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Abstract

Background

X-linked Alport syndrome (XLAS), caused by mutations in the type IV collagen COL4A5

gene, accounts for approximately 80% of human Alport syndrome. Dogs with XLAS have a

similar clinical progression. Prior studies in autosomal recessive Alport mice demonstrated

early mesangial cell invasion as the source of laminin 211 in the glomerular basement mem-

brane (GBM), leading to proinflammatory signaling. The objective of this study was to verify

this process in XLAS dogs.

Methods

XLAS dogs and WT littermates were monitored with serial clinicopathologic data and kidney

biopsies. Biopsies were obtained at set milestones defined by the onset of microalbuminuria

(MA), overt proteinuria, onset of azotemia, moderate azotemia, and euthanasia. Kidney

biopsies were analyzed by histopathology, immunohistochemistry, and electron

microscopy.

Results

XLAS dogs showed progressive decrease in renal function and progressive increase in

interstitial fibrosis and glomerulosclerosis (based on light microscopy and immunostaining

for fibronectin). The only identifiable structural abnormality at the time of microalbuminuria

was ultrastructural evidence of mild segmental GBM multilamination, which was more

extensive when overt proteinuria developed. Co-localization studies showed that mesangial

laminin 211 and integrin α8β1 accumulated in the GBM at the onset of overt proteinuria and

coincided with ultrastructural evidence of mild cellular interpositioning, consistent with inva-

sion of the capillary loops by mesangial cell processes.
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Conclusion

In a large animal model, the induction of mesangial filopodial invasion of the glomerular cap-

illary loop leading to the irregular deposition of laminin 211 is an early initiating event in

Alport glomerular pathology.

Introduction

The glomerular basement membrane (GBM) is extracellular matrix that is situated between

podocytes and endothelium and is composed of a meshwork of type IV collagen, laminin 521,

nidogen, and the heparan sulfate proteoglycan agrin. The GBM plays an integral role in glo-

merular filtration through both size and charge-selectivity.[1, 2] Additionally, the GBM devi-

ates from its pericapillary course and extends out to cover the base of the capillary loop

between the mesangial cells and the podocytes.[3]

Approximately 50% of the GBM is composed of type IV collagen, which is essential in

maintaining both stability and function.[4] Type IV collagen alpha chains form heterotrimers

which self-assemble forming a tissue-specific cross-linked network.[1, 4] During nephrogen-

esis, the GBM is composed exclusively of α1α1α2 type IV collagen. As the glomerulus matures,

the sub-epithelial α1α1α2 network is replaced by α3α4α5 type IV collagen secreted by the

podocytes, which predominates in the mature GBM.[5, 6] The α3α4α5 type IV collagen net-

work is more heavily cross-linked and protease-resistant than α1α1α2, and is therefore better

suited for maintaining GBM integrity from increasing hydrostatic pressure to which glomeruli

are exposed.[2, 7–9] Laminin is the most prevalent non-collagenous protein of the GBM.

These cross-shaped heterotrimers consists of an α, β, and γ chain with sixteen different iso-

forms being identified.[10] The mature GBM is comprised of laminin 521 (α5β2γ1).

Alport Syndrome (AS) is a hereditary disease that has been characterized in mice, dogs, and

humans.[11–16] It is caused by mutations in the α3, α4, or α5 type IV collagen genes, primar-

ily leading to delayed-onset progressive glomerulopathy. While mice and dogs tend to develop

proteinuria first compared to humans who present with hematuria, the disease has similar

renal clinical manifestations in all species, eventually end-stage renal disease. Additionally,

affected human males will often manifest extra-renal disease, including sensorineural deafness

and ocular abnormalities.[17] While aural and ocular abnormalities have been identified in

mice, thorough evaluation of these systems has not yet been performed in dogs. It has been

noted, however, that dogs do not exhibit signs that indicate these abnormalities are present.

