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Abstract

Common leaf spot (caused by Pseudopeziza medicaginis), rust (caused by Uromyces stria-

tus), Leptosphaerulina leaf spot (caused by Leptosphaerulina briosiana) and Cercospora leaf

spot (caused by Cercospora medicaginis) are the four common types of alfalfa leaf diseases.

Timely and accurate diagnoses of these diseases are critical for disease management, alfalfa

quality control and the healthy development of the alfalfa industry. In this study, the identifica-

tion and diagnosis of the four types of alfalfa leaf diseases were investigated using pattern rec-

ognition algorithms based on image-processing technology. A sub-image with one or multiple

typical lesions was obtained by artificial cutting from each acquired digital disease image. Then

the sub-images were segmented using twelve lesion segmentation methods integrated with

clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median

clustering) and supervised classification algorithms (including logistic regression analysis,

Naive Bayes algorithm, classification and regression tree, and linear discriminant analysis).

After a comprehensive comparison, the segmentation method integrating the K_median clus-

tering algorithm and linear discriminant analysis was chosen to obtain lesion images. After the

lesion segmentation using this method, a total of 129 texture, color and shape features were

extracted from the lesion images. Based on the features selected using three methods

(ReliefF, 1R and correlation-based feature selection), disease recognition models were built

using three supervised learning methods, including the random forest, support vector machine

(SVM) and K-nearest neighbor methods. A comparison of the recognition results of the models

was conducted. The results showed that when the ReliefF method was used for feature selec-

tion, the SVM model built with the most important 45 features (selected from a total of 129 fea-

tures) was the optimal model. For this SVM model, the recognition accuracies of the training

set and the testing set were 97.64% and 94.74%, respectively. Semi-supervised models for

disease recognition were built based on the 45 effective features that were used for building

the optimal SVM model. For the optimal semi-supervised models built with three ratios of

labeled to unlabeled samples in the training set, the recognition accuracies of the training set

and the testing set were both approximately 80%. The results indicated that image recognition

of the four alfalfa leaf diseases can be implemented with high accuracy. This study provides a

feasible solution for lesion image segmentation and image recognition of alfalfa leaf disease.
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Introduction

Alfalfa (Medicago sativa) is an important forage grass containing various nutrients. The occur-

rence of disease in alfalfa plants has an important influence on the yield and quality of alfalfa

hay, affecting the healthy development of the alfalfa industry [1]. There are more than ten

types of alfalfa leaf diseases [2, 3]. Some of these diseases have similar symptoms, resulting in

difficulties in achieving an accurate diagnosis and identifying the disease via naked-eye obser-

vations of symptoms or microscopic observations of causal agents. The diagnosis and identifi-

cation of alfalfa diseases mainly rely on the experience of farmers, agricultural experts or

agricultural technicians. The complexity of the disease symptoms and the limitations of per-

sonnel experience may lead to errors in judgment. The rapid, accurate identification and diag-

nosis of diseases will help to reduce yield losses and quality decline of alfalfa hay, resulting

from the diseases. With the rapid development of computer technology and information tech-

nology, it is possible to utilize image-processing technology to diagnose and identify alfalfa leaf

diseases quickly, accurately and automatically.

Image-processing technology has been applied to the recognition of many plant diseases [4–

19]. The image-based recognition accuracy for plant diseases depends largely on the segmenta-

tion of the lesion images. Threshold-based image segmentation methods have been widely used

in the segmentation of lesion images of diseased plants [20, 21]. However, there is usually great

variance in color both between lesions of different diseases and between lesions from a disease

at different stages. Therefore, it is very difficult to determine the appropriate threshold when

threshold-based image segmentation methods are used to solving segmentation problems for

plant disease images with complex colors. Image segmentation methods based on a fuzzy C-

means clustering algorithm [22] or a K_means clustering algorithm [11, 15, 23] have been used

to carry out lesion segmentation of plant disease images. Such segmentation methods must

specify the number of clusters in advance. Inappropriate clustering number may lead to over-

segmentation or under-segmentation of lesion images. However, a great computational cost is

required to determine the appropriate number of clusters, especially for segmentation opera-

tions for high-pixel images. Supervised classification is a technique based on typical samples to

deduce a functional equation for classification. Lesion segmentation of plant disease images can

be effectively realized using the supervised classification method [24, 25]. However, the features

of typical lesion regions and the features of typical health regions in a disease image cannot be

obtained automatically and in a targeted fashion by only using a supervised classification

method. Automatic segmentation of plant disease images can be effectively achieved by inte-

grating a clustering algorithm and a supervised classification algorithm [26, 27].

