
RESEARCH ARTICLE

VHDL Descriptions for the FPGA

Implementation of PWL-Function-Based

Multi-Scroll Chaotic Oscillators

Esteban Tlelo-Cuautle1,2☯*, Antonio de Jesus Quintas-Valles1☯, Luis Gerardo de la

Fraga2☯, Jose de Jesus Rangel-Magdaleno1☯

1 Department of Electronics, INAOE, Tonantzintla, Puebla, Mexico, 2 Department of Computer Science,

CINVESTAV, Zacatenco, Mexico City, Mexico

☯ These authors contributed equally to this work.

* etlelo@inaoep.mx

Abstract

Nowadays, chaos generators are an attractive field for research and the challenge is their

realization for the development of engineering applications. From more than three decades

ago, chaotic oscillators have been designed using discrete electronic devices, very few with

integrated circuit technology, and in this work we propose the use of field-programmable

gate arrays (FPGAs) for fast prototyping. FPGA-based applications require that one be

expert on programming with very-high-speed integrated circuits hardware description lan-

guage (VHDL). In this manner, we detail the VHDL descriptions of chaos generators for fast

prototyping from high-level programming using Python. The cases of study are three kinds

of chaos generators based on piecewise-linear (PWL) functions that can be systematically

augmented to generate even and odd number of scrolls. We introduce new algorithms for

the VHDL description of PWL functions like saturated functions series, negative slopes and

sawtooth. The generated VHDL-code is portable, reusable and open source to be synthe-

sized in an FPGA. Finally, we show experimental results for observing 2, 10 and 30-scroll

attractors.

1 Introduction

Chaos theory deals with nonlinear and complex dynamic behavior that is associated to unpre-

dictable phenomena. The main characteristic is that small changes in the initial conditions

lead to drastic changes in the results. It is deterministic because one knows its model parame-

ters and it is unpredictable because one does not know the evolution of the trajectories, and

then one cannot predict its behavior.

Three decades ago, the author in [1] introduced an extremely simple autonomous circuit

that generates chaotic behavior. It was known as Chua’s circuit with the advantage of including

only one nonlinear element composed of a piecewise-linear (PWL) resistor. If it has 3-seg-

ments, it can generate the double-scroll attractor, as confirmed in [2]. Ten years later, the pop-

ularity of Chua’s circuit was summarized in [3], where it is mentioned that more than 200

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 1 / 32

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Tlelo-Cuautle E, Quintas-Valles AdJ, de la

Fraga LG, Rangel-Magdaleno JdJ (2016) VHDL

Descriptions for the FPGA Implementation of PWL-

Function-Based Multi-Scroll Chaotic Oscillators.

PLoS ONE 11(12): e0168300. doi:10.1371/journal.

pone.0168300

Editor: Jun Ma, Lanzhou University of Technology,

CHINA

Received: October 3, 2016

Accepted: November 28, 2016

Published: December 20, 2016

Copyright: © 2016 Tlelo-Cuautle et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work is supported by CONACyT-

Mexico under grant 237991 and by UC-MEXUS-

CONACyT under grant CN-61-161.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168300&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168300&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168300&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168300&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168300&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168300&domain=pdf
http://creativecommons.org/licenses/by/4.0/


papers were published at that time since its inception in 1984. The important milestone was

the fabrication of an integrated circuit for Chua’s circuit to observe the double-scroll attractor.

In addition, it was demonstrated that Chua’s circuit can be easily controlled from a chaotic

regime to a prescribed periodic or constant orbit, or it can be synchronized with two or more

identical Chua’s circuits operating in chaotic regime. Nowadays, it is very well-known that

chaos generators are quite useful to develop applications in robotics, noise generators, random

number generators, chaotic secure communications [4–7], and so on [8–15].

Chua’s circuit has been the most extensively studied chaos generator. For instance, the

PWL resistor was modified in [16] with additional break points to generate n-double scrolls

(n = 1, 2, 3, 4, . . .). It was a generalization of Chua’s circuit where the 1-double scroll corre-

sponds to the classical double scroll one. Generating more than 2-scrolls was the challenge

after Chua’s circuit. In 2004 [17] a systematic approach based on saturated function series was

introduced to generate multi-scroll chaotic attractors from a three-dimensional linear autono-

mous system. That work also introduced the generation of multi-scrolls in 1-direction (1-D),

2-D and 3-D, thus generating 1-D n-scroll, 2-D n ×m-grid scroll, and 3-D n ×m × l-grid scroll

chaotic attractors. The experimental verification of those chaotic attractors was reported in

[18], where the authors provided guidelines for analog hardware implementation. 4-D attrac-

tors are also possible, as introduced in [19]. From more than 3 decades ago, the majority of

chaos generators have been realized using discrete electronic devices and very few using inte-

grated circuit technology [20]. Recently, chaos generators have been implemented using field-

programmable gate arrays (FPGAs) [4, 21], for fast prototyping and also to tune fractional

coefficient values, which are difficult when using traditional operational amplifiers [20]. How-

ever, the hardware realization depends on the numerical method that discretizes the dynamical

equations [21], which remains as a challenge to implement robust chaos generators.

As one can infer, multi-scroll chaotic oscillators have more complex behavior than tradi-

tional double-scroll ones. They are quite useful for engineering applications [4], and they can

easily be implemented using FPGAs [21], which provide flexibility and capability of being

reprogrammed/configured. In fact, it is said that configurability for engineering applications

makes FPGA very crucial in initial stages for any embedded project. In this manner, we intro-

duce a systematic approach for the VHDL description of PWL functions for the FPGA imple-

mentation of chaos generators based on saturated function series, negative slopes and sawtooth

function. We use Python as a high-level description mechanism [22], to describe hardware

modules of three dimensional chaotic oscillators. That way, from mathematical models we

show how to describe them in VHDL-code [23–25], which is ready to be synthesized into an

FPGA. This is our contribution for fast prototyping [26, 27], and can help as a computer-aided

design tool [24], for the FPGA implementation of multi-scroll chaotic oscillators.

The rest of the article is organized as follows: Sect. 2 details three kinds of chaos generators.

Their PWL functions to generate multi-scroll chaotic attractors are described in Sect. 3. From

those descriptions we introduce equations to calculate the number of hardware blocks that will

be created like VHDL code, as shown in Sect. 4. Since FPGA realizations require the use of a

numerical method, sub-section 4.2 shows that by using Forward Euler (FE) and fourth-order

Runge-Kutta, one gets similar values of the maximum Lyapunov exponent (MLE), thus FE is

good enough to observe chaotic attractors and also it consumes the lowest FPGA resources than

other methods. Section 5 shows experimental results, and Sect. 6 summarizes the conclusions.

2 Multi-scroll chaotic oscillators

Three kinds of 3-dimensional multi-scroll chaotic oscillators are described herein. All of them

are based on PWL functions that can be designed in a systematic way to generate odd or even

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 2 / 32



number of scrolls. The following subsections show new ways to model PWL functions like sat-

urated function series, negative slopes and sawtooth one. All these PWL functions can be

implemented using comparators, which will be useful for the VHDL descriptions of chaos gen-

erators, as shown in Sect. 4.

2.1 Chaotic oscillator based on saturated function series

Eq (1) describes the 3-dimensional multi-scroll chaotic oscillator based on the PWL function

f(x) described by Eq (2). The state variables are x, y and z, and they are multiplied by four coef-

ficients: a, b, c and d1. Those coefficient values can be in the range [0, 1], and one must decide

how many places to use for the integer and fractional parts [4, 21]. The PWL function can be

associated to comparators, since it is a saturated function series. From Fig 1, one can identify

the parameters: saturation levels ki, break points Bj and slopem. These three parameters can be

augmented according to the number of scrolls n being generated. The PWL function in con-

tinuous lines shown in Fig 1(a) can be described by Eq (2), which can be augmented as

sketched by the dashed lines to generate even number of scrolls. In a similar manner, Fig 1(b)

has parameters ki, Bj andm, but the continuous line has 3 saturation levels (k1, k2, k3) to gener-

ate 3-scrolls, then the PWL function can be augmented as sketched by the dashed lines to gen-

erate odd number of scrolls, and the mathematical description is like in Eq (3), where the PWL

Fig 1. PWL function based on saturated function series to generate. (a) even and (b) odd number of

scrolls.

doi:10.1371/journal.pone.0168300.g001

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 3 / 32



function will have n number of saturation levels and n − 1 slopesm.