[14, 16, 18] Two main forms of AS exist. X-linked AS (XLAS) is due to a mutation in the

COL4A5 gene and accounts for approximately 80% of cases. Autosomal AS (dominant or

recessive) results from a mutation in either COL4A3 or COL4A4 and accounts for the remain-

der of the cases.[12] Because of the way collagen is assembled, a mutation in any one of the α
chain genes prevents proper formation of the α3α4α5 type IV collagen protomer resulting in

absence of the sub-epithelial α3α4α5 type IV collagen network and a GBM comprised only of

α1α1α2 type IV collagen. With fewer interchain crosslinks, this change in composition com-

promises the long term integrity of the GBM.[2, 19, 20] On renal biopsy, the loss of α3α4α5

results in thinning and thickening of the GBM often referred to as a “basket weave” appearance

on electron microscopy that is pathognomonic for the disease and serves as a definitive diag-

nostic test.[7, 12, 17, 19]

In normal glomeruli, laminin 211 (α2β1γ1) is located within the mesangium but not the

GBM. Evaluation of glomeruli obtained from mice, dogs, and humans in the early stages of AS
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show a distinctive feature of aberrant laminin deposits within the GBM, including patchy,

non-linear deposits of laminin 211, regardless of the mode of inheritance.[21] However, the

source of this abnormal deposition was unknown.[21, 22] Using integrin α1-deficient mice

crossed with AS mice to create a double knockout, the abnormal deposits of laminin 211 were

implicated in the degradation of the GBM early in the disease process.[22] In autosomal reces-

sive 129/Sv Alport mice, GBM laminin 211 was shown to originate from mesangial cell filopo-

dia that progressively invaded capillary loops.[23] Additionally, biomechanical strain in the

capillary wall due to the thinner GBM and fewer cross-links of α1α1α2 type IV collagen is

associated with induction of mesangial cell process invasion, contributing to initiation and

progression of disease.[23] Furthermore, focal adhesion kinase (FAK) activation occurs specif-

ically in regions where abnormal laminin is present, causing increased expression of interleu-

kin-6 (IL-6) and matrix metalloproteinases (MMPs), particularly MMP-9, MMP-10, and

MMP-12, all of which contribute to disease progression by propagating GBM destruction.

[24–27]

Advancement in understanding the molecular mechanism of AS progression has been

established primarily using murine models. While mice have rapid progression of disease and

are less expensive compared to large animal models, they also possess a number of limitations.

[28] They lack genetic heterogeneity, have different immune and metabolic responses, and

knockout mouse models do not always emulate human disease.[29, 30] Large animal models

provide a strong link from mice to humans, particularly for testing of therapeutic efficacy.

Thus identification of these models is imperative. Here, we demonstrate that the mechanism

of pathogenesis of canine XLAS is similar to that of mice, thereby supporting that the patho-

genesis in humans is also likely comparable. Additionally, we provide evidence that the dog is

a suitable large animal model for evaluation of AS progression and novel therapeutic trials.

Materials and Methods

Animals

Dogs were from a colony maintained at Texas A&M University, in which the causative muta-

tion of the disease in the affected (AS) males was a naturally occurring 10 base pair deletion in

the gene encoding the α5 chain of type IV collagen.[13] Development and progression of X-

linked hereditary nephropathy (XLHN) in these dogs has been described.[31] Analysis of

physiologic and histopathologic data was performed on eight adolescent male dogs with AS

and four unaffected, wild type (WT), age-matched male littermates. Immunostaining was per-

formed on two AS and two WT male dogs. No treatments were administered to the dogs used

in the study. The study protocol was reviewed and approved by the Texas A&M University

Institutional Animal Care and Use Committee. Dogs for this study were raised using a stan-

dardized protocol that included housing in temperature-regulated, indoor, individual runs

with a 12-hour light-dark cycle. Depending on weather conditions, dogs were provided daily

leash-walks outside or received individual or group unrestricted playtime in an outdoor grass

pen with access to a variety of toys and/or a wading pool during the spring and summer

months. Dogs were fed once daily in the morning after urine collection. Their diets consisted

of a mix of Purina ProPlan Focus Puppy canned & dry dog food until study entry at around

seven weeks of age. They were then placed on Purina ProPlan Savor Chicken & Rice Classic

Adult canned food for the remainder of the study period.

