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Abstract

Networks are used for modeling numerous technical, social or biological systems. In order

to better understand the system dynamics, it is a matter of great interest to identify the most

important nodes within the network. For a large set of problems, whether it is the optimal use

of available resources, spreading information efficiently or even protection from malicious

attacks, the most important node is the most influential spreader, the one that is capable of

propagating information in the shortest time to a large portion of the network. Here we pro-

pose the Node Imposed Response (NiR), a measure which accurately evaluates node

spreading power. It outperforms betweenness, degree, k-shell and h-index centrality in

many cases and shows the similar accuracy to dynamics-sensitive centrality. We utilize the

system-theoretic approach considering the network as a Linear Time-Invariant system. By

observing the system response we can quantify the importance of each node. In addition,

our study provides a robust tool set for various protective strategies.

Introduction

A number of technical, social or economic systems are comprised of interconnected entities

(computers, people, countries, etc.) [1]. Those interacting agents, affecting each other’s states

are usually modeled as networks with nodes (vertices) representing the objects and links

(edges) representing their relations. The nature and the amount of possible interactions and its

effects make the number of available states of the system incredibly large, thus making the

analysis of system dynamics computationally demanding [2]. Even for the relatively “predict-

able” behavior where agents could exist in only a few possible states, the system complexity

exponentially grows with the number of agents involved. The behavior of less predictable

agents, such as people, where the resulting state of the agent depends on various factors, makes

the analysis of such systems especially challenging.

The complex interdependencies in various natural and man-made systems could be charac-

terized as networks. For this reason network analysis became an important tool for studying

some of the typical system dynamics such as spreading of information or diseases. Spreading

characterizes numerous processes observed in social and communication networks [2], such

PLOS ONE | DOI:10.1371/journal.pone.0168514 December 28, 2016 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Murić G, Jorswieck E, Scheunert C (2016)

Using LTI Dynamics to Identify the Influential

Nodes in a Network. PLoS ONE 11(12): e0168514.

doi:10.1371/journal.pone.0168514

Editor: Peter Csermely, Semmelweis University,

HUNGARY

Received: August 29, 2016

Accepted: December 1, 2016

Published: December 28, 2016

Copyright: © 2016 Murić et al. This is an open
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as the spread of rumors, news and ideas among humans, or data broadcast and cyber attacks

on communication networks. In order to control or prevent some of the spreading processes,

it becomes imperative to understand the role of certain network elements. Therefore, identify-

ing the most important nodes in regard to the spreading phenomena emerged as an important

area of research [3–5].

There are various approaches for evaluating the node importance in the network. The most

typical are based on centrality measures which quantify how much the node is centrally posi-

tioned regarding the network topology, such as degree, betweenness, closeness, local rank, h-

index, Katz and eigenvector centrality [6–9]. Not any centrality measure could be used to iden-

tify important nodes for all spreading processes. In social networks, for identifying individual

spreaders, k-shell is usually more reliable than degree [10]. Even though centrality measures

efficiently recognize the most central nodes by identifying the hubs, they are not always effi-

cient in capturing the spreading power of the vast majority of remaining peripheral nodes

[11]. The sources of the infection are usually not the hubs, but rather the nodes which are not

obviously influential. The centrality measures are not powerful enough to capture the influ-

ence of non-hubs, hence other metrics like expected force is introduced [12].

Besides the conventional centrality measures which assess the node’s importance based

mostly on the path lengths and distances, another group of measures emerges which try to

explain more specifically the spreading power or the influence of the node. The paramount

objective is to determine the most important spreaders [5, 13]. The k-shell [14], k-truss [3], per-
colation [15], accessibility [16], dynamic influence [4], or expected force are used to identify the

most important nodes able to spread the disease quickly through the network.

In this paper we propose such a measure, named Node Imposed Response (NiR), which cap-

tures the node’s spreading potential. It can accurately classify the most important nodes dem-

onstrating the high correlation with the simulation results. The measure outperforms

betweenness, degree, coreness and h-index centrality in identifying the most influential spread-

ers in the case of the SI and SIR spreading processes. NiR does not depend on any parameters.

However its performance is comparable even to the centrality measures which require variable

parameters, such as dynamic sensitive centrality (DS) [17]. Proposed NiR measure utilizes con-

cepts from system theory where the response of the system is evaluated for a certain number of

inputs and outputs. We show that LTI approach could be used for the studying of spreading

processes on networks thus uncovering the potential of the LTI modeling in network analysis.

The proposed approach can be used to identify various potential relations from one or more

sources to one or more end nodes only by manipulating inputs and observing different outputs

in the corresponding LTI system.

First, we describe the principles of representing the network dynamic in linear time-invari-

ant form. Then, we define the NiR and show the calculation steps using simple example. We

validate NiR’s potential by simulating SI and SIR dynamics on real and generated networks.

Finally, we discuss the results and give suggestions for future work.

Notation

The main notations are listed and ordered as they appear in the paper.