_x ¼ y
_y ¼ z
_z ¼ � ax � by � cz þ d1f ðxÞ

ð1Þ

f ðxÞ ¼

. . .

k1; if B1 < x < B2

mx; if B2 � x � B3

k2; if B3 < x < B4

. . .

ð2Þ

8
>>>>>><

>>>>>>:

f ðxÞ ¼

. . .

k1; if B1 < x < B2

m x � B2þB3

2

� �
�

k1þk2

2
; if B2 � x � B3

k2; if B3 < x < B4

m x � B4þB5

2

� �
�

k2þk3

2
; if B4 � x � B5

k3; if B5 < x < B6

. . .

ð3Þ

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

2.2 Chua’s circuit based on negative slopes

Chua’s circuit has also three state variables: x, y and z; as described by Eq (4), and their coeffi-

cients are α, β and γ. From Fig 2, one can identify the parameters: amplitude ki, break points Bj

Fig 2. PWL function based on negative slopes to generate. (a) even and (b) odd number of scrolls.

doi:10.1371/journal.pone.0168300.g002

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 4 / 32



and slopesme. These three parameters can be augmented according to the number of scrolls n
being generated. The PWL function in continuous lines shown in Fig 2(a) can be described by

Eq (5), which can be augmented as sketched by the dashed lines to generate even number of

scrolls. Fig 2(b) has also parameters ki, Bj andme, but the continuous line has more segments

than Fig 2(a) to generate 3-scrolls, then the PWL function can be augmented as sketched by

the dashed lines to generate odd number of scrolls, and the mathematical description is like in

Eq (6).

_x ¼ aðy � x � f ðxÞÞ

_y ¼ gðx � y þ zÞ

_z ¼ � by

ð4Þ

f ðxÞ ¼

. . .

m1ðx � B1Þ þ k1; if x < B1

m2x; if B1 � x � B2

m1ðx � B2Þ þ k2; if x > B2

. . .

ð5Þ

8
>>>>>>>>>><

>>>>>>>>>>:

f ðxÞ ¼

. . .

m1ðx � B1Þ þ k1; if x < B1

m2ðx � B2Þ þ k2; if B1 � x � B2

m1x; if B2 < x < B3

m2ðx � B3Þ þ k3; if B3 � x � B4

m1ðx � B4Þ þ k4; if x > B4

. . .

ð6Þ

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

2.3 Chua’s circuit based on sawtooth function

Chua’s circuit can also be implemented using a sawtooth function, and described by the three

state variables x, y and z, given in Eq (7), and it also has three coefficients: α, β and γ. From

Fig 3, one can identify the parameters: amplitude ki, break points Bj and slopesm. These three

parameters can be augmented according to the number of scrolls n being generated. The PWL

function in continuous lines shown in Fig 3(a) can be described by Eq (8), which can be aug-

mented as sketched by the dashed lines to generate even number of scrolls. Fig 3(b) has 3 con-

tinuous lines to generate 3-scrolls, then the PWL function can be augmented as sketched by

the dashed lines to generate odd number of scrolls, and the mathematical description is like in

Eq (9). The PWL function will always have n − 1 number of break points Bi, n number of

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 5 / 32



slopesm, and amplitude ±k.

_x ¼ aðy � f ðxÞÞ
_y ¼ gðx � y þ zÞ
_z ¼ � by

ð7Þ

f ðxÞ ¼

. . .

mðx � B1Þ � k; if x < B1

mðx � B1Þ þ k; if x > B1

. . .

ð8Þ

8
>>>><

>>>>:

f ðxÞ ¼

. . .

mðx � B1Þ � k; if x < B1

mx; if B1 < x < B2

mðx � B2Þ þ k; if x > B2

. . .

ð9Þ

8
>>>>>><

>>>>>>:

Fig 3. PWL function based on sawtooth function to generate. (a) even and (b) odd number of scrolls.

doi:10.1371/journal.pone.0168300.g003

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 6 / 32



3 Simulating multi-scroll chaotic oscillators based on PWL

functions

This section details the pseudocode for the three multi-scroll chaotic oscillators shown above.

We describe the PWL functions with the main purpose of transforming the mathematical

model to VHDL-code, as highlighted in the next section. For instance, as already shown in

[4, 21], the mathematical descriptions in Eqs (1), (4) and (7) can be solved by numerical meth-

ods like Forward Euler, Runge-Kutta, and so on. The discretized equations from Eqs (1), (4)

and (7), by applying Forward Euler, are given by Eqs (10), (11) and (12), respectively.

x½kþ 1� ¼ x½k� þ hy½k�

y½kþ 1� ¼ y½k� þ hz½k�

z½kþ 1� ¼ z½k� þ hð� ax½k� � by½k� � cz½k� þ d1f ðx½k�ÞÞ

ð10Þ

x½kþ 1� ¼ x½k� þ haðy½k� � x½k� � f ðx½k�ÞÞ

y½kþ 1� ¼ y½k� þ hgðx½k� � y½k� þ z½k�Þ

z½kþ 1� ¼ z½k� � hby½k�

ð11Þ

x½kþ 1� ¼ x½k� þ haðy½k� � f ðx½k�ÞÞ

y½kþ 1� ¼ y½k� þ hgðx½k� � y½k� þ z½k�Þ

z½kþ 1� ¼ z½k� � hby½k�

ð12Þ

The oscillators and their associated PWL functions can be programmed from the following

pseudocodes to generate double-scroll attractors using Eqs (2), (5) and (8).

3.1 Oscillator based on saturated function series

To generate even and odd number of scrolls from Eq (1), f(x) is sketched in Fig 1(a) and 1(b),

respectively. As one can infer, the PWL descriptions based on saturated function series and

modeled in Eqs (2) and (3) can be extended according to the number of scrolls being gener-

ated. Algorithm 1 highlights the form in which the double-scroll chaotic attractor is simulated

using Eq (2). The steps are executed as follows:

1. Loop to iterate st times

2. Initializes parameter p = 0

3. Initializes parameter q = 0

4. State variable xn[j] is updated to x1 + h�y1, where x1 and y1 are initial conditions and

h is the step size

5. State variable yn[j] is updated to y1 + h�z1, where y1 and z1 are initial conditions and

h is the step size

6. Verifies if variable x1 is between the break points values B[q] and B[q+1]. If it is satisfied

then

7. Variable d1PWL is equated to d1�k[p], where d1 corresponds to coefficient d1 in Eq (1)

and k[p] to a saturation level in Eq (2)

8. Loop to iterate 2(n − 1) times, where n is the number of scrolls being generated

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 7 / 32



9. Verifies if x1 is between the break points B[q+1] and B[q+2]. If it is satisfied then

10. d1PWL is equated to d1�(((k[p+1]-k[p]) /(B[q+2]-B[q+1]))�(x1-((B[q
+1]+B[q+2])/2))+((k[p+1]+k[p])/2))

11. If step 9 is not satisfied then

12. d1PWL is equated to d1�k[p+1]

13. Increases q by 2

14. Increases p by 1

15. State variable zn[j] is updated to z1+h(-a�x1− b�y1 − c�z1 + d1PWL), where a,

b, c are coefficients in Eq (1)

