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Abstract

Background

Preliminary studies have shown that diffusion tensor imaging (DTI) is helpful in evaluating

liver disorders. However, there is no published literature on the use of DTI in the diagnosis

of biliary atresia (BA). This study aimed to investigate the diagnostic value of the liver aver-

age apparent diffusion coefficient (ADC) and fractional anisotropy (FA) measured using DTI

for BA in neonates and infants.

Methods

Fifty-nine patients with infant jaundice were included in this study. DTI was performed with b

factors of 0 and 1000 s/mm2. Liver fibrosis in the BA group was determined and graded (F0,

F1, F2, F3, F4) based on the pathological findings. Statistical analyses were performed to

determine the diagnostic accuracy of DTI for BA.

Results

The ADC value was significantly lower in the BA group [(1.262±0.127)×10−3 mm2/s] than in

the non-BA group [(1.430±0.149)×10−3 mm2/s, (P<0.001)]. The area under the receiver

operating characteristic curve was 0.805±0.058 (P<0.001) for ADC. With a cut-off value of

1.317×10−3 mm2/s, ADC achieved a sensitivity of 75% and a specificity of 81.5% for the dif-

ferential diagnosis of BA and non-BA. In the BA group, the ADC value was significantly cor-

related with fibrotic stage. Further analysis showed that the ADC value of stage F0 was

significantly higher than that of stages F1, F2, F3 and F4, whereas there were no significant

differences among stages F1, F2, F3 and F4.

Conclusion

Hepatic ADC measured with DTI can be used as an adjunct to other noninvasive imaging

methods in the differential diagnosis of BA and non-BA. ADC was helpful in detecting liver

fibrosis but not in differentiating the fibrotic grades.
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Introduction

Biliary atresia (BA) is a progressive disorder that can result in hepatic fibrosis and cirrhosis [1].

This condition is unique to neonates and infants, and its etiology remains unknown. If left

untreated, BA can lead to death, usually during infancy. Early diagnosis improves the prognosis

for BA but remains challenging [2–5]. At present, the diagnostic methods for BA are divided

into invasive and noninvasive categories. Among invasive methods, which include surgical

exploration (SE), laparoscopic exploration (LE) and liver biopsy, intraoperative cholangiography

(IC) is often considered the diagnostic gold standard for BA because it allows a visual assessment

of the biliary tree [5]. Among noninvasive methods, hepatobiliary scintigraphy uses radiation,

and the diagnostic accuracy of ultrasonography or color Doppler ultrasonography needs to be

improved. The recently reported Fibroscan (transient elastography) can be used to assess liver

fibrosis in BA patients but must be further validated using a large sample size [6]. Other nonin-

vasive imaging techniques, including computed tomography and magnetic resonance imaging

(MRI), have been used to predict the risk of esophageal variceal bleeding in BA [7, 8]. MRI has

also been used to differentiate BA from total parenteral nutrition-associated cholestasis by using

the indices of lobar difference and left lateral hepatic angle [9]. In a previous study, we applied

three-dimensional magnetic resonance cholangiopancreatography (3D-MRCP) to diagnose BA,

and the results showed high sensitivity but low specificity, with unsatisfactory accuracy [10].

In recent years, diffusion-weighted imaging (DWI) has become an important noninvasive

technique for evaluating ultrastructural changes in liver tissue, especially in chronic liver dis-

ease. The usefulness of DWI when using an MR imaging system for the detection and assess-

ment of liver fibrosis has been reported in several studies, which revealed a decrease in the

apparent diffusion coefficient (ADC) in cirrhotic liver tissue [11–18]. Mesude T, et al. [19]

found that the hepatic ADC value decreased significantly in BA compared to the controls and

suggested that the right hepatic ADC measured with DWI by 1.5-T MRI could be useful for

the diagnosis and long-term follow-up of cirrhotic severity in BA patients. Compared with

DWI, diffusion tensor imaging (DTI) uses additional gradients in multiple dimensions and

has potential advantages in the detection of fibrosis because different diffusion directions are

calculated [20–22]. Tosun M, et al [23] evaluated liver fibrosis using DTI. The study verified

the importance of DTI for assessing liver fibrosis using multiple indices such as ADC and frac-

tional anisotropy (FA) values. However, there is no literature on the application of DTI in the

diagnosis and evaluation of BA.