G(V, E) graph/network consisted of set of vertices (V) and set of edges (E)

N number of vertices (nodes) in the network

M number of edges (links) in the network

Aadj adjacency matrix
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aij weight of a link in the network. For the adjacency matrix, aij can be zero

or one

xðnÞ, uðnÞ, yðnÞ state, input and output vectors respectively at discrete time n

A and B state transition and input matrix which together define the properties of

the system

C and D output and feedforward matrix which are determined by the choice of out-

put variables

1ðnÞ unit step function in discrete form

H(s) system transfer function

y(t) system response in the time domain

L� 1 inverse Laplace transform operator

Si maximum value of step response with the single input in node i

NiR(i) node imposed response of the node i

p spreading rate—the probability the node will infect a susceptible neighbor

in one discrete time step

μ recovery rate—the probability the infected node will recover in one dis-

crete time step

τ Kendall’s Tau coefficient

E [X(p)] expected time of full infection with the probability of infection p

Smax(p) maximum value of step response as a function of p

Linear Time-Invariant Representation of Networks

Beside the most usual graph theoretic approach for dealing with nodes assessment, an alterna-

tive paradigm used here comes from the area of systems theory. The most prominent use of

the system theory in dealing with problems related to the networks refers to the problem of

controllability of dynamical systems [18]. The systems theory approach is used to identify the

driver nodes necessary to control the system’s dynamics. The very nature of complex net-

works, consisting of multiple interconnected components communicating with each other,

inspires the idea of conversion to the Multiple-Input and Multiple-Output (MIMO) system. In

this paper we show that the systems theory approach can capture the most common epidemic

dynamics: Susceptible-Infected (SI) and Susceptible-Infected-Recovered (SIR) models, regard-

less of the probability of infection.

A network is usually represented as a graph G(V, E), with N = |V| vertices or nodes and

M = |E| edges or links. The network topology is usually characterized by the adjacency matrix

Aadj. Alternatively, the topology of the network could be identified by the edge list, meaning

theM × Cmatrix whereM is the number of edges and C is the information on edge. The mini-

mal value of C equals 2 and usually C = 3 where the first, second, and third column are con-

sisted of source node, sink node, and the edge weight respectively. The N × N, or adjacency

matrix representation of the network topology, is more convenient in this case as it is easily

transferred to the Amatrix of the corresponding LTI system. For a graph with n nodes, Aadj is

the n × nmatrix where aij = 1 if the ith and jth nodes are connected, and aij = 0 otherwise. This
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particular graph representation is convenient for a system theoretic approach as it resembles

the state matrix used in the state space representation of a physical system.

The nature of disease spreading is a transmission of certain unwanted information (i.e.

virus) which enters the network at one or more points. It is subsequently replicated and con-

veyed from one node to another and the virus locations (or state of the network) change with

every time step. The topology of the network is considered to be static. These properties allow

us to observe the network as a discrete LTI MIMO (Linear Time-Invariant, Multiple Input—

Multiple Output) system [19]. The state-space representation describes the system as:

xðnþ 1Þ ¼ AxðnÞ þ BuðnÞ ð1Þ

yðnÞ ¼ CxðnÞ þ DuðnÞ; ð2Þ

where xðnÞ 2 RN is the state vector at discrete time n, uðnÞ 2 RM is input or control vector,

and yðnÞ 2 RM is the output. The matrix A :¼ ðaijÞN�N 2 R
N�N is the state transition matrix

and the matrix B 2 RN�M is input matrix. The matrix C 2 RM�N is the output matrix and

D 2 RM�M is the feedforward matrix.

The matrix A determines the dynamics of the system and it can be obtained as a transpose

of the adjacency matrix describing the network topology A ¼ ATadj [18, 19]. We can imagine

the signal excites the system by entering one node. Then, the signal spreads over the network

and each time it reaches the node it gets amplified by a certain parameter and subsequently

transferred to all adjacent nodes. During this process, we can choose which nodes to observe,

either all or just a fraction of nodes and measure the signal strength over time. We can inter-

pret the measurement points as a set of sensors collecting data in every time step. By analyzing

the gathered data, we can examine the dynamics in the network and estimate the possible

impact of infecting certain nodes. The system matrices are generated the same way, regardless

of the network dynamic we want to observe. Only the system response to the input signal is

used for the analysis.

The LTI approach provides a tool for such a system analysis allowing us to gather and

observe the signals from the set of designated nodes. We can choose to excite more than one

node, hence simulating the multiple infection points.

For example, a small directed network is shown in Fig 1 with the corresponding adjacency

matrix Aadj. The corresponding state-space representation of the system with matrices A, B
and C is shown in Eqs (3) and (4). In this example the input vector uðnÞ is in the form of the

Heaviside (unit) step function. Here we chose to observe all nodes, and therefore the matrix

Fig 1. An example of a small directed network and its corresponding adjacency matrix. The zig-zag

line shows the signal (virus) entering the network.

doi:10.1371/journal.pone.0168514.g001
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C 2 RM�N consists of all ones.

xðnþ 1Þ ¼
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One can choose any preferred way for solving the system equations [20]. The system could

be presented in the form of the transfer functionH(s) where

HðsÞ ¼
YðsÞ
XðsÞ

¼ CðsI � AÞ� 1Bþ D: ð5Þ

Furthermore, the step response of the system is obtained by

yðtÞ ¼ L� 1 1

s
HðsÞ

� �

ð6Þ

However, this method could be challenging for large graphs as finding the inverse of large

matrices is computationally expensive. An alternative and more programming-friendly

approach would be a recursive solution [19] which avoids the matrix inversion. For a more

detailed explanation refer to the example in the Discussion section.