Sample Collection

Starting at 7 weeks of age, blood and mid-stream voided urine were collected on a weekly basis

for evaluation. Physiologic data, including serum creatinine (sCr), urine protein: urine
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creatinine ratio (UPC), and symmetric dimethylarginine (SDMA) were used as previously

described [32] to detect advancement of disease defined by set milestones (MS). SDMA is a

methylated arginine that is released in the blood during protein degradation and excreted by

the kidneys. In dogs, it serves as a useful marker for evaluation of decreasing renal function.

[32] Milestones were defined by the following criteria: MS 1-presence of microalbuminuria for

two consecutive weeks (average age 14.1 weeks), MS 2-UPC� 2 for two consecutive weeks

(average age 20.1 weeks), MS 3-sCr� 1.2 mg/dL (average age 28.8 weeks), MS 4-sCr� 2.4

(average age 35.0 weeks), and MS 5-sCr� 5 mg/dL (average age 39.5 weeks). Testing for

microalbuminuria was performed only until MS 1 was reached using a semi-quantitative test

(E.R.D. HealthScreen Canine Urine Test strips, Heska, Loveland, Colorado). Glomerular filtra-

tion rate was determined by iohexol clearance using an 8-point sampling protocol starting at 9

weeks of age. GFR was determined monthly and when dogs reached each milestones of disease

as described above. Additionally, ultrasound-guided needle biopsies of the kidneys (described

below) were obtained from each dog when a defined MS was reached. WT dogs were paired

with an AS littermate for milestone evaluation to serve as a control and were evaluated and

biopsied at the same time as their AS counterpart.

For kidney biopsy collection, dogs were anesthetized using a premedication combination of

0.011 mg/kg glycopyrrolate (Fort Dodge, Overland Park, KS) and 0.30 mg/kg butorphanol

(Zoetis, Florham Park, New Jersey) injected subcutaneously. Dogs were intubated following

administration of 4–6 mg/kg propofol (Abbott, Worchester, Massachusetts) intravenously,

and anesthesia was maintained using isoflurane (Zoetis Florham Park, New Jersey). Once the

dog was fully anesthetized, biopsies were obtained using a 16–18 gauge Bard Monopty1 Dis-

posable Core biopsy instrument. Biopsies were performed on alternating kidneys as each MS

was reached. Samples were divided and placed into formalin, glutaraldehyde or Optimal Cut-

ting Temperature (OCT) compound (Tissue-Tek OCT Compound, Sakura Finetek USA, Tor-

rance, CA). Samples in OCT were flash frozen in liquid nitrogen vapor and stored at -80˚C

until evaluation. Dogs were not administered additional medication following the biopsy pro-

cedure as the butorphanol given during the pre-medication phase provided sufficient post-

operative pain management. When AS dogs reached MS 5 or had clinically significant disease

(i.e. an abrupt increase in sCr >5mg/dL and/or severe uremic signs related to chronic kidney

disease (CKD)), they were humanely euthanized following biopsy collection. One of the

affected dogs was euthanized prior to reaching MS 4 due to non-renal related disease. Eutha-

nasia was performed while dogs were still under anesthesia by intravenous administration of a

pentobarbital sodium solution (Fatal Plus, Vortech Pharmaceuticals, Ltd., Dearborn,

Michigan).