16. State variable x1 is updated to the next iteration

17. State variable y1 is updated to the next iteration

18. State variable x1 is updated to the next iteration

19. Index j from step 1 is incremented to the next iteration, until st is accomplished.

Algorithm 1. Generating 2-scrolls using saturated function series

1 whilej<st:
2 p = 0
3 q = 0
4 xn.insert(j,x1+h�y1)
5 yn.insert(j,y1+h�z1)
6 if x1 > B[q] and x1 < B[q+1]:
7 d1PWL= d1�k[p]
8 while q < 2�(n-1):
9 if x1 >= B[q+1]and x1 <= B[q+2]:
10 d1PWL= d1�(((k[p+1]-k[p])/(B[q+2]-B[q+1]))�(x1-((B[q+1]+B[q

+2])/2))+((k[p+1]+k[p])/2))
11 elif x1 > B[q+2]and x1 < B[q+3]:
12 d1PWL= d1�k[p+1]
13 q = q+2
14 p = p+1
15 zn.insert(j,z1+h�(-a�x1 − b�y1 − c�z1 + d1PWL))
16 x1 = xn[j]
17 y1 = yn[j]
18 z1 = zn[j]
19 j = j+1

3.2 Oscillator based on negative slopes

For Chua’s circuit based on negative slopes, to generate even and odd number of scrolls from

Eq (4), f(x) must be described as shown in Eqs (5) and (6), respectively. Algorithm 2 highlights

the form in which the double-scroll chaotic attractor is simulated using Eq (5). The steps are

executed as follows:

1. Loop to iterate st times

2. Initializes parameter j = 0

3. Initializes parameter j1 = 0

4. Verifies if x in f(x) is lower than the break point B[0]. If it is satisfied then

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 8 / 32



5. Variable PWL is equated to m�(x-B[0])+k[0]), where m is the slope, B[0] the break

point and k[0] the amplitude

6. Loop to iterate (2n − 3) times, where n is the number of scrolls being generated

7. Verifies if x in f(x) is between the break points B[j] and B[j+1]. If it is satisfied then

8. PWL is equated to m[j]�(x-B[j+1-j1])+k[j+1-j1]

9. Verifies if j is equal to n-3. If it is satisfied then

10. Index j is equated to j+2

11. Index j1 is equated to 1

12. Verifies if j fails the above then

13. Index j is equated to j+1

14. Verifies if x in f(x) is between the break points B[n-2] and B[n-1]. If it is satisfied then

15. PWL is equated to m[n-2]�x, where m[n-2] correponds to slopem1 orm2 in Eqs (5)

and (6)

16. Verifies if x is higher than B[2�n-3]. If it is satisfied then

17. PWL is equated to m�(x-B[2�n-3])+k[2�n-3]

18. State variable x[n] is updated to x+h�(alpha�(y-x-PWL)), where alpha is coeffi-

cient α in Eq (4), x and y are initial conditions, and h is the step size

19. State variable y[n] is updated to y+h�gamma�(x-y+z), where gamma is coefficient γ
in Eq (4) and z is the initial condition

20. State variable z[n] is updated to z+h�(-beta�y), where beta is coefficient β in Eq (4)

21. State variable x is updated to the next iteration

22. State variable y is updated to the next iteration

23. State variable z is updated to the next iteration

24. Index i from step 1 is incremented to the next iteration, until st is accomplished.

Algorithm 2. Generating 2-scrolls using negative slopes

1 whilei < st:
2 j = 0
3 j1 = 0
4 if x < B[0]:
5 PWL = m�(x-B[0])+k[0])
6 while j < 2�n-3:
7 if x >= B[j] and x < B[j+1]:
8 PWL = m[j]�(x-B[j+1-j1])+k[j+1-j1]
9 if j == n-3:
10 j = j + 2
11 j1 = 1
12 else:
13 j = j + 1
14 if x >= B[n-2]and x < B[n-1]:
15 PWL = m[n-2]�x
16 if x >= B[2�n-3]:

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 9 / 32



17 PWL = m�(x-B[2�n-3])+k[2�n-3]
18 xn.insert(i,x+h�(alpha�(y-x-PWL)))
19 yn.insert(i,y+h�gamma�(x-y+z))
20 zn.insert(i,z+h�(-beta�y))
21 x = xn[i]
22 y = yn[i]
23 z = zn[i]
24 i = i + 1

3.3 Oscillator based on sawtooth function

For Chua’s circuit based on sawtooth function, to generate even and odd number of scrolls

from Eq (7), f(x) must be described as shown in Eqs (8) and (9), respectively. Algorithm 3

highlights the form in which the double-scroll chaotic attractor is simulated using Eq (8). The

steps are executed as follows:

1. Loop to iterate st times

2. Verifies if x in f(x) is lower than the break point B[0]. If it is satisfied then

3. Variable PWL is equated tom(x − B[0]) + k[0], wherem is the slope, B[0] the break point

and k[0] the amplitude

4. Verifies if x in f(x) is higher than B[n-2], where n is the number of scrolls being gener-

ated. If it is satisfied then

5. PWL is equated to m�(x-B[n-2])+k[2�n-3], where m is the slope, B[n-2] the break

point and k[2�n-3] the amplitude

6. Loop to iterate n-2 times

7. Verifies if x in f(x) is between the break points B[j] and B[j+1]. If it is satisfied then

8. PWL is equated to m[j]�(x-(B[j+1]+B[j])/2)

9. State variable x[n] is updated to x+h�alpha(y-PWL)), where alpha is coefficient α
in Eq (7), x and y are initial conditions, and h is the step size

10. State variable y[n] is updated to y+h�gamma(x-y+z), where gamma is coefficient γ in

Eq (7), and z the initial condition

11. State variable z[n] is updated to z+h(-beta�y), where beta is coefficient β in Eq (7)

12. State variable x is updated to the next iteration

13. State variable y is updated to the next iteration

14. State variable z is updated to the next iteration

15. Index i from step 1 is incremented to the next iteration, until st is accomplished.

Algorithm 3. Generating 2-scrolls using sawtooth function

1 whilei < st:
2 if x <= B[0]:
3 PWL = m�(x-B[0])+k[0]
4 elif x > B[n-2]:
5 PWL = m�(x-B[n-2])+k[2�n-3]
6 for j in range(n-2):
7 if x > B[j] and x <= B[j+1]:

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 10 / 32



8 PWL = m[j]�(x-(B[j+1]+B[j])/2)
9 xn.insert(i,x+h�(alpha�(y-PWL)))
10 yn.insert(i,y+h�(x-y+z))
11 zn.insert(i,z+h�(-beta�y))
12 x = xn[i]
13 y = yn[i]
14 z = zn[i]
15 i = i+1

4 VHDL descriptions for the FPGA implementation of multi-scroll

chaotic oscillators

From the pseudocodes listed above, one can infer the kind of digital hardware for generating

chaotic behavior. For instance, to generate more than 2-scrolls or odd scrolls, one just needs to

extend the PWL descriptions from Eqs (2), (3), (5), (6), (8) and (9), and all of them can be eval-

uated using comparators, as sketched in Algorithms 1, 2 and 3. This section shows the distribu-

tion of the digital word to establish the fixed-point format from high-level simulation using

Python. Afterwards, our approach generates VHDL-code for the three multi-scroll chaotic

oscillators detailed above. At the end, the generated VHDL-code is ready to be synthesized

into an FPGA.

4.1 Fixed-point format for generating 2 and 30 scrolls

To compute the fixed-point format being used for the VHDL descriptions, one needs to simu-

late the chaotic oscillator to know parameters like coefficient values and PWL characteristics,

namely: break points, amplitudes, and slopes. Those parameter values for generating 2-scroll

attractors for the three chaotic oscillators are the following:

• For the chaotic oscillator based on saturated function series: k1 = -1, k2 = 1, B1 = -0.0165, B2

= 0.0165, a = 0.7, b = 0.7, c = 0.7, and d1 = 0.7. The double-scroll attractor is shown in Fig 4.