In this study, DTI was performed in patients with clinical suspicion of BA, and the average

ADC and FA were measured and compared between the BA and non-BA groups. Our aim

was to investigate the value of DTI for the differential diagnosis and assessment of liver fibrosis

in BA, and we expected to find a relatively reliable and noninvasive method for the detection

and assessment of BA.

Materials and Methods

Ethics statement

The study protocol was approved by the Human Ethics Committee of the Children’s Hospital

of Chongqing Medical University. Written informed consent was obtained from the parents

or guardians of all patients before the examinations.

Patients

Fifty-nine patients (32 male, 27 female; mean age, 79.6±48.1 days; age range, 20 days to 272

days) with infant jaundice and clinical suspicion of BA were included in our study between
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January 2012 and April 2014. The inclusion criterion was presentation with more than one

clinical symptom, such as jaundice, pale-colored stools, hepatomegaly, and/or dark urine. The

exclusion criteria included abandoning treatment, indefinite diagnosis, diagnosis as non-BA

by 3D-MRCP, or follow-up of less than one year. Blood biochemistry tests were obtained 2

days before surgery or MRI. For MRI examination, chloral hydrate was orally administrated at

a dose of 50 mg/kg for sedation.

Imaging data collection and post-processing

This study was performed with a 1.5-T MRI unit (Signa Propeller HD; GE Medical Systems,

Milwaukee, WI, USA) using a single-channel quadrature head coil. Routine axial T1- and

T2-weighted imaging were performed first. Then, the 3D-MRCP images were obtained as

described in detail previously [10]. Finally, the axial-plane DTI was performed using a single-

shot spin echo echo-planar-imaging (EPI) sequence with the following parameters: TR 6000

msec, TE 95.7 msec, matrix 128×128, b factors of 0 and 1000 s/mm2, slice thickness 5.0 mm,

slice gap 0 mm, number of excitations 2, sampling bandwidth 250 KHz and sensitive diffusion

gradient field applied in 15 directions. The total imaging time of DTI was three minutes

and 24 seconds, and the field of view covered the diaphragmatic dome and margo interior

hepatic.

Using the Functool post-processing software on a workstation (ADW4.4; GE Medical Sys-

tems, Milwaukee, WI, USA), FA and ADC maps were automatically calculated from the origi-

nal DTI data. The regions of interest (ROIs) were placed on the right hepatic lobe on the b = 0

images, with an effort to avoid interference from the surrounding abdominal wall, vascular

and biliary structures, and then transferred automatically to the parametric maps where the

ADC and FA values were calculated. Three ROIs were drawn on each image, and three conse-

cutive images above the hepatic porta were included. The mean value of the nine total ROIs

was recorded as the final ADC or FA for each patient (Fig 1). The results of the above proce-

dures were interpreted in consensus by two pediatric radiologists (with eight and ten years of

experience in abdominal MRI, respectively) who were blinded to the clinical information.

Histopathological evaluation

The patients with clinical and MRI suspicion of BA underwent SE, IC, LE or pathological

examination (PE). PE was performed with a mean delay of 3 days (range 1–7 days) after MRI

examination. All specimens were evaluated by an experienced pathologist. Fibrosis of the liver

tissue was classified histopathologically in accordance with the METAVIR scoring system,

which uses a 5-point scale for fibrotic stages (F0: no fibrosis; F1: fibrous portal expansion; F2:

fibrous portal expansion, few fibrotic septae; F3: numerous fibrotic septae, no cirrhosis; F4: cir-

rhosis) [24].

Statistical analysis

All patients were divided into the BA group and non-BA group by SE, IC, LE, PE or clinical

outcome. The PE results were used as the reference when evaluating the fibrotic stages. Statisti-

cal analyses were performed using Statistical Package for the Social Scences 18.0 software

(IBM Corporation, Armonk, NY, USA). For the quantitative evaluation of DTI, the FA and

ADC values were compared. The fitness of numeric data set to a normal distribution and

homogeneity of variance were determined using both the Kolmogorov-Smirnov test and

Levene test. To compare the differences in age, blood test results, ROI, ADC and FA between

the BA and non-BA groups, the independent sample t test was applied. We used the Chi-

square test to analyze the gender difference between the BA and non-BA groups. P<0.05 was
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considered statistically significant. In the BA group, the difference in ADC or FA between

fibrotic stages was compared using one-way ANOVA and the least significant difference

(LSD)-t test. To evaluate the diagnostic competence of ADC for the detection of BA and

describe the sensitivity and specificity of the test, receiver operating characteristic (ROC) anal-

ysis was performed.