Calculating the NiR

NiR is the normalized maximum value of the step response Si for the corresponding LTI sys-

tem with the node i as the input. Let us define the maximum value of step response for the

node i as Si, then

Si ¼ max
1<t<k

yiðtÞ ð7Þ

The function yi, defined in Eq (6) is concave and eventually reaches its maximum value for a

large enough t. Therefore Si will always exist. Then

NiRðiÞ ¼
Si � Smin
Smax � Smin

; ð8Þ

where Smax = maxj 2 {1, . . ., n} Sj, Smin = minj 2 {1, . . ., n} Sj, and n is the number of nodes in the

network.

In order to calculate Si we have to construct the corresponding LTI system which is

defined by system matrices A, B, C and D. Using the transpose value of the adjacency matrix

ATadj we create the corresponding LTI system like in Eqs (3) and (4). In order to maintain the

system’s bounded-input, bounded-output (BIBO) stability, the topology should be modified

so the cycles are removed (see Discussion for details). The NiR could be calculated only for

the acyclic directed graphs. An alternative version of NiR for graphs with cycles is discussed
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in the Discussion section. For the spreading processes, such as SI and SIR, cycles could be

considered as irrelevant as the nodes cannot be infected twice. Also, removing the edges

which form the cycles should not significantly influence the spreading dynamic. However,

the algorithms for cycle removal do change the topology in the way some paths become

excluded, especially for the undirected networks where one has to choose between the edge

direction. Therefore, the proper way of removing cycles has to be chosen in order to main-

tain the most important paths from the source node and to introduce the minimal number

of removed edges. Details about the method of producing acyclic graph are provided in

Methods and Data section.

Next we create a system matrix A such that A ¼ ATadj. All non-zero entries are substituted

with the value d so 8aij = 1: aij = d, and d< 1. Choosing d� 1 is preferred. Supplementary

investigation shows the variance of the NiR values for all nodes becomes higher as the value

of d decreases. In the case of any relatively large network (n> 100) there is a large fraction of

nodes with similar spreading power when considering the number of all non-hubs. In this

case, the low variance could lead to false estimation, especially considering the removal of

cycles and some of the topology information which gets lost during the process. Therefore,

choosing the smaller d is important for proper node differentiation. In our simulations we

use d = 0.1.

The step response of the obtained system will eventually reach the maximum value Smax.
That particular value calculated for the input node and normalized over all nodes within the

range [0, 1] is the NiR.

Small network example

In Fig 2 an example of a small network with n = 10 and corresponding NiR values is shown. In

order to obtain NiR, the topology of the network has to be modified such that the cycles are

eliminated. In this particular example we see two acyclic topologies: one for the source node

ID1 (left), and second for the source node ID10 (right). The NiR value indicates the node’s

spreading power, which means the node with higher NiR will infect the entire or the large frac-

tion of the network faster.

Fig 2. The NiR of all nodes in the network. For each node, we can calculate the NiR. Initially, the undirected

network is made directed and acyclic with the respect to the source node. This is a necessary step in order to

maintain the system’s stability. The LTI system is then formulated having in mind the new topology and the

source. The value of the maximum step response of the corresponding system is the NiR. There are two

topologies depicted for two observed nodes: node 1 (left) and node 10 (right). The normalized NiR values of

all nodes are shown. The radius of the node represents the same (larger the radius, larger the NiR. Here we

can identify the node 5 as the one with highest NiR.

doi:10.1371/journal.pone.0168514.g002
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The claim is supported by simulating the SI spreading dynamic and comparing the results

with the obtained NiR value for the small network which serves as an example (Fig 2). The

infection starts from each node and the time the infection will reach all nodes is measured. If

the time of full infection is shorter, the node has a potential to spread the infection faster and is

considered more important (i.e. more influential). In order to compare NiR value and simu-

lated spreading potential, we sort nodes by their NiR and spreading power obtained by the

simulation (Fig 3). Based on those values the nodes are ordered and assigned to several distinct

groups. This is the way we identify the nodes with high or low spreading potential. In the case

of the example network, the NiR accurately captures the node’s spreading potential since the

order of the nodes remains the same as if they were ordered by the time to the full infection.

Normally for larger networks where n� 10, there will be many nodes with similar NiR, hence

the difference between consequent NiR values would not be as evident as in the example here.

Simulation Results

In order to confirm our assumptions, we first simulate the SI and SIR spreading processes on

the set of graphs and compare it to the NiR measure. The results show a high correlation

between the NiR measure and the outcome of the spreading processes in all families of net-

works that we used (Table 1). The correlation diagrams are shown in the form of the violin

plots in the Figs 4 and 5.