• For Chua’s circuit using negative slopes:m1 = -0.276,m2 = -3.3036, B1 = -0.1, B2 = 0.1, α =

10, β = 15, γ = 1, k1 = 0.3036, k2 = -0.3036. The double-scroll attractor is shown in Fig 5.

• For Chua’s circuit using sawtooth function:m = 0.25, B1 = 0, α = 10, β = 16, γ = 1 and

k = 0.25. The double-scroll attractor is shown in Fig 6.

Other simulation results for generating 30-scrolls are shown in Figs 7–9.

Fig 4. Double-scroll attractor using saturated function series. (a) State variable x and (b) Phase-space

portrait x − y.

doi:10.1371/journal.pone.0168300.g004

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 11 / 32



Fig 5. Double-scroll attractor using negative slopes. (a) State variable x and (b) Phase-space portrait x − y.

doi:10.1371/journal.pone.0168300.g005

Fig 6. Double-scroll attractor using sawtooth function. (a) State variable x and (b) Phase-space portrait

x − y.

doi:10.1371/journal.pone.0168300.g006

Fig 7. 30-scroll attractor using saturated function series. (a) State variable x and (b) Phase-space portrait

x − y.

doi:10.1371/journal.pone.0168300.g007

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 12 / 32



From the simulation results, one can identify the ranges of the state variables and parame-

ters that will serve to define the computer arithmetic to translate simulation parameters to

VHDL-code. The binary digits will have integer and fractional parts and our algorithm con-

verts real numbers to their 2’s complement. Basically, the integer part is converted through

successive divisions and the fractional part with multiplications. From the 2’s complement

numbers, one can generate VHDL code by interconnecting the required blocks that solve a

discretized system of equations, e.g. Eqs (10), (11) and (12), as shown in the following

subsections.

For example: Using 32 bits, the ranges of the state variables for generating 2-scrolls in Fig 4

are ±1.5 and ±3, in Fig 5 ±0.3 and ±0.6, and in Fig 6 ±0.6 and ±3. It is clear that 1 bit must be

used for the sign, 2 bits for the integer part, and the rest for the fractional part, so that the

fixed-point format can be established as 3.29.

Again, by using 32 bits, the ranges of the state variables for generating 30-scrolls in Fig 7 are

±1.5 and ±30, in Fig 8 ±0.8 and ±15, and in Fig 9 ±0.6 and ±30. Now, the number of bits for

the integer part will be 5, so that the fixed-point format can be established as 6.26. Sometimes,

this task on establishing the format also requires estimating the maximum value when multi-

plying 2 numbers.

Fig 9. 30-scroll attractor using sawtooth function. (a) State variable x and (b) Phase-space portrait x − y.

doi:10.1371/journal.pone.0168300.g009

Fig 8. 30-scroll attractor using negative slopes. (a) State variable x and (b) Phase-space portrait x − y.

doi:10.1371/journal.pone.0168300.g008

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 13 / 32



4.2 On numerical methods, computer arithmetic and MLE

As one can infer, an important issue when implementing a dynamical system using fixed-

point arithmetic is related to the necessary number of bits for the fractional part. The required

number of bits can be estimated by trial and error techniques until observing the number of

scrolls in the phase-space portrait, as already shown in [4, ch. 8]. So that one can reduce the

number of bits for the fractional part until chaotic behavior remains. For instance, this subsec-

tion shows the reduction of bits for the fractional part to implement Chua’s chaotic oscillator

with fixed-point arithmetic. It is obvious that one needs a metric to quantify chaotic behavior,

therefore the three Lyapunov exponents are computed for different number of bits in the frac-

tional part. The Lyapunov exponents give the most characteristic description of the presence

of a deterministic non-periodic flow. They are asymptotic measures characterizing the average

rate of growth (or shrinking) of small perturbations to the solutions of a dynamical system,

and they provide quantitative measures of response sensitivity of a dynamical system to small

changes in initial conditions [28]. That way, the goal is determining the minimum number of

bits in the fractional part, when still the maximum Lyapunov exponent (MLE) remains in a

similar value.

To measure the Lyapunov exponents, the initial state of the chaotic oscillator is set to

y
0
2 R12

y0 ¼ ½xT
0
; eT

1
; eT

2
; eT

3
�
T

where [e1, e2, e3] = I, and I is the identity matrix of size 3 × 3. Thus, ei, for i = 1, 2, 3, are each

unitary column vector of the identity matrix I.
The original system described by Eq (4) is observed by expanding it with other three sys-

tems. If x ¼ ½ _x; _y; _z�T represent one state of the original dynamical system at any t> 0, then

the states in the three new observational systems will be y = [x, x1, x2, x3]T. The observational

system is integrated by several steps until an orthonormalization period TO is reached. After

this, the state of the variational system is orthonormalized by using the standard Gram-

Schmidt method. The next integration is carried out by using the new orthonormalized vectors

as initial conditions [28].

The Lyapunov exponents measure the long time sensitivity of the flow in x with respect to

the initial data x0 at the directions of every orthogonalized vector. This measure is taken when

the variational system is orthonormalized. In this manner, if y = [x, p1, p2, p3]T is the state

after the matrix [x1, x2, x3] is orthonormalized, then the Lyapunov exponent λi, for i = 1, 2, 3 is

evaluated by

li �
1

T

XT

j¼TO

ln k pi k ð13Þ

In this work the simulation of the expanded system was carried on with fixed integer arith-

metic, using Forward Euler method with a time-step of 0.001. TO was set to 5 seconds and the

period T to 2000 seconds, respectively. The number of bits for the integer part was established

by looking at the phase-space portraits of the expanded system, so that 8-bits are good enough

for the integer part. For the fractional part, we test the behavior by using from 10 to 30 bits,

therefore, Table 1 lists the values of the Lyapunov exponents computed with formats of 9.10 to

9.30.

The computation of the Lyapunov exponents using Eq (13) was performed using floating

point numbers, by applying the fourth-order Runge-Kutta method with a time step of 0.01,

and whose result are listed in the first row of Table 1. The remaining values in that Table were

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 14 / 32



computed using fixed integer arithmetic and Forward Euler with a time-step of 0.001. Fig 10

shows the maximum Lyapunov exponent (MLE) against the number of bits for the fractional

part. The value computed by applying the fourth-order Runge-Kutta method is shown by the

horizontal line at 0.061775, so that from these results, it is clear that by applying Forward Euler

and fourth-order Runge-Kutta one gets similar values of the MLE. In addition, discretizing the

ordinary differential equations with Forward Euler will require the lowest number of FPGA

resources. Finally, one can conclude that for a hardware realization, at least 14 bits for the frac-

tional part are required to keep the chaotic oscillator under a similar MLE value.

4.3 Block description to generate the hardware associated to discretized

equations

As detailed in [4, 21], the solution to the system of differential equations modeling a chaotic

oscillator like Eqs (1), (4) and (7), needs the application of a numerical method to obtain their

discretized descriptions like in Eqs (10)–(12), respectively. From those equations one can iden-

tify digital blocks like comparators for implementing the PWL functions, adders, subtractors

and multipliers. Each block will process bits according to the selected format. For instance,

Fig 11 shows the description of the adder, subtractor and multiplier. They are synchronous to

take control on the iterative process and have associated a delay of a clock pulse CLK. In this

manner, the time propagation from the input to the output in the chaotic oscillator unit

shown in Fig 12, equals the maximum number of series-connected blocks. In Fig 12 one can

identify the block Iterations control, which embeds a timer and a multiplexer to control the

Table 1. Lyapunov exponents for Chua’s chaotic oscillator computed with integer arithmetic and with

formats 9.10 to 9.30. f.p.n. indicates Lyapunov exponents computed with floating point numbers.