Results

Surgical and therapy results

Thirty-two patients were diagnosed as BA, including two type I, one type II, 27 type III and

two type III with common bile duct cyst. Twenty-seven patients were diagnosed as non-BA, of

whom five had cytomegalovirus hepatitis, five had biliary stenosis, six had common bile duct

cyst, nine had infant hepatitis (IH), one had biliary ductal distention and one had cholestasis.

Thirty-two BA patients underwent PE, and the fibrotic stages were determined.

Fig 1. Measurement of the apparent diffusion coefficient and fractional anisotropy on diffusion tensor imaging reconstructed images. A

165-day-old female infant with biliary atresia. Three regions of interest were drawn on each original image (b = 0), and three consecutive images

(A1, B1 and C1) above the hepatic porta were included. The mean ADC values were obtained from the nine total ROIs on the ADC map (A2, B2

and C2), and the mean FA values were obtained from the FA maps (A3, B3 and C3).

doi:10.1371/journal.pone.0168477.g001

DTI Evaluating BA in Infants and Neonates

PLOS ONE | DOI:10.1371/journal.pone.0168477 December 19, 2016 4 / 10



Comparison between the BA and non-BA groups

There was no statistically significant difference in age, gender, blood test results or area of

ROIs between the BA and non-BA groups (Table 1). The ADC value in the BA group was sig-

nificantly lower than that in the non-BA group (P<0.001), whereas the FA value was not sig-

nificantly different between the BA and non-BA groups (P = 0.093) (Table 2).

Correlation between ADC or FA and fibrotic stages in the BA group

The ADC values showed a decreasing trend, whereas the FA values showed an increasing

trend with increasing fibrotic stage (F0-F4). There were statistically significant differences

between the ADC values (P = 0.017) but not between the FA values (P = 0.183) at different

fibrotic stages (Table 3).

Further LSD analysis showed that the ADC value of stage F0 was significantly higher than

that of stages F1, F2, F3 and F4, whereas there were no significant differences among stages F1,

F2, F3 and F4 (Table 4).

Analysis of ROC drawn by combining the BA and non-BA groups

The area under the ROC curve was 0.805±0.058 (P<0.001) for ADC. With a cut-off value of

1.317×10−3 mm2/s for ADC, DTI reached a sensitivity of 75% and a specificity of 81.5% for the

differential diagnosis of BA and non-BA (Fig 2).

Discussion

This study showed that the ADC value measured with DTI is significantly lower in BA and

could be helpful in both the diagnosis of BA and the detection of liver fibrosis in infants and

neonates. In addition, at a cut-off value of 1.317×10−3 mm2/s, ADC reached a sensitivity of

Table 1. Demographic characteristics, blood test results and ROI between the BA and non-BA groups (n = 59).

BA (n = 32) non-BA (n = 27) t or χ2 P value

Age (days) 85.3±54.0 72.9±40.1 t = 0.983 0.330

Gender (M/F) 16/16 16/11 χ2 = 0.506 0.477

Blood test

AST (IU/L) 297.13±117.703 291.37±103.427 t = 0.198 0.844

ALT (IU/L) 184.63±87.946 161.74±69.563 t = 1.093 0.279

TBIL (μmol/L) 175.25±59.333 158.04±43.142 t = 1.253 0.215

DBIL (μmol/L) 75.25±37.560 85.07±38.191 t = -0.993 0.325

TBA (μmol/L) 109.63±53.452 129.52±45.914 t = -1.518 0.135

ROI(mm2) 66.93±13.437 72.17±16.128 t = -1.360 0.179

BA, biliary atresia; M/F, male/female; AST, aspartate aminotransferase; ALT, alanine aminotransferase; TBIL, total bilirubin; DBIL, direct bilirubin; TBA,

total bile acid; ROI, region of interest.

doi:10.1371/journal.pone.0168477.t001

Table 2. Comparison of ADC or FA values between the BA and non-BA groups (n = 59).