We compare the simulation results against five other centrality measures (betweenness,

coreness, degree, DS and H-index centrality). The NiR measure demonstrates high

Fig 3. Nodes in the small network classified by the importance. On the left side, the nodes are ranked by

their NiR value. Then, the SI infection is simulated for each source node and the time measured until the

infection reaches all nodes. The right-hand picture shows the node ranking by the time infection needed to

spread if the infection starts from that particular node. If the time for full infection is shorter, the node is ranked

higher. The NiR measure could capture the node’s spreading power and put it in the right category. The

distinct separation in groups by the spreading potential is made for the sake of the better visual presentation.

doi:10.1371/journal.pone.0168514.g003
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correlation to simulation results together with the low variance, often outperforming all five

measures both in SI and SIR model. The only measure which performs equally is a DS cen-

trality whose parameters depend on the dynamics. In the Figs 4 and 5, a single violin plot is

displayed within the vertical and horizontal axes. The vertical axis represents the correlation

between the experimental results and a specific measure. For the correlation value (ranging

from -1 to 1) the width of the violin can be read. The violin width represents normalized cor-

relation frequency obtained from multiple experiments. The higher the plot is positioned,

the stronger correlation between measure and simulation results. Likewise, if the plot is posi-

tioned low, the correlation is weaker. The vertical length of the violin describes the robust-

ness of the measure. If the plot is short, then the measure correlates with the simulation

results most of the time with no large variations. The more vertically stretched plot demon-

strates the higher variance in measures.

Note that all violin plots are smoothed for the sake of the better presentation. For smooth-

ing, we estimate the probability density function of the observed correlation distribution using

normal kernel density with kernel density estimate as KDE = 0.15 [21].

Not all nodes are used as sources for the measurements and comparison. In the case of the

large networks, the incremental difference in the centralities or other measures between nodes

is negligible. Therefore it is justified to choose a set of representatives in each group of nodes.

Here we sort nodes based on their NiR value. Then, we divide the sorted set into 10 equal

blocks. From each block we pick 8 nodes uniformly at random. In total, we choose the set of

80 nodes for each network to compare. This way the nodes are selected at random with regards

to their importance, so the random number generator will not end up choosing too many sim-

ilar nodes. Our assumption is that higher resolution would not add to the precision while sig-

nificantly increasing the need for more computing power.

Additionally, we simulate SI and SIR spreading processes on two real world networks

(NREN and CA-GrQc) for various probabilities of infection p. As shown in Fig 6, NiR performs

well in both networks for both spreading models, clearly outperforming degree, H-index, core-

ness, and betweenness centrality. For the SI model, NiR performs equally as well as DS central-

ity, even though it does not use any additional parameters from the spreading model. The

centrality measures generally perform well in identifying the important spreaders for low

infection probabilities. As the probability of infection increases, the accuracy of centrality mea-

sures slightly decreases, which means the identification of the influential spreaders becomes

more difficult if the spreading rate is high.

Table 1. Generated and extracted networks. Four networks are generated using Barabási-Albert and Watts-Strogatz models for scale-free and small-world

networks respectively. The rest are the real world networks of various sizes and characteristics taken from: SNAP—Stanford Large Network Dataset Collec-

tion, UCLA’s Beyond BGP:Internet Topology Project and The Internet Topology Zoo. All data sets are available online. Column nodes represents the number

of nodes in the original network. Columns diameter, density and clust. coeff. represent the mean values calculated from the set of sampled networks. The avg.

degree is the same for both the original and sampled networks.

network nodes diameter density avg. degree clust. coeff. source

scale-free 1 6000 14.69 ± 4.68 7.09e−06 3.40 0.0944 Generated

scale-free 2 6000 17.78 ± 10.22 8.75e−07 4.25 0.1148 Generated

small-world 1 6000 41.46 ± 31.54 3.95e−06 3.08 0.1602 Generated

small-world 2 6000 26.77 ± 16.23 4.99e−07 5.00 0.2070 Generated

CA-AstroPh 18772 9.54 ± 3.45 1.10e−07 21.25 0.2143 SNAP

ca-GrQc 5242 7.93 ± 4.50 4.17e−07 6.13 0.5296 SNAP

IPv6-2015 34761 5.19 ± 9.81 2.37e−07 10.54 0.0853 UCLA

NREN 1157 20.69 ± 7.31 2.97e−06 3.21 0.0994 Topology Zoo

doi:10.1371/journal.pone.0168514.t001
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Fig 4. Correlation of NiR and centrality measures to the spreading outcome on simulated networks—

the case of the SI model. Violin plots show the distribution of correlations between observed spreading

dynamic and various centrality measures on 100 generated networks from each network family. Graphs are

generated from the sample degree sequence of the real graphs. The correlation with NiR is relatively strong

and outperforms betweenness, coreness, degree and H-index centrality with higher mean values and low
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Methods and Data

Spreading models

SI (Susceptible-Infected) epidemic model. In the SI model the node could be in one of

two states: a) susceptible to infection and b) already infected and able to spread the infection.