Bits in the fractional part Lyapunov exponents

f.p.n. 0.061775 -0.000225 -2.242316

30 0.065421 0.000175 -2.216514

29 0.066633 0.000175 -2.213263

28 0.065321 0.000046 -2.217932

27 0.067895 0.000074 -2.211247

26 0.066553 0.000082 -2.216548

25 0.066436 -0.000094 -2.214181

24 0.065620 0.000032 -2.213422

23 0.065213 0.000108 -2.215123

22 0.064137 0.000126 -2.221193

21 0.064985 0.000080 -2.218178

20 0.064406 0.000039 -2.217326

19 0.064579 -0.000064 -2.218593

18 0.066106 0.000220 -2.214908

17 0.066738 0.000249 -2.212879

16 0.063966 -0.000027 -2.198159

15 0.065293 0.000086 -2.159459

14 0.063845 0.000222 -2.162861

13 0.058283 0.001086 -2.186606

12 0.011525 0.015968 -2.271788

11 0.006752 0.016839 -2.272423

10 0.037251 0.012891 -2.320074

doi:10.1371/journal.pone.0168300.t001

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 15 / 32



Fig 10. Maximum Lyapunov exponent (MLE) against number of bits in the fractional part. The

horizontal line marks MLE computed with floating point numbers (f.p.n.).

doi:10.1371/journal.pone.0168300.g010

Fig 11. Basic building blocks for VHDL programming.

doi:10.1371/journal.pone.0168300.g011

Fig 12. High-level hardware interconnection for the multi-scroll chaotic oscillators.

doi:10.1371/journal.pone.0168300.g012

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 16 / 32



iterations during the numerical integration, i.e. st listed in the pseudocodes in Sect. 3. It also

processes the initial conditions from the first iteration loop.

From the discretized equations of the oscillator based on saturated functions in Eq (10), the

state variables x and y are easy to implement as shown in Fig 13. However, z needs more hard-

ware, as shown in Fig 14. In this manner, its propagation time is the largest and it controls the

iteration loop in Fig 12. For this chaotic oscillator, the number of building blocks required in

the Chaotic Oscillator Unit from Fig 12, can be calculated as given in Table 2, where n is the

number of scrolls being generated.

Chua’s chaotic oscillators have similar equations, the main difference is the evaluation of

state variable x and their corresponding PWL functions for negative slopes and sawtooth. As

Fig 13. Hardware connection for implementing. (a) x[k + 1] = x[k] + hy[k], and (b) y[k + 1] = y[k] + hz[k] from Eq (10).

doi:10.1371/journal.pone.0168300.g013

Fig 14. Hardware connection for implementing. z[k + 1] = z[k] + h(−ax[k] − by[k] − cz[k] + d1 f(x[k])) from

Eq (10).

doi:10.1371/journal.pone.0168300.g014

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 17 / 32



state variables y and z have the same description from Eqs (11) and (12), Fig 15 shows their

implementations. For x, the hardware realization using negative slopes is shown in Fig 16, and

using sawtooth function is shown in Fig 17.

Again, for both Chua’s chaotic oscillators based on negative slopes and sawtooth function,

the number of building blocks required in the Chaotic Oscillator Unit from Fig 12, can be cal-

culated as given by Table 2. These resources estimations are just the ones required to solve the

discretized equations, and they can be incremented according to the length of the digital word

that depends on the selected format.

4.4 VHDL-code generation

VHDL is the acronym of Very High-Speed Integrated Circuit Hardware Description Language,
it was developed around 1980 at the request of the U.S. Department of Defense. At the begin-

ning, the main goal of VHDL was the electric circuit simulation; however, tools for synthesis

and implementation in hardware based on VHDL behavior or structure description files were

developed later. With the increasing use of VHDL, the need for standardized was generated.

In 1986, the Institute of Electrical and Electronics Engineers (IEEE) standardized the first

hardware description language through the 1076 and 1164 standards. Nowadays, VHDL is

technology/vendor independent, then VHDL codes are portable and reusable.

In Subsection 4.1 one can see the main parameters of a 2-scroll chaotic oscillator, like: coef-

ficient values, break points, amplitudes, and slopes. They are used to perform a high-level sim-

ulation to identify the ranges of the state variables and iteration parameters that serve to define

the computer arithmetic to translate simulation parameters to VHDL-code. Our approach can

automatically generate VHDL code by interconnecting the required blocks that solve a discre-

tized system of equations, e.g. Eqs (10)–(12), as already shown in Subsection 4.3. In this

Table 2. Estimation of required building blocks for the multi-scroll chaotic oscillators.

Block Saturated functions Negative slopes Sawtooth

Adders 3(n-2)+8 3n+2 n+4

Subtractors n 2n+1 n+2

Multipliers 5(n-3)+12 2n+5 2n+4

doi:10.1371/journal.pone.0168300.t002

Fig 15. Hardware connection for implementing. (a) y[k + 1] and (b) z[k + 1] from Eqs (11) and (12).

doi:10.1371/journal.pone.0168300.g015

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 18 / 32



manner, this subsection shows the VHDL-code associated to the blocks required to synthesize

the three multi-scroll chaotic oscillators detailed in Sect. 2. For instance, the main steps in gen-

erating VHDL-code can be summarized as follows:

Step 1: Select the number of scrolls being generated, coefficient values and characteristics of

the PWL function of the desired multi-scroll chaotic oscillator. The break points are directly

related to the number of scrolls and must be provided from the left (the most negative) to the

Fig 16. Hardware connection for implementing x[k + 1] from Eq (11).

doi:10.1371/journal.pone.0168300.g016

Fig 17. Hardware connection for implementing x[k + 1] from Eq (12).

doi:10.1371/journal.pone.0168300.g017

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 19 / 32



right (the most positive), according to Figs 1, 2 or 3. Similarly, the saturation levels in Fig 1, or

amplitudes in Figs 2 or 3 must be provided from the bottom (most negative) to the top (most

positive).

Step 2: The high-level simulation is performed and our approach verifies the number of

desired scrolls. From simulation data, the fixed-point format is established, as discussed in

Subsection 4.1, where the ranges in Figs 4–6, leads us to use format 3.29 (using 32 bits), and

from Figs 7–9, the ranges require a format 6.26. After the format is established, our approach

connects the required blocks as detailed in subsection 4.3.

Step 3: Our approach creates a file containing the libraries and code for the blocks imple-

menting Fig 12, where the block Iterations Control embeds a counter and a multiplexer to take

control on the iterative process. In our examples, the counter provides a delay of 8 clock cycles

CLK to process all signals at each iteration. The block Chaotic Oscillator Unit embeds all

blocks implementing the desired multi-scroll chaotic oscillator.

The VHDL-codes for all the required blocks are shown in the following Algorithms. As one

sees, they are described using 28 bits as the word length. This is not an issue, since our

approach can generate the codes automatically. The signals are also described for each case.

The blocks multiplier, adder and subtractor have the following signal descriptions:

• CLK: This is the master clock of the FPGA. All the operations are performed based on the

clock frequency.

• RST: Reset of the system, puts the outputs to zero. Restarts the system.

• N1 and N2: Input data.

• OUTS: Output data.

• sena1: Internal signal with the double of bits from the word length to perform the

multiplication.

