and their pixels. The slit-lamp

images that contain the valuable lens are eligible for training and testing. For a very few slit-

lamp images, very blurry, their meaningful clinical information could not be identified by

three ophthalmologists, these slit-lamp images were excluded after experts’ discussion. The

excluded images were very rare cases in our experiments. Therefore, the applicability and

robustness of our training model is quite extensive. The final dataset included 886 images, of

which 476 depicted normal tissue and 410 depicted pediatric cataracts of various degrees of

severity. Using three degrees of morphology, all samples of pediatric cataracts were further

graded: limited (172) and extensive (238) for area, dense (231) and transparent (179) for den-

sity, and central (260) and peripheral (150) for location.

Evaluation metrics

To evaluate the performance of our proposed framework compared with traditional methods,

qualitative and quantitative measures are employed. Based on these two aspects, we can claim

that the high-level features that are extracted from slit-lamp images using CNN are effective

and discriminatory and that both softmax and SVM are excellent classifiers.

The quantitative measures we choose are accuracy (ACC), sensitivity (SEN), specificity

(SPC), receiver operation characteristic (ROC) curves, and loss function (J(w)), which are

generic evaluation indicators for classification methods. To analyze the reliability and generali-

zation ability of the CNN method, the data sets are divided into four groups with approxi-

mately equal size, and the well-known k-fold cross-validation (CV) technique [40] is applied

Localization and diagnosis framework based on slit-lamp images
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to obtain the mean and standard deviation for ACC, SEN and SPC.

Accuracy ¼ ðTPþ TNÞ=ðTP þ FN þ TN þ FPÞ

Sensitivity ¼ TP=ðTP þ FNÞ

Specificity ¼ TN=ðTN þ FPÞ

where TP, FP, TN and FN stand for the number of true positives, false positives, true negatives

and false negatives in the detection results respectively. Similar to other medical problems,

positive implies a pediatric cataract in classification and a relatively serious condition in grad-

ing whereas a negative sample is the opposite.

The mean ACC with standard deviation is the principal indicator: the higher the value of

ACC, the better performance is demonstrated by the classifier. The sensitivity and specificity

constitute a pair of indicators; a higher sensitivity implies that pediatric cataract patients are

detected more easily, whereas a higher specificity indicates that a normal person can be identi-

fied more precisely. The ROC is another vital objective evaluation in the task of image classifi-

cation, which is depicted by true positive rate (sensitivity) and false positive rate (1-specificity);

the larger area under the ROC curve, the better is the classification performance. In addition,

the loss value of J(w) decreases gradually with further iteration, which indicates that the CNN

is convergent.

The t-distributed stochastic neighbor embedding (t-SNE) method proposed by Hinton has

been proven to be an effectively qualitative indicator for intuitively characterizing the perfor-

mance of feature extraction. The CNN features can be visualized by t-SNE, which maps the

feature space from high-dimension to low-dimension. In this study, we choose two-dimen-

sional space as the mapping space because a more linearly separable two-dimensional map

ensures better feature extraction performance.

Qualitative results

First, we investigate qualitatively whether the extracted features from CNN network are dis-

criminative, and we choose the representative wavelet transformation features for comparison.

As is shown in Fig 6, the t-SNE method is used to generate visualizing maps (classification and

grading) of the seventh fully-connected (FC7) layer features in our CNN and wavelet transfor-

mation features. From all maps, we can obviously notice that different types of samples are

almost separated linearly in two-dimensional space using CNN features. On the contrary, it is

very difficult to separate them using wavelet transformation features. This result appears to

suggest that the deep features extracted using CNN are meaningful and discriminative and can

be used to identify different types of samples easily.

Quantitative results

To further explore the effect of the deep features extracted by our approach, we conducted

comparative experiments and quantitatively analyzed the statistical results in terms of accu-

racy, sensitivity and specificity using their mean and standard deviation.

In our previous study, a number of feature extractors and classifiers were investigated to

analyze their performance and efficiency for characterizing slit-lamp images. The features

extraction methods primarily involve the color feature, texture feature, wavelet transformation

(WT), local binary pattern (LBP), scale-invariant feature transform (SIFT), whereas the classi-

fiers include the SVM, extreme learning machine (ELM), sparse representation (SP), and k-

nearest neighbor (KNN). The color and texture features (COTE) are employed to realize a

Localization and diagnosis framework based on slit-lamp images
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combination of features. In this paper, we compare only the representative feature extraction

methods—WT, LBP, SIFT and COTE, which achieved superior performance in our previous

research. We chose the comparison classifier SVM, which has performed well in many studies

and was implemented using the LIBSVM [41] toolbox. In addition, many experiments of

detailed comparison were conducted to select optimal parameters for the radial basis function

(RBF) of the SVM. Experimental results indicate that the performance of the linear kernel with

default parameters is almost equal to the RBF kernel with optimal parameters in the SVM

classifier.