Light and Electron Microscopy Evaluation

For light microscopy, formalin-fixed, paraffin-embedded biopsies were sectioned at 3 μm and

stained with H&E, Masson’s trichrome, and Periodic acid-Schiff. Sections were scored as pre-

viously described.[33] An average glomerulosclerosis score was determined for each milestone

in both the WT and AS dogs using the following features: segmental sclerosis, global sclerosis,

and synechiae. Similarly, an average tubulointerstitial damage score was determined using the

following features: tubular dilation, loss of brush border, tubular atrophy, tubular epithelial

cell degeneration/regeneration, tubular single cell necrosis, interstitial fibrosis, and chronic

interstitial inflammation (nephritis).

For transmission electron microscopy (TEM), tissues were fixed in chilled 3% glutaralde-

hyde and post-fixed in 1% osmium tetroxide. Dehydration was performed using a series of

alcohols followed by placement in an acetone/epoxy plastic for embedding. Semi-thin sections
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were cut with an ultramicrotome (EM UC6, Leica Microsystems, Buffalo Grove, IL) and

stained with a mixture of Azure II and methylene blue. When the optimal area for evaluation

was identified, ultrathin sections were cut (65–85 nm) and mounted on copper grids. The sec-

tions were post-stained with uranyl acetate and lead citrate. Grids were imaged on a JEOL

JEM-1400 TEM (JEOL USA, Inc., Peabody MA) and photographed with an Olympus SIS

Veleta 2K camera (Olympus Soft Imaging Solutions GmbH, Munster, Germany).

Immunofluorescence Antibodies

The following antibodies were used: rabbit anti-mouse fibronectin (Sigma, St. Loius, MO,

USA, Cat# F3648), goat anti-mouse integrin α8 (R&D Systems, Minneapolis, MN, USA, Cat#

AF4076), mouse anti-bovine laminin β2 C4 (Developmental Studies Hybridoma Bank, Uni-

versity of Iowa, Iowa City, IA, USA), rabbit anti-mouse collagen IVα5 (Cosgrove) and rabbit

anti-human laminin α2 (gift from Dr. Peter Yurchenco, Robert Wood Johnson Medical

School, Piscataway, NJ, USA). Alexa-fluor conjugated secondary antibodies (Invitrogen, Carls-

bad, CA, USA) included: donkey anti-rabbit 594 for anti-fibronectin and anti-collagen IVα5,

and donkey anti-goat 568 for anti-integrin α8 and donkey anti-rabbit 488 for anti-laminin α2

or donkey anti-mouse 488 for anti-laminin β2 C4 (for dual staining). Negative controls were

performed using the host serum in combination with the specific antibodies described above

(S1 Fig).

Immunofluorescence and Confocal Microscopy

Frozen OCT-embedded kidney biopsy samples were sectioned at 6 μm and acetone fixed. Sec-

tions were incubated overnight at 4˚C in a primary antibody solution comprised of 0.3% PBST

(Triton X-100), 5% fetal bovine serum, and the following antibody dilutions: 1:500 (fibronectin

and collagen IVα5), 1:200 (integrin α8 and laminin α2) or 1:50 (laminin β2 C4). Slides were

rinsed with 1X PBS and incubated at room temperature for 1 hour with the appropriate sec-

ondary antibody solution consisting of the secondary antibody along with 0.3% PBST (Triton

X-100), and 5% fetal bovine serum to make a 1:500 antibody dilution. Slides were rinsed again

with 1X PBS and mounted using Vectashield mounting medium, which contained DAPI to

counterstain the nuclei (Vector, Burlingame, CA). Confocal images were captured using a

Leica TCS SP8 MP microscope interfaced with a LSM510 META confocal imaging system,

using either a 10x0.3 n.a. dry, 40x1.3 n.a. oil, or 63x1.4 n.a. oil objective (Carl Zeiss, Oberko-

chen, Germany). Final figures were assembled using Adobe Photoshop and Illustrator software

(Adobe Systems, San Jose, CA).