The epidemic process starts from the initially infected node. All neighboring nodes are con-

sidered susceptible. At each discrete time step the infected node attempts to infect all neigh-

boring nodes independently with the probability of transmission p. For the healthy

(uninfected) node i with k infected neighbors, the probability of infection in the next time

step is pi = 1 − (1 − p)k. The spreading process on the connected graph will eventually affect

the whole network. We simulate the SI infection process which starts from the set of chosen

nodes and measure the time until 50% of all nodes are infected. The time t needed for 50%

infection is used as a basic benchmark. The results are similar if the infection threshold is

raised to 70% or to the full infection. The NiR values for the same set of chosen nodes are

then compared and the correlation is measured. This same process is repeated for 100 net-

works in each network family.

SIR (Susceptible-Infected-Recovered) epidemic model. In the SIR model, the node

could take one of three states: a) susceptible to infection, b) already infected and ready to

spread the infection and c) recovered (or removed) node that have been infected and will

never be infected again. The epidemic process starts from a single infected node. All neigh-

boring nodes are considered susceptible. At each discrete time step the infected node

attempts to infect all neighboring nodes independently with the probability of transmission

p. After that, each infected node recovers independently with the probability μ. For the

healthy (uninfected) node i with k infected neighbors, the probability of infection in the next

time step is pi = 1 − (1 − p)k. At the same time the probability of recovery remains the same

regardless of the node’s surroundings. Here we consider μ = 1, as the results should be very

similar for other values of μ [17]. The benchmark value is an outbreak size (the number of

infected nodes) after t time steps. Here, we limit the simulation time to t = 10.

Networks

There are two types of networks used in the simulations. The first type are the scale-free and

small world networks constructed randomly using various parameters (Table 1). Scale-free net-

works are constructed based on the Albert-Barabasi model of preferential attachment [22]

using the algorithm described by Batagelj [23] and implemented in “A Controllable Test

Matrix Toolbox for MATLAB” [24]. The first group of scale-free networks has a minimum

node degree of 1, while the second group has a minimum node degree of 2. Those parameters

affect the diameter and the density of networks, and therefore the expected dynamic of spread-

ing processes. Similarly, the small-world networks are constructed with the same MATLAB

tool using the Watts-Strogatz model [25]. The Watts-Strogatz model is based on two parame-

ters which define the number of nearest neighbors to connect (k) and the probability of adding

variance. The vertical position of the violin plot demonstrates the correlation coefficient over all observed

samples: the higher the position, the stronger the correlation. Additionally, the length of the plot indicates the

variance: the more stretched plot, the bigger the variance. Therefore, the preferred plot is narrow and

positioned high on the grid. The SI spreading process is used as a reference and it is computed as the time

the infection reaches at least 50% of all nodes starting from the source node for the spreading rate of p = 0.05.

The infection time is calculated as a mean time for 300 simulated processes for each observed node. The

horizontal line within the plots shows the arithmetic mean of the correlation coefficients.

doi:10.1371/journal.pone.0168514.g004
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Fig 5. Correlation of NiR and centrality measures to the spreading outcome on simulated networks—

the case of the SIR model. Violin plots show the distribution of correlations between observed spreading

dynamic and various centrality measures on 100 generated networks from each network family. Graphs are

generated from the sample degree sequence of the real graphs. The correlation with NiR is relatively strong

and outperforms betweenness, coreness, degree and H-index centrality with higher mean values and low
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variance. The vertical position of the violin plot demonstrates the correlation coefficient over all observed

samples: the higher the position, the stronger the correlation. Additionally, the length of the plot indicates the

variance: the more stretched plot, the bigger the variance. Therefore, the preferred plot is narrow and

positioned high on the grid. The SIR spreading process is used as a reference and the benchmark measure is

the outbreak size of the infection when the spreading rate is p = 0.05 and recovery rate is μ = 1. The outbreak

size is calculated as a mean outbreak size for 300 simulated processes for each observed node. The

horizontal line within the plots shows the arithmetic mean of the correlation coefficients.

doi:10.1371/journal.pone.0168514.g005

Fig 6. Correlation between centrality measures and spreading potential evaluation for various p. The probability of infection p takes a value from 0.01

to 0.1. Each data point is obtained by averaging over 104 individual runs. Plots are generated according to the SIR model (upper half) and SI model (lower

half). All correlations are quantified by the Kendall’s Tau coefficient τ.

doi:10.1371/journal.pone.0168514.g006
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the shortcut in the given row (ps). The first group of generated small world networks has k = 1

and ps = 0.5, while the second group has k = 2 and ps = 0.5. The variety of initial parameters

ensures the generation of networks with different properties such as diameter, density or the
average degree. Randomly generated networks are connected, undirected and consisted of

6000 nodes each.

The networks in the second group are derived from the large real-world networks data.

These real world networks are taken from various network dataset repositories: SNAP Data-
sets: Stanford Large Network Dataset Collection [26], UCLA’s Beyond BGP:Internet Topology
Project [27], and The Internet Topology Zoo [28]. Two networks represent the collaboration

pattern between authors of the papers submitted to arXiv; the ca-GrQc for the General Relativ-

ity and Quantum Cosmology category, and the ca-AstroPh for the Astro Physics category. The

other two are technological networks which illustrate the topology of networked systems. The

Internet AS-level topology network (IPv6-2015) is the monthly snapshot of AS-to-AS links as

they appeared in the January 2015. The European network of National Research and Educa-

tion Networks (NREN) is the backbone network managed by GÉANT which connects all

European scientific and research institutions.