Algorithm 4. Multiplier in VDHL

1 entitymultiplieris
2 port(
3 CLK: in std_logic;
4 RST: in std_logic;
5 N1: in std_logic_vector(27 downto0);
6 N2: in std_logic_vector(27 downto0);
7 OUTS: out std_logic_vector(27downto0) := (others=>’0’));
8 end multiplier;
9 architecturecode of multiplieris
10 signalsena1:signed(55downto0) := (others=>’0’);
11 begin
12 process(CLK,RST)
13 begin
14 if RST = ‘1’ then
15 OUTS <= (others=> ‘0’);
16 elsifrising_edge(CLK)then
17 sena1 <= (signed(N1)�signed(N2));
18 OUTS <= std_logic_vector(sena1(51 downto24));
19 end if;
20 end process;
21 end code;

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 20 / 32



Algorithm 5. Adder in VHDL

1 entityadder is
2 port(
3 CLK: in std_logic;
4 RST: in std_logic;
5 N1: in std_logic_vector(27 downto0);
6 N2: in std_logic_vector(27 downto0);
7 OUTS: out std_logic_vector(27downto0) := (others=> ‘0’));
8 end adder;
9 architecturecode of adderis
10 begin
11 process(CLK,RST)
12 begin
13 if RST = ‘1’ then
14 OUTS <= (others=> ‘0’);
15 elsifrising_edge(CLK)then
16 OUTS <= std_logic_vector(signed(N1)+ signed(N2));
17 end if;
18 end process;
19 end code;

Algorithm 6. Subtractor in VHDL

1 entitysubtractoris
2 port(
3 CLK: in std_logic;
4 RST: in std_logic;
5 N1: in std_logic_vector(27 downto0);
6 N2: in std_logic_vector(27 downto0);
7 OUTS: out std_logic_vector(27downto0) := (others=> ‘0’));
8 end subctractor;
9 architecturecode of subtractoris
10 begin
11 process(CLK,RST,N1,N2)
12 begin
13 if RST = ‘1’ then
14 OUTS <= (others=> ‘0’);
15 elsifrising_edge(CLK)then
16 OUTS <= std_logic_vector(signed(N1)− signed(N2));
17 end if;
18 end process;
19 end code;

Algorithm 7. Iterations control block in VHDL

1 entityIterCtrlis
2 port(
3 CLK: in std_logic;
4 RST: in std_logic;
5 Xini: in std_logic_vector(27downto0);
6 Yini: in std_logic_vector(27downto0);
7 Zini: in std_logic_vector(27downto0);
8 Xout: out std_logic_vector(27downto0) := (others=> ‘0’);
9 Yout: out std_logic_vector(27downto0) := (others=> ‘0’);
10 Zout: out std_logic_vector(27downto0) := (others=> ‘0’));
11 end IterCtrl;
12 architecturecode of IterCtrlis

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 21 / 32



13 signaldz: std_logic_vector(27downto0) :=
“0000000000000000000000000000”;

14 signaldy: std_logic_vector(27downto0) :=
“0000000000000000000000000000”;

15 signaldx: std_logic_vector(27downto0) :=
“0000000101100110011001100110”;

16 begin
17 process(CLK,RST)
18 variablecount:integer:= 0;
19 begin
20 if RST = ‘1’ then
21 dx <= (others=> ‘0’);
22 dy <= (others=> ‘0’);
23 dz <= (others=> ‘0’);
24 elsifrising_edge(CLK)then
25 if count = 8 then
26 count:= 0;
27 dx <= Xini;
28 dy <= Yini;
29 dz <= Zini;
30 else
31 count:= count+1;
32 end if;
33 end if;
34 end process;
35 Xout <= dx;
36 Yout <= dy;
37 Zout <= dz;
38 end code;

Iterations control block (Algorithm 7) has the signals:

• CLK and RST are the same for all blocks.

• Xini, Yini and Zini: Feeds input signals to the Chaotic Oscillator Unit, until accomplishing st

iterations as sketched in Sect. 3.

• Xout, Yout and Zout: Output data that will be processed by the Iterations control block to

perform st iterations.

• dx, dy and dz: Initial conditions for each iteration. These registers save the output data of the

state variables and then feeds them as input signals Xini, Yini and Zini.

• count: Signal to update the initial values to the Chaotic Oscillator Unit at each iteration. This

signal is enabled after 8 clock cycles (CLKs), which is the time required by the maximum

number of series-connected blocks.

Algorithm 8. Comparator for implementing saturated functions in VHDL

1 entitycomparatoris
2 port(
3 CLK: in std_logic;
4 RST: in std_logic;
5 dato_sat0:in std_logic_vector(27downto0);
6 dato_sat1:in std_logic_vector(27downto0);
7 dato_pen0:in std_logic_vector(27downto0);
8 dato_X:in std_logic_vector(27downto0);
9 dato_S:out std_logic_vector(27downto0) := (others=> ‘0’));

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 22 / 32



10 end comparator;
11 architecturecode of comparatoris
12 constantB0: std_logic_vector(27downto0) :=

“1000000000000000000010101000”;
13 constantB1: std_logic_vector(27downto0) :=

“1111111110111100011010101000”;
14 constantB2: std_logic_vector(27downto0) :=

“0000000001000011100101011000”;
15 constantB3: std_logic_vector(27downto0) :=

“0111111111111111111111101111”;
16 begin
17 process(CLK,RST,dato_X)
18 begin
19 if RST = ’1’ then
20 dato_S<=(others=> ‘0’);
21 elsifrising_edge(CLK)then
22 if dato_X> B0 AND dato_X< B1 then
23 dato_S<= dato_sat0;
24 elsif dato_X> B2 AND dato_X< B3 then
25 dato_S<= dato_sat1;
26 else
27 dato_S<= dato_pen0;
28 end if;
29 end if;
30 end process;
31 end code;

The PWL functions are implemented using comparators. If the PWL segments increase, as

detailed in Sect. 3, then also the number of comparisons do. The comparator blocks have CLK

and RST signals as the previous blocks.

The PWL function for the oscillator based on saturated functions is implemented by Algo-

rithm 8, where:

• dato_sat0: Input data for the first level of saturation.

• dato_sat1: Input data for the second level of saturation.

• dato_pen0: Input data for the slope.

• dato_X: Input data of the state variable x to perform comparisons.

• dato_S: Output data that takes the value from one input like dato_sat0, dato_sat1, or

dato_pen0.

• B0, B1, B2 and B3: Constants to represent the break points from the left to the right of the

PWL functions.

The PWL function for the oscillator based on negative slopes is implemented by Algorithm

9, where:

• dato_pen0: Input data for the first slope located on the left of the PWL function.

• dato_pen1: Input data for the last slope, which is the same as the first.

• dato_penm: Input data for the central slope.

• dato_X: Input data of the state variable x to perform comparisons.

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 23 / 32



• dato_S: Output data that takes the value from one input like dato_pen0, dato_pen,1 or

dato_penm.

• B0 and B1: Constants to represent the break points from the left to the right of the PWL

functions.

Algorithm 9. Comparator for implementing negative slopes in VHDL

1 entitycomparadoris
2 port(
3 CLK: in std_logic;
4 RST: in std_logic;
5 dato_pen0:in std_logic_vector(27downto0);
6 dato_pen1:in std_logic_vector(27downto0);
7 dato_X:in std_logic_vector(27downto0);
8 dato_S:out std_logic_vector(27downto0) := (others=> ‘0’));
9 end comparador;
10 architecturecomplicadoof comparadoris
11 constantB0: std_logic_vector(27downto0) := (others=> ‘0’)
12 begin
13 process(CLK,RST,dato_X)
14 begin
15 if RST = ’1’ then
16 dato_S<=(others=> ‘0’);
17 elsifrising_edge(CLK)then
18 if dato_X< B0 then
19 dato_S<= dato_pen0;
20 else
21 dato_S<= dato_pen1;
22 end if;
23 end if;
24 end process;
25 end complicado;

Algorithm 10. Comparator for implementing sawtooth function in VHDL

1 entitycomparatoris
2 port(
3 CLK: in std_logic;
4 RST: in std_logic;
5 dato_pen0:in std_logic_vector(27downto0);
6 dato_pen1:in std_logic_vector(27downto0);
7 dato_penm:in std_logic_vector(27downto0);
8 dato_X:in std_logic_vector(27downto0);
9 dato_S:out std_logic_vector(27downto0) := (others=> ‘0’));
10 end comparator;
11 architecturecomplicadoof comparadoris
12 constantB0: std_logic_vector(27downto0) :=

“1111111100110011001100110100”;
13 constantB1: std_logic_vector(27downto0) :=

“0000000011001100110011001100”;
14 begin
15 process(CLK,RST,dato_X)
16 begin
17 if RST = ’1’ then
18 dato_S<=(others=> ‘0’);
19 elsifrising_edge(CLK)then
20 if dato_X< B0 then

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 24 / 32



21 dato_S<= dato_pen0;
22 elsif dato_X>= B1 then
23 dato_S<= dato_pen1;
24 else
25 dato_S<= dato_penm;
26 end if;
27 end if;
28 end process;
29 end complicado;

The PWL function for the oscillator based on sawtooth function is implemented by Algo-

rithm 10, and it is similar as the last two comparators, where:

• dato_pen0: Input data for the first slope.