BA group (n = 32) non-BA group (n = 27) t P

ADC (×10−3 mm2/s) 1.262±0.127 1.430±0.149 -4.666 <0.001

FA 0.335±0.068 0.361±0.044 -1.711 0.093

BA, biliary atresia; ADC, apparent diffusion coefficient; FA, fractional anisotropy.

doi:10.1371/journal.pone.0168477.t002
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75% and a specificity of 81.5% for the differential diagnosis of BA and non-BA. Our previous

research indicates that the diagnostic sensitivity of 3D-MRCP for BA is 99.04% but that its

specificity is only 36.05% [10]. Therefore, DTI combined with 3D-MRCP may provide a solu-

tion for the diagnosis of BA, and this possibility should be further validated.

A few recent reports have suggested that DWI is helpful in the pathological evaluation of

diffusive lesions of the adult liver and that the ADC of cirrhotic liver tissue is lower than that

of normal liver tissue [11–18]. Some scholars have found that ADC and FA are potentially

valuable in detecting liver fibrosis at early stages and for monitoring its progression, as demon-

strated by scanning the livers of rats with DTI by 1.5-T MRI [25]. The results of our study are

similar to the results of this previous study. The ADC value was significantly lower in the BA

group. This finding suggests that fibrotic biliary ducts and cirrhotic liver tissue could easily

appear in the course of BA progression and thus may influence the diffusion of water in the

liver. Liver fibrosis is a nonspecific response to chronic liver disease and leads to excess synthe-

sis of the extracellular matrix, especially collagen fibers [26–28]. Thus, the presence of collagen

fibers restricts diffusion in the fibrotic liver, and the ADC values are decreased in cirrhotic

liver compared with normal liver [23]. By contrast, there was no significant difference in the

FA value between the BA group and the non-BA group, possibly due to the microstructural

features of liver fibrosis. The fibrosis in the liver occurred along the interlobular septum and

was distributed in a disordered form without a homogeneous direction. Such a distribution of

fibrosis did not influence the FA value, which reflects the heterogeneity of the molecules in dif-

ferent directions.

In the present study, the ADC values showed a decreasing trend as the degree of liver fibro-

sis in BA patients increased (F0-F4). There was a statistically significant difference in ADC

among fibrotic stages (F0, F1, F2, F3, and F4). Further statistical analysis by LSD demonstrated

significant differences in ADC only between F0 and the other stages, whereas no significant

differences were detected among stages F1, F2, F3 and F4. This finding suggests that ADC can

Table 3. Correlation of ADC or FA with fibrotic stages in the BA group (n = 32).

Fibrotic stages

F0(n = 2) F1 (n = 14) F2 (n = 4) F3 (n = 7) F4 (n = 5) F P

ADC (×10−3 mm2/s) 1.490±0.066 1.295±0.123 1.232±0.095 1.204±0.093 1.184±0.108 3.644 0.017

FA 0.289±0.064 0.314±0.054 0.331±0.067 0.353±0.051 0.391±0.107 1.682 0.183

ADC, apparent diffusion coefficient; FA, fractional anisotropy. F0, F1, F2, F3 and F4 represent different fibrotic stages (F0: no fibrosis; F1: fibrous portal

expansion; F2: fibrous portal expansion, few fibrotic septae; F3: numerous fibrotic septae, no cirrhosis; F4: cirrhosis).

doi:10.1371/journal.pone.0168477.t003

Table 4. The least significant difference (LSD) of the ADC (×10−3 mm2/s) between fibrotic stages in the BA group (n = 32).

F0 F1 F2 F3 F4

F0 N/A P = 0.027 P = 0.012 P = 0.003 P = 0.003

F1 P = 0.027 N/A * * *

F2 P = 0.012 * N/A * *

F3 P = 0.003 * * N/A *

F4 P = 0.003 * * * N/A

ADC, apparent diffusion coefficient; FA, fractional anisotropy; LSD, least significant difference. F0, F1, F2, F3 and F4 represent different fibrotic stages (F0:

no fibrosis; F1: fibrous portal expansion; F2: fibrous portal expansion, few fibrotic septae; F3: numerous fibrotic septae, no cirrhosis; F4: cirrhosis); N/A

represents not applicable.