There are color, texture and shape differences between lesion images from different plant

diseases. Image recognition of plant diseases can be implemented using an appropriate pattern

recognition algorithm based on color, texture and shape features of the lesion images [10, 11,

13, 17, 28]. Moreover, to reduce the complexity of the disease identification model and

improve the model’s generalization ability, it is necessary to carry out feature selection accord-

ing to the importance of features.

To the best of our knowledge, systematic studies on image recognition of alfalfa diseases

have not yet been reported. In this study, automatic recognition of four common alfalfa leaf

diseases including alfalfa common leaf spot (caused by Pseudopeziza medicaginis), alfalfa rust

(caused by Uromyces striatus), alfalfa Leptosphaerulina leaf spot (caused by Leptosphaerulina
briosiana) and alfalfa Cercospora leaf spot (caused by Cercospora medicaginis), was investigated

based on acquired digital disease images. Of twelve segmentation methods integrating with

clustering algorithms (including K_means clustering, fuzzy C-means clustering and K_median

clustering) and supervised classification algorithms (including logistic regression analysis,
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Naive Bayes algorithm, classification and regression tree (CART) and linear discriminant anal-

ysis), the best image segmentation method was selected for further image processing and

image recognition. After extraction of texture, color and shape features from the lesion images,

feature selection was conducted using three different methods, i.e., the ReliefF method [29],

the 1-rule (1R) method [30] and the correlation-based feature selection (CFS) method [31].

Based on the selected features, disease recognition models were built using three supervised

learning methods including random forest, support vector machine (SVM) and K-nearest

neighbor (KNN). Moreover, after the features used for building the optimal supervised model

were transformed using principal component analysis (PCA), disease recognition semi-super-

vised models were built using a self-training algorithm based on Naive Bayes classifiers [32,

33]. After comparing the recognition results of each model, the optimal model was determined

for disease image recognition. The aim of this study was to provide a solution for rapid and

accurate identification of four alfalfa leaf diseases and provide some supports for the develop-

ment of an automatic alfalfa leaf disease diagnosis system.

Materials and Methods

Image Acquisition

Infected alfalfa leaves with typical symptoms used in this study were sampled from the Lang-

fang Forage Experimental Base, Institute of Animal Science, Chinese Academy of Agricultural

Sciences and alfalfa fields in Xuanhua District, Zhangjiakou, Hebei Province, China. The study

was conducted with the permission for the Langfang Forage Experimental Base given by Qin-

ghua Yuan from Institute of Animal Science, Chinese Academy of Agricultural Sciences, Bei-

jing, China. And the study was conducted with the permission for the alfalfa fields in Xuanhua

District given by Dongxia Liu from College of Agriculture and Forestry Science and Technol-

ogy, Hebei North University, Zhangjiakou, Hebei Province, China. All the diseased alfalfa

leaves in the fields resulted from natural infections. The infected alfalfa leaves in the early stage

of diseases were not sampled. Samples were taken to the laboratory and disease types of the

leaves were determined mainly by using conventional diagnostic methods including naked-

eye observations of disease symptoms and microscopic observation of morphological charac-

teristics of causal agents. Images were captured with the lesion side of each diseased leaf facing

up on a white background. When taking images, the leaves were expanded as flat as possible,

and the camera lens was parallel with the plane of the leaves.

A total of 899 images with typical disease symptoms were acquired, including 76 images of

alfalfa common leaf spot, 136 images of alfalfa rust, 231 images of alfalfa Leptosphaerulina leaf

spot and 456 images of alfalfa Cercospora leaf spot. The image size was 4,256×2,832 pixels

(jepg format). To reduce the workload of image analysis and focus on the regions of interest, a

sub-image with one typical lesion or multiple typical lesions was obtained from each original

disease image using artificial cutting. The size of a sub-image depended on the number of typi-

cal lesions and the size of each typical lesion. Using the sub-images, the image dataset of alfalfa

common leaf spot comprising 76 sub-images, the image dataset of alfalfa rust comprising 136

sub-images, the image dataset of alfalfa Leptosphaerulina leaf spot comprising 231 sub-images,

the image dataset of alfalfa Cercospora leaf spot comprising 456 sub-images and the aggregated

image dataset comprising 899 sub-images, were constructed. These image datasets were used

for segmentation of lesion images and evaluation of segmentation methods.

Lesion Image Segmentation

In this study, twelve lesion segmentation methods integrated with clustering algorithms

(including K_means clustering, fuzzy C-means clustering and K_median clustering) and

Image Recognition of Alfalfa Leaf Diseases

PLOS ONE | DOI:10.1371/journal.pone.0168274 December 15, 2016 3 / 26



supervised classification algorithms (including logistic regression analysis, Naive Bayes algo-

rithm, CART and linear discriminant analysis) were used to segment the sub-images, and then

their segmentation effects were evaluated. The main steps for lesion image segmentation are

shown in Fig 1.