• dato_pen1: Input data for the last slope, which is the same as the first.

• dato_X: Input data of the state variable x to perform comparisons.

• dato_S: Output data that takes the value from one input like dato_pen0, dato_pen1.

• B0: Constant to represent the break point.

The generated VHDL-code is ready to be synthesized into an FPGA, so that the following

Section shows experimental results.

5 Experimental results

The generated VHDL-codes for the synthesis of multi-scroll chaotic oscillators based on PWL

functions were implemented in the Altera’s FPGA EP4CGX150DF31C7 Cyclone IV GX. The

used resources are listed in Table 3, and the experimental attractors are shown in Figs 18–26,

where one can appreciate the good agreement with simulation results from Sect. 4. In all those

figures the state variable x is shown on the top left-side, y on the bottom left-side, and the

phase-space portrait x − y on the right-side. One can count the number of scrolls from the

phase-space portraits, and from Lyapunov exponents evaluation, one can infer that the more

scrolls are generated the more complex behavior. In this manner, and from the experimental

results, it is clear that engineering applications like in [4] can be realized in a very short time.

This is the advantage of FPGAs for fast prototyping, and we have introduced a Python-based

approach for the generation of VHDL-code that is ready for FPGA synthesis.

Table 3. Resources for generating 2, 10 and 30-scroll chaotic attractors using fixed-point format with 6.22 bits.

Oscillator Scrolls Multipliers 9-bits Logic elements Registers

Saturated Functions 2 73 1030 760

10 79 2045 1386

30 160 4354 2870

Chua Negative Slopes 2 44 902 776

10 172 3767 1953

30 492 10747 5342

Chua Sawtooth 2 44 893 623

10 168 3023 1886

30 470 10354 4870

doi:10.1371/journal.pone.0168300.t003

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 25 / 32



Fig 18. 2-scroll attractor using saturated function series.

doi:10.1371/journal.pone.0168300.g018

Fig 19. 10-scroll attractor using saturated function series.

doi:10.1371/journal.pone.0168300.g019

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 26 / 32



Fig 20. 30-scroll attractor using saturated function series.

doi:10.1371/journal.pone.0168300.g020

Fig 21. 2-scroll attractor using negative slopes.

doi:10.1371/journal.pone.0168300.g021

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 27 / 32



Fig 22. 10-scroll attractor using negative slopes.

doi:10.1371/journal.pone.0168300.g022

Fig 23. 30-scroll attractor using negative slopes.

doi:10.1371/journal.pone.0168300.g023

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 28 / 32



Fig 25. 10-scroll attractor using sawtooth function.

doi:10.1371/journal.pone.0168300.g025

Fig 24. 2-scroll attractor using sawtooth function.

doi:10.1371/journal.pone.0168300.g024

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 29 / 32



6 Conclusions

We have introduced an approach programmed in Python for the generation of VHDL-code

associated to multi-scroll chaotic oscillators that are based on PWL functions. The pseudo-

codes for simulating three kinds of chaotic oscillators were listed to infer the FPGA implemen-

tation of the PWL functions based on saturated functions series, negative slopes and sawtooth

one. From the high-level simulation, our algorithm determines the fixed-point format to inter-

connect digital blocks associated to the discretized equations of the chaotic oscillators. The

PWL functions are then implemented by using comparator blocks that can increase the num-

ber of comparisons according to the number of scrolls being generated. It was highlighted that

these tasks are performed from the description of the dynamical equations and PWL functions,

to the interconnection of the digital blocks and generation of the VHDL-code, which is porta-

ble, reusable and open source to be synthesized in an FPGA of any vendor.

It is worthy mentioning that the FPGA resources depend on the discretization approach.

For instance, Subsection 4.2 showed that Forward Euler and the fourth-order Runge-Kutta

methods computed similar values of the Lyapunov exponents, and also when using floating

point and fixed integer arithmetic. However, the number of bits for the fractional part matters.

As shown in Table 1, at least 14 bits for the fractional part are required to keep the chaotic

oscillator under a similar MLE value.

Finally, it can be concluded that our approach for generating VHDL descriptions can esti-

mate the number of required blocks from the equations listed in Table 2, which depend on the

number of scrolls being generated. And, among the three multi-scroll chaotic oscillators that

were implemented into an FPGA, we can conclude that the one based on saturated function

series requires lower number of hardware resources, as showed by Table 3.

Fig 26. 30-scroll attractor using sawtooth function.

doi:10.1371/journal.pone.0168300.g026

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 30 / 32



Acknowledgments

This work is supported by CONACyT-Mexico under grant 237991 and by UC-MEXUS-CON-

ACyT under grant CN-61-161.

Author Contributions

Conceptualization: ET-C AJQ-V LGF JJR-M.

Data curation: ET-C AJQ-V LGF JJR-M.

Formal analysis: ET-C AJQ-V LGF JJR-M.

Funding acquisition: ET-C.

Investigation: ET-C AJQ-V LGF JJR-M.

Methodology: ET-C AJQ-V LGF JJR-M.

Project administration: ET-C AJQ-V LGF JJR-M.

Resources: ET-C AJQ-V LGF JJR-M.

Software: ET-C AJQ-V LGF JJR-M.

Supervision: ET-C AJQ-V LGF JJR-M.

Validation: ET-C AJQ-V LGF JJR-M.

Visualization: ET-C AJQ-V LGF JJR-M.

Writing – original draft: ET-C AJQ-V LGF JJR-M.

Writing – review & editing: ET-C AJQ-V LGF JJR-M.

References
1. Matsumoto T. A chaotic attractor from Chua’s circuit. IEEE Transactions on Circuits and Systems.

1984; 31(12):1055–1058. doi: 10.1109/TCS.1984.1085459

2. Zhong GQ, Ayrom F. Experimental confirmation of chaos from Chua’s circuit. International journal of cir-

cuit theory and applications. 1985; 13(1):93–98. doi: 10.1002/cta.4490130109

3. Chua LO. Chua’s circuit 10 years later. International Journal of Circuit Theory and Applications. 1994;

22(4):279–305. doi: 10.1002/cta.4490220404

4. Tlelo-Cuautle E, de la Fraga LG, Rangel-Magdaleno J. Engineering Applications of FPGAs. Springer;

2016.

5. Xiong L, Lu YJ, Zhang YF, Zhang XG, Gupta P. Design and Hardware Implementation of a New Chaotic

Secure Communication Technique. PloS one. 2016; 11(8):e0158348. doi: 10.1371/journal.pone.

0158348 PMID: 27548385

6. Hossain FS, Ali ML. A Novel Byte-Substitution Architecture for the AES Cryptosystem. PloS one. 2015;

10(10):e0138457. doi: 10.1371/journal.pone.0138457 PMID: 26491967

7. Si-Min ZWJY. Chaotic digital communication system based on field programmable gate array technol-

ogy—Design and implementation. Acta Physica Sinica. 2009; 1:018.