* represents P>0.05.

doi:10.1371/journal.pone.0168477.t004
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be used to roughly determine the presence or absence of fibrosis in BA but can not evaluate

the stages of liver fibrosis. A previous study reported that the ADC values measured by 3-T

MRI were correlated with liver fibrotic stages, particularly in distinguishing high- from low-

grade fibrosis [23]. This study showed that the application of a higher magnetic field MRI sys-

tem could detect fibrotic stages with greater sensitivity. In addition, the small sample size used

in our study could influence the results of the differences among different fibrotic stages. Fur-

ther study with a large number of cases is needed to validate the effectiveness of ADC in distin-

guishing fibrotic stages.

In this study, our aim was to evaluate the use of DTI in the differentiation of BA and other

disorders whose clinical manifestations were similar to BA. For this purpose, we did not

include normal children in the non-BA group for comparison because normal children who

did not display clinical symptoms can be easily excluded by clinical physical examinations and

would thus not influence the differential diagnosis of BA and non-BA. Furthermore, because

our previous research showed that the negative predictive value of 3D-MRCP for BA was

96.88% [10], children who were diagnosed as normal or non-BA by 3D-MRCP were excluded

from the study. Under these conditions, our results showed that ADC was significantly lower

in the BA group than in the non-BA group, suggesting that the fibrosis in BA could be more

serious or more frequent than in other disorders. This suggestion was verified by pathological

findings, which showed various degrees of fibrosis in most BA cases but severe fibrosis in only

one of the 12 non-BA cases that underwent PE.

The drawing method for ROIs, including the location and size, could potentially influence

the results. To avoid this bias as much as possible, in this study, the ROIs were placed on the

Fig 2. Receiver operating characteristic curve of the average apparent diffusion coefficient for the

detection of biliary atresia. The area under the ROC curve was 0.805±0.058 (P<0.001) for ADC. With a cut-

off value of 1.317×10−3 mm2/s, ADC reached a sensitivity of 75% and a specificity of 81.5% for the differential

diagnosis of BA and non-BA.

doi:10.1371/journal.pone.0168477.g002
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right hepatic lobe rather than the left lobe for the following reasons. First, hepatic fibrosis

involves the left lobe less frequently than the right lobe, as confirmed by pathological studies

[29,30]. Second, susceptibility artifacts are more frequently found in the left hepatic regions

[19], which can lead to measurement errors. Third, according to recent reports, the measure-

ment reproducibility and reliability of left hepatic lobar ADC values is lower than that of the

right ADC in adults and BA patients [31, 32]. In addition, we drew 3 ROIs on each image for 3

consecutive images and calculated the mean value of 9 ROIs. The statistical analysis showed no

difference in the size of the ROIs between the BA group and the non-BA group. This analysis

further reduced the bias of the measurement of the ADC and FA value.

The b factor in DTI is important and should be chosen according to the study purpose. In

this study, we performed DTI with b factors of 0 and 1000 s/mm2 because a larger b value indi-

cates a lower contribution of perfusion to the ADC value [30, 31]. Free-breathing was also

used in the DTI in this study as recommended for its good reproducibility and shorter acquisi-

tion time compared with multiple breath-holding, respiratory-triggered, and navigator-trig-

gered techniques [33] and because it is especially suitable for infants and neonates.

One limitation of our study is that the potential confounding effect of hepatic steatosis on

ADC or FA values could not be excluded. Recently, several studies have raised concerns about

the relationship between liver fat and ADC values [34–36]. Although the results were not in

consensus, all researchers indicated that ADC values should be cautiously interpreted in the

presence of liver steatosis. In our study, unfortunately, we did not quantify the liver fat content

and analyze its correlation with ADC or FA values, because PE results were not available for

patients in the control group. In addition, an accurate quantification of liver steatosis was

impossible due to the relatively small amount of the sample obtained by biopsy. In future stud-

ies, an animal model of biliary atresia should be used to explore the exact impact of hepatic

steatosis on the ADC or FA values.