All simulations are conducted on network samples obtained from the available network

sets. Sampled networks are characterized only by the degree distribution. Simulated networks

are generated by 1000 node samples taken uniformly at random without repetition and by

extracting the degree sequence. Networks are then constructed from the obtained degree

sequence using the Havel-Hakimi algorithm [29]. Since the algorithm doesn’t guarantee the

construction of connected graphs, the simulation is conducted on the largest connected com-

ponent of the obtained network.

Graphs are usually not characterized only by the degree distribution. Constructing the

graph from the degree sequence ignores some aspects of network topology such as communi-

ties. Because of the graphs sizes used here, the communities structures could not be generated

in the same way they are represented in the original graphs [12]. Some other aspects of net-

work characteristics such as costs, constraints, and direction on edges [30] could also be

ignored as they are irrelevant in our undirected unweighted simulated networks. Network

sampling process by extracting the degree distribution introduces a certain amount of ran-

domness. To achieve the certainty of the correlation measurements, many network samples

have to be generated. Each of the networks within the real world network family is generated

over 100 times. For each of the random realizations of the topology, we measure the correla-

tion of SI and SIR spreading dynamic and observed measures.

Benchmark measures

The node’s importance is usually characterized by some of the numerous centrality measures.

Centrality measures rank nodes by their potential influence. They are based mostly on the

length of the walks which include the particular node. Some of them could also be parameter-

ized [31].

Degree of a node is the number of edges (links) incident to the node [32]. In directed net-

works there is a difference between indegree din(i), showing the number of immediate links

directed towards the node i and outdegree dout(i) counting the number of links directing away

from the node i. For the undirected networks there is one degree measure d(i) = dout(i) = din(i).
Degree is the simplest yet most robust measure of the node importance. Although it has certain

drawbacks, especially in capturing the node importance in networks with many large clusters

divided by the nodes with low degree, in most cases the degree accurately identifies the major-

ity of the most influential nodes.
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Betweenness represents the number of shortest paths from all nodes to all others that pass

through a particular node. The value is usually normalized in the range [0, 1]. The betweenness

centrality bk of the node k is defined as follows [6]:

bk ¼
X

i

X

j

gikj
gij

ð9Þ

where gij is the number of geodesic paths from node i to node j, and gikj is the number of geo-

desic paths from i to j that pass through k. There are some variations in the betweenness cen-

trality based on the various approaches of defining the most desirable path. In some cases the

constraints in the network make geodesic path not desirable, since it could be too costly (e.g.

congested, expensive etc.). The actual betweenness centrality of the node is then modified tak-

ing in account also the weights of the links.

Coreness is the centrality measure derived from the k-core (also called k-shell) decomposi-

tion process of the network. The k-core is the largest subgraph comprising nodes of degree at

least k [33]. A k-core of the graph can be obtained by recursively removing all the nodes of

degree less than k, until all nodes in the remaining graph have at least degree k. The coreness ci
of a node i is k if the node belongs to the k-core but not to the (k + 1)-core [34]. By observing

the coreness measure, we can identify the best individual spreaders in the network if the

spreading process originates in a single node [13].

H-index, or Hirsch index, was originally used to measure the citation impact of the author.

The H-index concept was later extended to quantify the importance of the node in the net-

work. The H-index of a node is defined to be the maximum value h such that there exists at

least h neighbors of degree no less than h [35]. It is interrelated to coreness and the degree, and

it outperforms both measures in several cases.

Dynamics sensitive centrality integrates the topological features and the dynamical prop-

erties at the same time [17]. While the all other centrality measures used for comparison rely

solely on the topological features, DS introduces two parameters, β and μ, representing the rate

of the infection and the rate of the recovery respectively. The DS centrality is therefore particu-

larly suitable for identifying the most influential spreaders when the SIR epidemic model is

concerned. However, to properly assess the node’s importance one has to know the spreading

dynamics parameters in advance.

Furthermore, all networks used in simulations are characterized by various global proper-

ties. Network attributes such as diameter, density, average degree and clustering coefficient are

used to recognize the network model and to identify in which extend network topologies con-

trast to each other.

Correlation measure

For all the analyses we use Kendall’s Tau rank correlation coefficient. It is a non-parametric

measure of relationship between ranked data. The correlation coefficient τ takes a maxi-

mum value of 1 if the observations have identical rankings and a minimum value of -1 if

observations have dissimilar rank. For each node i we calculate the spreading influence xi.
In the case of SI model, xi is as a time needed to infect the 50% of the network. For SIR

model, xi is the number of infected and recovered nodes. We calculate the yi for each of the

centrality measures (i.e. NiR, betweenness, coreness, degree, H-index, DS) for the node i.
Nodes are then ranked using �x and �y, and the rankings are compared. The accuracy of the

observed measure is compared to the simulated spreading dynamics using Kendall’s Tau
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[36] as:

t ¼
2

nðn � 1Þ

X

i<j

sgn½ðxi � xjÞðyi � yjÞ�; sqnðyÞ ¼

1; y > 0

� 1; y < 0

0; y ¼ 0

8
><

>:

Obtaining acyclic graph

To calculate the maximum value of the step response and therefore the NiR the system by defi-

nition has to be BIBO stable. The number of cycles in the original graph will make the system

unstable for any value of aij within the A system matrix. Thus, the topology of the observed

graph has to be modified so the cycles are removed and at the same time the number of nodes

remains unchanged. In the process of modifying the topology, the number of removed edges

should be minimized in order to maintain the topology as similar as possible to the original.