Statistical Analysis

Using JMP Pro 11.0, a Shapiro-Wilks Goodness of Fit test was performed on the residuals of

sCr, SDMA, UPC, and iohexol clearance values along with glomerulosclerosis and tubulointer-

stitial fibrosis scores to determine normality. A Mann-Whitney U test was performed to deter-

mine statistical significance of clinicopathological data and light microscopy scores between

WT and AS dogs at each milestone defined by a p-value of<0.05.

Results

Clinical Course of Dogs

The first clinical indication of disease in AS dogs was the onset of microalbuminuria (MS 1)

between 10–19 weeks of age (versus hematuria as the first detectable abnormality typically

identified in humans). This progressively worsened to overt proteinuria (MS 2) between 14–29
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weeks of age, followed by rapid advancement to renal failure. Between 26–52 weeks of age, AS

dogs were euthanized following biopsy collections at end point (MS 5). Fig 1 summarizes the

average values of clinicopathologic parameters at defined milestones for AS dogs compared

with WT, age-matched littermates.

Estimates of GFR (sCr, SDMA, and iohexol clearance), which are commonly used to detect

renal insufficiency, were not significantly altered until MS 3. Proteinuria based on UPC was

significantly increased at MS 2 (Fig 1), and presence of microalbuminuria was the defining fea-

ture of MS 1. Therefore, proteinuria is more sensitive than GFR for identification of early

events in disease development in dogs.

Pathologic Evaluation

Light microscopy was also insensitive to early disease. Glomerulosclerosis and tubulointerstial

fibrosis were not significantly increased until MS 3 and MS 4, respectively, corresponding with

significant changes in the clinical estimates of GFR (Fig 2).

Fig 1. Clinical parameters (average, range) at each milestone in AS (n = 8) vs WT (n = 4) dogs. (A) Serum creatinine (sCr); (B)

Symmetric dimethylarginine (SDMA); (C) Urine protein: urine creatinine (UPC); (D) Iohexol clearance; *p<0.05.

doi:10.1371/journal.pone.0168343.g001
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However, on TEM of tissue from two AS dogs, mild, focal, segmental multilamination of

the GBM was observed at MS1 (not shown). Additionally at MS 1, immunofluorescence

showed increased staining for fibronectin both within the glomeruli and throughout the inter-

stitium of AS dogs compared to WT dogs (Fig 3A and 3B), indicating initiation of fibrosis as

early as the onset of microalbuminuria. Staining for fibronectin intensified with progression of

disease at each MS (not shown).

Fig 2. Pathologic parameters (average, range) at each milestone in AS (n = 8) vs WT (n = 4) dogs. (A) Glomerulosclerosis score; (B)

Tubulointerstitial damage score; *p<0.05.

doi:10.1371/journal.pone.0168343.g002

Fig 3. Immunofluorescence staining for fibronectin of kidney from WT and AS dogs at milestone 1. Staining for fibronectin reveals

fibrosis in AS dogs (B) as early as milestone 1 on confocal microscopy when compared to WT littermates (A) at the same milestone, 10x0.3

n.a. dry.

doi:10.1371/journal.pone.0168343.g003
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Detection of Mesangial Cell Invasion

The laminin β2 chain of laminin 521 is located in the GBM of mice, dogs, and humans[21]

and thus can be used as a marker for the GBM in both WT and AS kidney tissue. In the normal

glomerulus, laminin 211, identified by the laminin α2 chain, is found primarily within the

mesangium and there is no expression of laminin 211 within the GBM of non-diseased kid-

ney.[21] Fig 4A–4C, demonstrates the distinctness of laminin β2 as a GBM marker in normal

canine kidney tissue and shows the more diffuse distribution of laminin α2 staining within the

mesangium. In contrast, in the AS dog, there is segmental expression of abnormal deposits of

laminin α2 in the GBM (Fig 4D–4F), particularly where the GBM is thickened.