In conclusion, hepatic ADC measured with DTI may be useful for the differential diagnosis

of BA and non-BA in neonates and infants and may aid the detection of liver fibrosis. The sen-

sitivity and specificity of ADC for BA diagnosis should be further improved and combined

with other noninvasive imaging methods.
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16. Lewin M, Poujol-Robert A, Boëlle PY, Wendum D, Lasnier E, Viallon M, et al. Diffusion-weighted mag-

netic resonance imaging for the assessment of fibrosis in chronic hepatitis C. Hepatology. 2007;

46:658–665. doi: 10.1002/hep.21747 PMID: 17663420

DTI Evaluating BA in Infants and Neonates

PLOS ONE | DOI:10.1371/journal.pone.0168477 December 19, 2016 9 / 10

http://dx.doi.org/10.1371/journal.pone.0143939
http://www.ncbi.nlm.nih.gov/pubmed/26618708
http://dx.doi.org/10.1002/hep.24023
http://www.ncbi.nlm.nih.gov/pubmed/21140377
http://dx.doi.org/10.1371/journal.pone.0149681
http://www.ncbi.nlm.nih.gov/pubmed/26901874
http://dx.doi.org/10.1002/hep.22182
http://www.ncbi.nlm.nih.gov/pubmed/18306391
http://dx.doi.org/10.1007/s00431-009-1125-7
http://www.ncbi.nlm.nih.gov/pubmed/20020156
http://dx.doi.org/10.3748/wjg.v21.i22.6931
http://dx.doi.org/10.3748/wjg.v21.i22.6931
http://www.ncbi.nlm.nih.gov/pubmed/26078570
http://dx.doi.org/10.1016/j.asjsur.2011.11.006
http://www.ncbi.nlm.nih.gov/pubmed/22464833
http://dx.doi.org/10.1016/j.jfma.2011.06.024
http://dx.doi.org/10.1016/j.jfma.2011.06.024
http://www.ncbi.nlm.nih.gov/pubmed/23021504
http://dx.doi.org/10.1097/MPG.0000000000000433
http://www.ncbi.nlm.nih.gov/pubmed/24821537
http://dx.doi.org/10.1371/journal.pone.0088268
http://www.ncbi.nlm.nih.gov/pubmed/24505457
http://dx.doi.org/10.2214/ajr.173.2.10430143
http://www.ncbi.nlm.nih.gov/pubmed/10430143
http://www.ncbi.nlm.nih.gov/pubmed/15192522
http://dx.doi.org/10.1002/jmri.20344
http://www.ncbi.nlm.nih.gov/pubmed/15971188
http://dx.doi.org/10.2214/AJR.07.2086
http://www.ncbi.nlm.nih.gov/pubmed/17885048
http://dx.doi.org/10.1148/radiol.2493080080
http://www.ncbi.nlm.nih.gov/pubmed/19011186
http://dx.doi.org/10.1002/hep.21747
http://www.ncbi.nlm.nih.gov/pubmed/17663420


17. Wang Y, Ganger DR, Levitsky J, Sternick LA, McCarthy RJ, Chen ZE, et al. Assessment of chronic hep-

atitis and fibrosis: comparison of MR elastography and diffusion-weighted imaging. AJR:American Jour-

nal of Roentgenology. 2011; 196:553–561. doi: 10.2214/AJR.10.4580 PMID: 21343496

18. Do RK, Chandarana H, Felker E, Hajdu CH, Babb JS, Kim D, et al. Diagnosis of liver fibrosis and cirrho-

sis with diffusion-weighted imaging: value of normalized apparent diffusion coefficient using the spleen

as reference organ. AJR: American Journal of Roentgenology. 2010; 195:671–676. doi: 10.2214/AJR.

09.3448 PMID: 20729445

19. Mo YH, Jaw FS, Ho MC, Wang YC, Peng SS. Hepatic ADC value correlates with cirrhotic severity of

patients with biliary atresia. European Journal of Radiology. 2011; 80: e253–e257. doi: 10.1016/j.ejrad.

2010.11.002 PMID: 21123015

20. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin

echo. J Magn Reson B 1994; 103:247–254. PMID: 8019776

21. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-

diffusion-tensor MRI. J Magn Reson B. 1996; 111:209–219. PMID: 8661285

22. Beaulieu C. The basis of anisotropic water diffusion in the nervous system–a technical review. NMR

Biomed. 2002; 15:435–455. doi: 10.1002/nbm.782 PMID: 12489094

23. Tosun M, Inan N, Sarisoy HT, Akansel G, Gumustas S, Gürbüz Y, et al. Diagnostic performance of con-
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