One has to consider keeping the most critical (or most probable) paths for infection spreading,

such as shortest-path tree with the source node as the parent. Furthermore, in the process of

edge removal, the edges closer to the source node should be given priority since the impor-

tance of the topology decreases quickly with the distance from the seed [12, 31, 37]. The proce-

dure used here for making the graph acyclic is as follows: (1) identify the source node; (2)
extract the shortest paths tree (SPT) with the source node as the parent; (3) direct the SPT

edges away from the source node; (4) return excluded edges iteratively starting from the edges

closest to the source; (5) if the returned edge forms the cycle, remove it.

Discussion

The proposed NiR metric can successfully predict the epidemic dynamic in various network

models. The results of the numerical simulations show a relatively large correlation with the

actual infection process. This metric also shows a small variance, which demonstrates the high

robustness regardless of the type of network. The underlying paradigm based on the LTI sys-

tem approach allows for the numerous variations of the metric. By choosing the proper nodes

as inputs and outputs, one can use the similar approach for solving various other problems.

For example, we can identify the nodes which are more likely to be reached from the set of

other nodes by observing the output at the given nodes. The weighted networks can be further

analyzed using the same approach by including the weight values in the Amatrix.

In order to evaluate the spreading power of the node, the most important area of interest

is its surrounding. The importance of topological information decays quickly with the dis-

tance from the observed node. Therefore, almost all centrality measures could rely with high

confidence on local neighborhood information [12, 38]. The NiR shows a similar property.

The signal strength decreases with each time step as it is being amplified with the factor of

aij� 1. Even though multiple incoming edges boost the signal strength by summation, each

node decreases the resulting signal with the parameter aij at the same time. Take for example

the line graph consisting of n nodes connected consecutively. If the resulting system gets

excited by the unit impulse signal at the first node, the signal strength after t time steps will

be already 10 × t times weaker for the aij = 0.1. This implies the signal strength observed in

nodes which are 4 steps away from the source is already highly attenuated. The observations

made on any nodes positioned even further from the source could be irrelevant for the NiR
assessment. This property makes it possible to evaluate the node importance with NiR using

just the knowledge of the local topology, thus allowing the measure to be effectively used for

very large graphs.
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In the case of all equal edge weights, the NiR shows high correlation to node degree at the

distance k (Fig 7). The interesting observation is that the correlation with the node degree at

distance one (0.98 ± 0.01) is higher than with the degree of distance zero (0.94 ± 0.02). Both

NiR and the degree at the distance one cover the relevant area around the node more broadly

than the simple degree. It can also be noted that the topology information loss when calculat-

ing the NiR for the immediate proximity of the source node is negligible. As we go further

away from the source node, the correlation between NiR and the degree decreases. For the dis-

tance two, correlation already drops to 0.94 ± 0.1. The NiR still exhibits the higher overall cor-

relation compared to the infection dynamics, which demonstrates the NiR’s ability to

incorporate more topological information than a degree.

The main motivation behind limiting the analysis solely to the acyclic graphs is the BIBO

system stability. A system is BIBO stable if there is a bounded output for every bounded input

over the time interval [t0,1). Since the NiR is defined as a normalizedmaximum value Smax of

the step response, the system has to have bounded output. To obtain the BIBO stability without

adjusting the link weights, the cycles have to be removed. For the stable system, the amplitudes

of the system response could be observed and analyzed at any desired time step, while the

response of the unstable system quickly reaches extremely high absolute value. The systems

observed here are not real physical systems, but rather their mathematical model. For the sake

of the measurement we can allow the system to be unstable and let cycles exist. In that case, we

have to read the response quickly after the initial excitement. Our preliminary results show

that the measure derived in such a way exhibits the same or even better performance than the

proposed NiR. The analysis of the unstable systems will be the topic of our further research.

In future work the additional information regarding the networks can be considered. The

values in adjacency matrix and consequently in the A system matrix can be unequal, therefore

allowing the various costs of the links. Furthermore, an additional constraint such as edge

directions could be introduced.