The α8 integrin has been shown to be strongly and exclusively expressed on the surface of

mesangial cells of mice, rats, and humans.[34] As demonstrated in tissue from a WT dog, Fig

5A–5C, integrin α8 can be used as a mesangial cell marker in canine tissue as compared with

the GBM marker α5 type IV collagen.

Fig 4. Identification of laminin 211 in the GBM of AS but not WT dogs. Dual immunofluorescence immunostaining of kidney from a WT

dog (A-C) and an AS dog at milestone 2 (D-F); 63x1.4 n.a. oil. Laminin 521 of the GBM was labeled with anti-laminin β2 (LAMB2), and

laminin 211 produced by mesangial cells, was labeled with anti-laminin α2 (LAMA2), demonstrating co-localization of laminin 211 with the

GBM of several capillary loops in the AS dog.

doi:10.1371/journal.pone.0168343.g004
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Fig 5. Integrin α8 co-localizes with laminin 211 in the GBM of AS but not WT dogs. A-C: Dual immunofluorescence immunostaining of

kidney from a WT dog; 63x 1.4 n.a. oil. The GBM was localized with anti-collagen α5 (α5(IV)) and the mesangium was localized with anti-

integrin α8 (INTα8). D-I: Dual immunofluorescence immunostaining of kidney tissue from an AS dog at milestone 2. Laminin 211, produced

by mesangial cells, was labeled with anti-laminin α2 (LAMA2) and mesangial cells were localized with anti-integrin α8 (INTα8),

demonstrating co-localization of laminin 211 with mesangial cell extension in capillary loops. Images D-F were taken with 40x1.3 n.a. oil;

images G-I were taken with 63x1.4 n.a. oil with 2X zoom.

doi:10.1371/journal.pone.0168343.g005

Glomerular Disease Initiation in Canine Alport Syndrome

PLOS ONE | DOI:10.1371/journal.pone.0168343 December 13, 2016 9 / 16



Using dual immunofluorescence labeling with laminin α2 and integrin α8 in Alport mice,

the source of GBM laminin 211 was shown to originate from mesangial cell processes that

invade into capillary loops.[23] This same dual immunostaining was performed on canine

kidney tissue. Fig 5D–5I shows intense co-localization of laminin α2 and integrin α8 outlin-

ing the capillary loop in an AS dog at MS 2, supporting that laminin α2 deposition is corre-

lated with mesangial cells. Additionally, dual immunofluorescence staining was performed

on kidney tissue from both a WT and AS dog using laminin β2 to stain the GBM with integ-

rin α8 to stain the mesangium. Mesangial extension was clearly absent from the GBM in the

WT dog while extension of mesangial cells within the GBM was observed in the AS dog

(Fig 6A and 6B).

This corresponded with the TEM findings of mild cellular interpositioning (cytoplasmic

extensions) along the capillary loops, which is consistent with invasion of mesangial cell pro-

cesses (Fig 6C). This finding corresponded with an increased UPC in the AS dogs. Collectively,

these data support that, as determined in the mouse, the unique deposition of laminin 211

within the GBM is likely a result of mesangial cell invasion of capillary loops in dogs with AS.

Discussion

Mutations in α3, α4, or α5 type IV collagen genes result in absence of the normal type IV colla-

gen composition of the GBM, permitting α1α1α2 type IV collagen to predominate. The thin-

ner and less cross-linked composition of α1α1α2 type IV collagen likely allows for increased

biomechanical strain in the capillary tuft due to increasing blood pressure as evidenced by

acceleration of glomerular damage in salt-induced hypertensive mice.[35] This added stress on

the capillary loop induces mesangial cell process invasion and contributes to initiation of dis-

ease.[23, 35, 36] The abnormal deposition of laminin 211 in the GBM is a feature that has been

described as unique to AS.[21] As noted previously in mice and as seen in this study in dogs,

the accumulation of 211 seems especially prominent in regions of the GBM that appear thick-

ened on IF staining.[23] Using ferritin injections, these thickened areas have been shown to

correlate with regions of loosely assembled or degraded extracellular matrix of the Alport

GBM where permeability defects are present, and it is the deposition of aberrant laminins that

contributes to these defects.[37] Using integrin α8 as a mesangial cell marker[34], we were

able to show that, as reported in the mouse[23], there is extension of mesangial cell processes

into the capillary loop of AS dogs and that the aberrant laminin 211 deposition in the GBM

corresponds with these invading mesangial cell processes.