As is shown in Table 1, we compute the above quantitative measures with mean and

standard deviation on 4-fold cross validation experiments; it can be observed that the deep

learning CNN model achieves remarkable performance and desirable recognition rates of clas-

sification and grading (as shown in bold), which are far beyond the traditional methods in

terms of ACC, SPE and SNE. With the exception of our approach, the WT features give rela-

tively satisfactory performance in terms of classification, area and density grading, whereas the

SIFT method is suitable for location grading. Each statistical result consists of a mean and stan-

dard deviation, and the number in the parentheses is the standard deviation. The bolded and

underlined numbers represent the first and second performance for a specific quantitative

measure.

Furthermore, we chose the ROC curve and AUC (area under the curve) value to investigate

the reliability and generalization ability of our proposed CNN model to compare with tradi-

tional methods shown in Fig 7. To obtain a more accurate comparison result, we ensured that

the same set of training and testing datasets were used for every method. We conducted exper-

iments of detailed comparison and obtained the ROC curves of five methods depicted as classi-

fication (a) and grading area (b), density (c) and location (d) in Fig 7. The CNN achieves

better performance than the other hand-crafted features. The AUC values indicate that our

Fig 6. The t-SNE maps of CNN and traditional features. From (a) to (d) are the classification and three-

degree grading: area, density, location, in which the upper images are maps of FC7 features in CNN network

and the lower images are typical traditional features wavelet transformation. And the blue and red dots

represent samples of two different categories. (t-SNE: t-distributed stochastic neighbor embedding; CNN:

convolutional neural network; FC7: the seventh fully-connected layer).

doi:10.1371/journal.pone.0168606.g006
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proposed CNN is the superior method as measured by classification (0.9686) and the three-

degree grading area (0.98923), density (0.97433) and location (0.95911).

To verify the convergence and effectiveness of our CNN for pediatric cataracts in classifica-

tion and grading, in the process of training, we performed one test every 50 iterations to obtain

accuracy and loss function values, which were used to characterize the change in ACC and loss

function value with iterations. As is shown in Fig 8, the ACC rapidly increases with iteration

number, whereas the loss function value decreases; and eventually they stabilize. These results

suggest that the CNN model for slit-lamp images is convergent and effective.

Furthermore, the classifiers for classification and grading in Fig 2 are not restricted to soft-

max; the CNN is primarily used to obtain universal high-level features from raw slit-lamp

images, whereas the softmax or other classifiers can be chosen. As is shown in Fig 5, we

selected softmax, which was the native classifier in the CNN for investigating CAD for slit-

lamp images. We subsequently attempted to improve the CNN by proposing a new scheme for

pediatric cataracts, which combined the high-level features of the FC7 layer in the CNN with

an SVM classifier. Our goal is to improve the recognition rate using the superior performance

of the SVM classifier. Generally, in all kernel function of SVM, the RBF was no worse than the

linear approach, so that we applied the RBF kernel of SVM for contrastive analysis and used

the grid method to select the optimal c (cost) and g (gamma) parameters, which determined

the performance of the RBF kernel. For example, we obtained the heat map of classification

performance with different parameters c and gamma (Fig 9). The optimization accuracy was

96.85% (log2c = -1, log2g = -8), which is equivalent to the linear kernel. However, the time

consumption of RBF is greater than the linear kernel; therefore, a trade-off exists between effi-

ciency and effectiveness when the basic linear SVM classifier is used.

Using the same approach, we obtained three sets of comparison results shown in Table 2.

From top to bottom, there are the CNN classifier (softmax), the SVM classifier (linear kernel

function) combined with the FC7 features of CNN, and the SVM classifier (RBF) combined

with the FC7 features of CNN respectively. The ACC of the SVM classifier is slightly better

than softmax with regards to density and location grading. For classification and area grading,

the ACC of SVM is equivalent to softmax. The performance of SVM and softmax are almost

Table 1. Quantitative evaluation for pediatric cataract classification and grading results with different CAD models.

Metrics WT LBP SIFT COTE CNN

Classification ACC (%) 88.26 (0.02) § 85.10 (0.02) 77.76 (0.01) 71.12 (0.13) 97.07 (0.01)

SPC (%) 95.38 (0.03) 87.82 (0.01) 88.03 (0.04) 74.58 (0.39) 97.28 (0.01)

SEN (%) 80.00 (0.06) 81.95 (0.05) 65.85 (0.03) 67.06 (0.19) 96.83 (0.02)

Area grading ACC (%) 78.29 (0.03) 70.72 (0.06) 76.09 (0.04) 74.17 (0.08) 89.02 (0.01)

SPC (%) 76.74 (0.12) 56.40 (0.11) 81.98 (0.04) 59.88 (0.36) 86.63 (0.06)