Reasoning behind

The example of three simple graphs given in Fig 8 demonstrates that the value of the step

response could be used to predict the simple spreading dynamic. We further argue that the

Fig 7. The correlation between degree and the NiR. There is a strong correlation between degree and NiR

value for all types of the networks observed. The correlation against the node degree for all networks takes a

value of 0.94 ± 0.02. The sum of all degrees of the node’s neighbors (degree of the distance one) correlates

even more with the NiR value when the correlation coefficient is 0.98 ± 0.01. Random scale-free network, as well

as the General Relativity collaboration network (ca-GrQc) show the expected pattern on the graph clearly

demonstrating the presence of the small number of hubs, compared to the relatively large number of non-central

nodes. On the other hand, the small-world model generates approximately the same number of nodes which

could be grouped by the importance.

doi:10.1371/journal.pone.0168514.g007
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same principle could be used for arbitrary directed acyclic graph of any size which we show in

numerical simulation later (Fig 9). The main hypothesis underlying the claim is that the

response value of the corresponding LTI system correlates with the time needed to infect the

network or the large part of it.

It is intuitively known that the time delay between the initial infection and the complete

infection is a function of the probability of virus transmission between the infected and suscep-

tible node. This relation is reciprocal. The expected time all nodes will be infected E [X(p)] is a

monotonic function for all nodes and therefore it could be used for the node’s ordering. On

the other hand, the maximum value of the step response of the corresponding LTI system

Smax(p), presented as a function of p is monotonic as well, although increasing. The corre-

sponding system is derived from the acyclic directed graph with non-negative values of the A
matrix elements in the range 0< aij< 1. The example of three small networks (Fig 8) and

their corresponding E [X(p)] and Smax(p) demonstrate this trend.

The illustration of the phenomenon becomes clear in this small example. Calculating the E
[X(p)] for slightly larger graphs already becomes too complex.

To derive the expected time of infection for larger non-regular networks rapidly becomes

too difficult as the number of nodes increases. However, the simulation results on those net-

works suggest the same monotonically increasing trend (Fig 9). The time the infection will

spread rises monotonically with the increased probability of infection p, which is expected. At

the same time, the maximum value of the step response follows the similar trend. This leads to

Fig 8. Expected time of infection and step response: small networks example. For three small networks

the expected time of full infection, E [X(p)], is calculated. For all networks the source of the infection is the

parent node (top). At each time step the parent node tries to infect neighboring susceptible nodes with the

probability p. All nodes will be eventually infected and the time of full infection is presented with a certain

distribution (i.e. the distribution of the expected number of trials in discrete time for the infection to reach all

nodes). The E [X(p)] is the mean of the distribution for each network (the expected number of trials before the

success.) The Smax(p) is the maximum step response value of the corresponding LTI system.

doi:10.1371/journal.pone.0168514.g008
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the conclusion that those two measures (expected time of the infection andmaximum step
response) could be used interchangeably, except that Smax is considerably easier and faster to

compute.

Simple LTI infection pattern on a sample tree graph

Another more illustrative example of a small tree graph is presented in Fig 10(a). For the sake

of clarity nodes are positioned on dotted circles each representing the hop distance from the

parent node. The corresponding system matrices are created and the step and impulse

response are calculated. Notice that matrix A still has ones as non-zero elements. Parent node i
was chosen as an input (i.e. the source of infection). We observe all nodes as outputs and calcu-

late the final output as the sum of signal strengths in all nodes over time. The sum output is

plotted in Fig 10(b). Notice the impulse response for the unit input. The value of the response

over time equals the number of nodes on corresponding circles. For the case of a virus trans-

mission in the example network with the source in the node i, and the almost certain virus

transmission from infected to susceptible (p = 1), the impulse response shows exactly the

Fig 9. The comparison of the step response and the infection time. Here we compare the time the

infection reaches all nodes and the maximum value of step response of the corresponding LTI system for the

various probabilities of infection. For the sample random acyclic graph with 100 nodes, the corresponding

single input LTI system is constructed. The non-zero values in A matrix range from 0.01 to 0.4, to capture the

system behavior with various infection probabilities. The system is excited by step function and the maximum

value of the step response is presented with data points as squares. The results indicate the exponential

trend. On the other hand, we simulate the SI infection dynamic starting from the same node. The simulation is

conducted for 40 different probabilities of infection (0.01–0.4). The time for the infection to reach all nodes is

then measured (i.e. the time when the network becomes fully infected). For comparison, the inverse value is

plotted with data points as circles and the black line exhibits the linear trend. Both curves are monotonically

increasing.

doi:10.1371/journal.pone.0168514.g009
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number of infected nodes over time. Likewise, the step response displays the total number of

infected nodes.

This method for infection analysis is limited to tree graphs and assuming that the infection

transmission from infected to susceptible is almost sure. An alternative method to overcome

this limitation is network expansion with a specified number of intermediate nodes between

each couple [19]. The contagion spreading is a process which is usually non-desired. There-

fore, it is not usually characterized by the almost sure transmission rate. Moreover, the proba-

bility of infection is relatively small, ranging significantly below 100% (p� 0.1). For the

unlikely case of p = 1, the network could be transformed to a shortest path tree with the seed

node since the parent as the infection route is known and unnecessary edges could be removed

without affecting the infection dynamic. On the other hand, for any p< 1, the number of mul-

tiple incoming edges and multiple possible paths must not be neglected. Here we show that

modification of the A matrix could lead to the LTI model of a system which can predict the

infection dynamics on an arbitrary topology for any p< 1.
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number of infected nodes in each time step.
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