To further support the relationship between mesangial cell process invasion and deposition

of laminin 211 in the GBM, mice with a deletion of CD151 have also been evaluated.[23]

These mice have abnormalities of the adhesive interface between the podocyte pedicles and the

GBM and display progressive morphological changes in the GBM similar to that in AS. Evalua-

tion of glomeruli from these mice also demonstrates mesangial cell process invasion and GBM

laminin 211 deposition supporting that, regardless of the cause of structural change, increased

biomechanical strain on the capillary tuft stimulates mesangial cells to react. It is notable in

this regard that CD151 null mice show accelerated progression of glomerular disease under

conditions of hypertension, similar to Alport mice.[38] Additionally, evaluation of capillary

tufts in glomeruli of integrin α1-null Alport mice (integrin α1 is important for mesangial cell

expansion) have reduced mesangial process invasion and thus reduction of laminin 211, fur-

ther supporting that laminin 211 originates from mesangial cells.[22] Immunogold-labeled

integrin α8 is present in blebs noted in the subendothelial region of capillary loops in AS mice

but not WT mice.[24] Recently, three-dimensional electron microscopy analysis of the glo-

merular structure of Alport mice identified mesangial cell processes invasion inside the GBM,

Glomerular Disease Initiation in Canine Alport Syndrome
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Fig 6. Mesangial cell process extension into the GBM of AS but not WT dogs. A-B: Dual

immunofluorescence immunostaining of kidney from a WT dog and an AS dog, 63x1.4 n.a. oil with 3X zoom.

Anti-laminin β2 and anti-integrin α8 antibodies were used to stain the GBM and mesangial cells, respectively.

Staining reveals distinct delineation of mesangium absent from the GBM of the normal dog (A) but extension

of mesangium within the GBM of the AS dog (B). C: Transmission electron microscopy of kidney tissue from

an AS dog at milestone 2. Cytoplasmic extensions, also described as cellular interpositioning, are observed at

the base of the capillary loops, consistent with invasion of mesangial cell processes (arrow) corresponding

with extension of the mesangium (B).

doi:10.1371/journal.pone.0168343.g006
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along the mesangial aspect of the glomerular capillary loop.[39] In AS, mesangial cell invasion

ultimately leads to an inflammatory response, likely in part driven by laminin 211-mediated

FAK activation in podocytes, which is responsible for disease progression, including the devel-

opment of glomerulosclerosis and tubulointerstitial fibrosis. While mesangial cell filopodia

invasion has been shown to be mediated by biomechanical strain induced expression of

endothelin-1 in endothelial cells, which in turn activates endothelin A receptors (ETAR) on

mesangial cells leading to Rac1/CDC42 activation mechanism in mice [9, 23], further evalua-

tion to explore this mechanism in the dog is needed.

In addition to demonstrating mesangial cell process invasion as an initiating event in dogs

with AS, this study also allowed for comparison of clinical and structural changes throughout

the course of disease through serial evaluations of individual dogs. XLAS is a hereditary pro-

gressive glomerular disease that typically results in rapidly progressive renal failure in affected

males. Many affected individuals either do not have, or are not aware of, a family history of the

disease and are not diagnosed until GFR declines, when clinical signs of disease become evi-

dent. In this study, comparison of serial biopsies with concurrent clinical data during the

course of disease showed that significant pathologic changes to the kidney occur well before

clinical markers of decreased GFR are altered. For instance, in AS dogs, sCr and SDMA did

not show statistically significant changes until around milestone 3, while identification of