SEN (%) 79.41(0.06) 81.07 (0.04) 71.81(0.09) 84.34(0.15) 90.75(0.04)

Density grading ACC (%) 83.39 (0.03) 71.00 (0.04) 77.32 (0.02) 82.96 (0.05) 92.68 (0.01)

SPC (%) 82.69 (0.03) 62.64 (0.09) 83.83 (0.04) 79.99 (0.13) 91.05 (0.02)

SEN (%) 83.95 (0.07) 77.49 (0.01) 72.29 (0.05) 85.28 (0.07) 93.94 (0.02)

Location grading ACC (%) 78.77 (0.03) 76.09 (0.04) 80.73 (0.01) 67.83 (0.07) 89.28 (0.03)

SPC (%) 71.32 (0.08) 56.65 (0.06) 74.77 (0.09) 52.83 (0.37) 82.70 (0.06)

SEN (%) 83.08 (0.04) 87.31 (0.04) 84.23 (0.05) 76.54 (0.23) 93.08 (0.04)

Footnotes: ACC (accuracy); SPC (specificity); SEN (sensitivity); WT (wavelet transformation); LBP (local binary pattern); SIFT (scale-invariant feature

transform); COTE (color and texture features); CNN (convolutional neural network);
§Mean (Standard Deviation).

doi:10.1371/journal.pone.0168606.t001
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equivalent regarding the deep features of CNN, and the excellent experiment results verify that

the features extracted using CNN are effective and representative.

Web-based software

The above abundant comparative experiments and detailed analysis demonstrate that the

CNN model achieves remarkable performance and desirable recognition rates. The website of

our system provides detailed instructions for our software to be easily operated. Anyone can

access our software using the website: https://www.cc-cruiser.com/slit-lamp. This software

could characterize pediatric cataracts using automatic localization of lens area and the CNN

method, and this software has been applied in Zhongshan Ophthalmic Center, Sun Yat-Sen

University. This CAD system can not only assist proposals of treatment for ophthalmologists

but also enable high quality medical care and individualized treatment for the patients in

developing areas where sophisticated medical devices and well-trained doctors are scarce. In

Fig 7. The ROC curve and AUC value for pediatric cataract. This figure contains the ROC curve and AUC

value of (a) classification and three-degree grading (b) area, (c) density, and (d) location with different CAD

models. (ROC: receiver operating characteristics curve; AUC: area under the curve; CAD: computer aided

diagnosis; CNN: convolutional neural network; WAVE: wavelet transformation; LBP: local binary pattern; SIFT:

scale-invariant feature transform; COTE: color and texture features).

doi:10.1371/journal.pone.0168606.g007
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addition, this software can be used in teaching activities for junior students of ophthalmology.

This software supports prediction of multiple images simultaneously. Furthermore, with the

extensive use of this software, we will collect an extensive range of slit-lamp images to enhance

the accuracy of the CNN model with larger data sets.

Fig 8. The convergence analysis. (a) The accuracy curve in respect to iterations. (b) The loss function value

curve in respect to iterations.

doi:10.1371/journal.pone.0168606.g008

Fig 9. Heat map of the performance of RBF kernels with different values of c and gamma. Different

colors represent different levels of accuracy, and the accuracy increases from blue to red. (RBF: radial basis

function; c: cost parameter of RBF; g: gamma parameter of RBF).

doi:10.1371/journal.pone.0168606.g009

Localization and diagnosis framework based on slit-lamp images

PLOS ONE | DOI:10.1371/journal.pone.0168606 March 17, 2017 14 / 18



Conclusions and future work

In this paper, we presented a deep-feature-based CAD framework for classifying and grading

slit-lamp images. First, we analyzed the complexity of slit-lamp images for pediatric cataracts

and proposed three-degree grading in terms of morphology. Then, the ROI of the lens was

identified with the adoption of twice-applied Candy detection and Hough transform and then

it entered into the CNN to investigate the slit-lamp image. According the results of quantita-

tive measures, the overall performance of our proposed CNN method is significantly better

than the representative customized feature methods. Qualitative assessment also indicates that

the high-level features extracted from the CNN is discriminative, and we combined these

high-level features with an SVM classifier to improve the results. As a result, this work

addressed significant needs in pediatric cataract research and may shed a light on other ocular

images. Finally, we developed automatic diagnosis software to realize clinical application for

ophthalmologists and patients.

Due to the basic requirements for high accuracy and reliability in clinical diagnosis, our

future study will analyze the characteristics of features that have been extracted from deep

learning CNN. We will combine other features to improve the performance of CAD. To

achieve this goal, we plan to deploy multi kernel learning and ensemble learning for slit-lamp

images. After a period of clinical application, we hope to take full advantage of the deep learn-

ing model to enhance the reliability of the diagnosis system with large amounts of accumulated

datasets. We also plan to apply the proposed method to other biomedical images and assess its

performance and robustness using multiple datasets.
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