8. Emary E, Zawbaa HM. Impact of Chaos Functions on Modern Swarm Optimizers. PloS one. 2016; 11

(7):e0158738. doi: 10.1371/journal.pone.0158738 PMID: 27410691

9. Li F, Ma J. Pattern Selection in Network of Coupled Multi-Scroll Attractors. PloS one. 2016; 11(4):

e0154282. doi: 10.1371/journal.pone.0154282 PMID: 27119986

10. Rashtchi V, Nourazar M. FPGA Implementation of a Real-Time Weak Signal Detector Using a Duffing

Oscillator. Circuits, Systems, and Signal Processing. 2015; 34(10):3101–3119. doi: 10.1007/s00034-

014-9948-5

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 31 / 32

http://dx.doi.org/10.1109/TCS.1984.1085459
http://dx.doi.org/10.1002/cta.4490130109
http://dx.doi.org/10.1002/cta.4490220404
http://dx.doi.org/10.1371/journal.pone.0158348
http://dx.doi.org/10.1371/journal.pone.0158348
http://www.ncbi.nlm.nih.gov/pubmed/27548385
http://dx.doi.org/10.1371/journal.pone.0138457
http://www.ncbi.nlm.nih.gov/pubmed/26491967
http://dx.doi.org/10.1371/journal.pone.0158738
http://www.ncbi.nlm.nih.gov/pubmed/27410691
http://dx.doi.org/10.1371/journal.pone.0154282
http://www.ncbi.nlm.nih.gov/pubmed/27119986
http://dx.doi.org/10.1007/s00034-014-9948-5
http://dx.doi.org/10.1007/s00034-014-9948-5


11. Tlelo-Cuautle E, Carbajal-Gomez V, Obeso-Rodelo P, Rangel-Magdaleno J, Nuñez-Perez JC. FPGA

realization of a chaotic communication system applied to image processing. Nonlinear Dynamics. 2015;

82(4):1879–1892. doi: 10.1007/s11071-015-2284-x

12. Wang Q, Yu S, Li C, Lu J, Fang X, Guyeux C, et al. Theoretical Design and FPGA-Based Implementa-

tion of Higher-Dimensional Digital Chaotic Systems. IEEE Transactions on Circuits and Systems I: Reg-

ular Papers. 2016; 63(3):401–412. doi: 10.1109/TCSI.2016.2515398

13. Akgul A, Calgan H, Koyuncu I, Pehlivan I, Istanbullu A. Chaos-based engineering applications with a 3D

chaotic system without equilibrium points. Nonlinear Dynamics. 2016; 84(2):481–495. doi: 10.1007/

s11071-015-2501-7

14. Cong L, Xiaofu W. Design and realization of an FPGA-based generator for chaotic frequency hopping

sequences. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications.

2001; 48(5):521–532. doi: 10.1109/81.922455

15. Yeo JC, Guo JI. Efficient hierarchical chaotic image encryption algorithm and its VLSI realisation. IEE

Proceedings-vision, image and signal processing. 2000; 147(2):167–175. doi: 10.1049/ip-vis:20000208

16. Suykens JA, Vandewalle J. Generation of n-double scrolls (n = 1, 2, 3, 4, . . .). IEEE Transactions on Cir-

cuits and Systems I: Fundamental Theory and Applications. 1993; 40(11):861–867. doi: 10.1109/81.

251829

17. Lu J, Chen G, Yu X, Leung H. Design and analysis of multiscroll chaotic attractors from saturated func-

tion series. IEEE Transactions on Circuits and Systems I: Regular Papers. 2004; 51(12):2476–2490.

doi: 10.1109/TCSI.2004.838151

18. Lu J, Yu S, Leung H, Chen G. Experimental verification of multidirectional multiscroll chaotic attractors.

IEEE Transactions on Circuits and Systems I: Regular Papers. 2006; 53(1):149–165. doi: 10.1109/

TCSI.2005.854412

19. Yu S, Lu J, Chen G. Theoretical design and circuit implementation of multidirectional multi-torus chaotic

attractors. IEEE Transactions on Circuits and Systems I: Regular Papers. 2007; 54(9):2087–2098. doi:

10.1109/TCSI.2007.904651

20. Trejo-Guerra R, Tlelo-Cuautle E, Carbajal-Gomez VH, Rodriguez-Gomez G. A survey on the integrated

design of chaotic oscillators. Applied Mathematics and Computation. 2013; 219(10):5113–5122. doi:

10.1016/j.amc.2012.11.021

21. Tlelo-Cuautle E, Rangel-Magdaleno J, Pano-Azucena A, Obeso-Rodelo P, Nuñez-Perez JC. FPGA

realization of multi-scroll chaotic oscillators. Communications in Nonlinear Science and Numerical Sim-

ulation. 2015; 27(1):66–80. doi: 10.1016/j.cnsns.2015.03.003

22. Logaras E, Koutsouradis E, Manolakos ES. Python facilitates the rapid prototyping and HW/SW verifi-

cation of processor centric SoCs for FPGAs. In: 2016 IEEE International Symposium on Circuits and

Systems (ISCAS); 2016. p. 1214–1217.

23. Urban R, Scholzel M, Vierhaus HT, Altmann E, Seelig H. Compiler-Centred Microprocessor Design

(CoMet)—From C-Code to a VHDL Model of an ASIP. In: Design and Diagnostics of Electronic Circuits

Systems (DDECS), 2015 IEEE 18th International Symposium on; 2015. p. 17–22.

24. Sinha R, Patel HD. synASM: A High-Level Synthesis Framework With Support for Parallel and Timed

Constructs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 2012;

31(10):1508–1521. doi: 10.1109/TCAD.2012.2198474

25. da Silva ACR, Grout IA. MS2SV: Environment for translation of Matlab/Simulink models to VHDL-AMS

models. IEEE Latin America Transactions. 2011; 9(5):663–672. doi: 10.1109/TLA.2011.6030974

26. Selvamuthukumaran R, Gupta R. Rapid prototyping of power electronics converters for photovoltaic

system application using Xilinx System Generator. IET Power Electronics. 2014; 7(9):2269–2278. doi:

10.1049/iet-pel.2013.0736

27. Rezgui A, Gerbaud L, Delinchant B. VHDL-AMS Electromagnetic Automatic Modeling for System Simu-

lation and Design. IEEE Transactions on Magnetics. 2014; 50(2):1013–1016. doi: 10.1109/TMAG.

2013.2281495

28. Dieci L. Jacobian Free Computation of Lyapunov Exponents. Journal of Dynamics and Differential

Equations. 2002; 14(3):697–717. doi: 10.1023/A:1016395301189

VHDL Descriptions for the FPGA Implementation of PWL-Function-Based Multi-Scroll Chaotic Oscillators

PLOS ONE | DOI:10.1371/journal.pone.0168300 December 20, 2016 32 / 32

http://dx.doi.org/10.1007/s11071-015-2284-x
http://dx.doi.org/10.1109/TCSI.2016.2515398
http://dx.doi.org/10.1007/s11071-015-2501-7
http://dx.doi.org/10.1007/s11071-015-2501-7
http://dx.doi.org/10.1109/81.922455
http://dx.doi.org/10.1049/ip-vis:20000208
http://dx.doi.org/10.1109/81.251829
http://dx.doi.org/10.1109/81.251829
http://dx.doi.org/10.1109/TCSI.2004.838151
http://dx.doi.org/10.1109/TCSI.2005.854412
http://dx.doi.org/10.1109/TCSI.2005.854412
http://dx.doi.org/10.1109/TCSI.2007.904651
http://dx.doi.org/10.1016/j.amc.2012.11.021
http://dx.doi.org/10.1016/j.cnsns.2015.03.003
http://dx.doi.org/10.1109/TCAD.2012.2198474
http://dx.doi.org/10.1109/TLA.2011.6030974
http://dx.doi.org/10.1049/iet-pel.2013.0736
http://dx.doi.org/10.1109/TMAG.2013.2281495
http://dx.doi.org/10.1109/TMAG.2013.2281495
http://dx.doi.org/10.1023/A:1016395301189