fibronectin using IF evaluation of kidney tissue suggests instigation of fibrosis as early as mile-

stone 1. On average, dogs in this study were around 28 weeks of age at MS 3 and all of the AS

dogs evaluated in this study succumbed to disease before one year of age. Thus, approximately

half of their lifespan was complete before disease was detectable by estimators of GFR. In con-

trast, microalbuminuria was highly sensitive to detection of structural changes evident with

only electron microscopy and immunofluorescence staining. Institution of routine testing for

microalbuminuria in human patients with hematuria and a family history of AS or renal fail-

ure without obvious cause may help ensure early clinical detection of AS.[40] From a clinical

standpoint, early detection of proteinuria is paramount to early institution of therapy (e.g.,

ACE inhibition) that slows disease progression and helps extend life expectancy.[40, 41]

Currently, there are few accepted treatments for AS patients, none of which are directed at

processes specific to initiation of disease. Understanding the pathogenesis of disease develop-

ment helps determine the best targets for early intervention. In mice, FAK activation in podo-

cytes occurs specifically where laminin 211 is being deposited, propagating disease progression.

[24] It is conceivable that therapeutics that either inhibit FAK[24] or abate laminin 211 deposi-

tion could be developed for treatment of Alport syndrome. While mice have proven to be a use-

ful model for understanding the molecular mechanisms of AS and are helpful in identifying

therapeutic targets at earlier stages of disease, large animal models need to be established for

drug trials. In general, the dog provides a transition platform between the pre-clinical testing of

novel therapeutic drugs in mice and their use in humans. This is important from both a thera-

peutic efficacy and safety standpoint, as dogs have been shown to better mimic human disease

in many conditions.[30, 42] For AS specifically, as mentioned above, it has been recently rec-

ommended that evaluation for proteinuria (particularly microalbuminuria) is crucial as an

early identifier for the diagnosis of AS. It has been shown in the mouse model that proteinuria

can vary between normal and affected mice, thus making proteinuria more insensitive for

detecting glomerular disease.[43] Even amongst the different mouse models of AS themselves,

onset of proteinuria can vary.[11, 14, 15, 44, 45] Therefore, one must be cognizant of these vari-

ations when choosing a mouse model for therapeutic study. Our results show that the distinc-

tion of WT versus AS dogs based on proteinuria is evident even at earlier stages of disease,

making it a better model to monitor response to therapy. Additionally, the larger size of the

dog along with the increased life span of AS dogs allows for serial evaluation of disease
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progression during therapeutic trials. These factors also allow for a better understanding of the

long-term effects of new therapies. While AS itself only accounts for approximately 3% of end

stage renal disease in children, the prevalence of CKD in the United States has risen dramati-

cally.[46] Therefore, establishing a large animal model for CKD may be of broad importance

for testing therapeutics. Given the rapidly progressive nature of AS in mice and dogs, AS serves

as a good model for CKD development in general.

In summary, these findings collectively support, in a large animal model, the induction of

mesangial cell filopodial invasion of the glomerular capillary tuft leading to the irregular depo-

sition of mesangial laminin 211 in the GBM as an early initiating event in Alport glomerular

pathology. Because of the similarities observed among canine and human disease progression,

these findings also provide support that the dog is a suitable large animal model for evaluation

of AS disease progression and novel therapeutic trials.

Supporting Information

S1 Fig. Controls for non-specific staining for immunofluorescence results presented in

this paper. It is possible that cross reactivity of host serums in which the specific antibodies

were raised might provide non-specific results. To control for this, we used the host serum in

combination with the specific antibodies we employed in this work. The dual stains for which

these apply are listed on the left side of the figure columns. NGS, normal goat serum; NMS,

normal mouse serum; NRS, normal rabbit serum. Lamα2, laminin alpha 2 chain; Lamβ2; lami-

nin beta 2 chain; Intα8, integrin alpha 8.
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