Each obtained sub-image was converted from RGB color space into HSV color space and

L�a�b� color space. In each pixel in the sub-image, the a� component value and the b� compo-

nent value were regarded as the color features of the pixel. All pixels in the image were clus-

tered into ten classes using K_median clustering, fuzzy C-means clustering and K_median

clustering. The three clustering algorithms were carried out using the software MATLAB

R2013b (MathWorks, Natick, MA, USA). For K_median clustering, the number of repetitions

was set to three, and default values were used for the other parameters. For fuzzy C-means

clustering, all the parameters with the default values were used. K_median clustering was

implemented using Euclidean distance while the initial clustering seed was obtained using a

random selection method. The maximum number of iterations was set to 1,000, the number of

repetitions was set to three, and minimizing the sum of the intraclass distances was regarded

as the clustering criterion.

After all pixels in a sub-image were clustered into ten classes using a clustering algorithm,

the mean of theH components of all pixels in each class was calculated. Compared to healthy

alfalfa leaves, theH components of the sub-images of the four alfalfa leaf diseases were smaller.

Consequently, the pixels in the class with the minimum mean were treated as typical lesion

pixels, and the pixels in the seven classes with the largest means were treated as typical healthy

pixels. There is a transition region between the lesion region with typical symptoms and the

typical healthy region, andH components are usually between the two regions. The pixels in

the two remaining classes were treated as pixels that were not involved in building the pixel

classification models. The typical lesion pixels and typical healthy pixels were labeled positive

samples and negative samples, respectively, and these pixels constituted the training set for

building pixel classification models. With a� component value and b� component value of

each pixel in the training set as feature variables, pixel classification models to classify all the

pixels in the sub-image were built using logistic regression analysis, Naive Bayes algorithm,

Fig 1. Work flow diagram of main steps for lesion image segmentation.

doi:10.1371/journal.pone.0168274.g001
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CART and linear discriminant analysis, respectively. For each classification model, each pixel

classified as lesion was assigned a value of 1 and each remaining pixel in the sub-image was

assigned a value of 0. Thus, an initial binary lesion segmentation image was obtained. To avoid

the influence of the white background, the pixels with B component values higher than 200 in

the original sub-image were identified. Each pixel with B component value higher than 200

was assigned a value of 0, and each remaining pixel was assigned a value of 1 in the initial

binary lesion segmentation image to achieve a binary image. A new binary image was obtained

by multiplying this binary image with the initial binary lesion segmentation image. The hole

filling operation was performed on this new binary image and the areas of all connected

regions in the image were calculated. The connected regions with areas less than one-sixteenth

of the maximum area were removed, and the final lesion segmentation image was obtained. If

there were no pixels with B component values higher than 200, a hole filling operation was car-

ried out on the initial binary lesion segmentation image. Subsequently, the areas of all con-

nected regions in the image were calculated and the connected regions with the areas less than

one-sixteenth of the maximum area were removed to give the final lesion segmentation image.

In the process of lesion segmentation, all pixels in a sub-image were classified as either

lesion pixels or healthy pixels. Therefore, lesion segmentation is similar to binary classification

problem in the field of pattern recognition, and the evaluation of segmentation effects can be

carried out using methods for evaluating a binary classification model. Manual segmentation

of a sub-image using the Adobe Photoshop CC software was conducted to determine the true

class of each pixel. In comparison with manual segmentation method, Recall and Precision,

two commonly used indices for evaluating classification models in the field of pattern recogni-

tion [34], were used to evaluate the twelve segmentation methods integrated with clustering

algorithms and supervised classification algorithms. In this study, the two indices were calcu-

lated according to the following formulas: Recall = N1/N2 and Precision = N1/N3, where N1

was the total number of lesion pixels in a sub-image correctly classified by using a segmenta-

tion method integrated with a clustering algorithm and a supervised classification algorithm,

N2 was the total number of lesion pixels in the sub-image classified using the manual segmen-

tation method, and N3 was the total number of the pixels in the sub-image. Both Recall and

Precision range from 0–1. Larger values of Recall and Precision indicate a better integrated

segmentation method. The index “Score” combining Recall and Precision, is proposed in this

study to evaluate the twelve segmentation methods and is calculated according to the following

formula: Score = (Recall+Precision)/2. The Score also ranges from 0 to 1. Larger Score values

demonstrate that the corresponding integrated segmentation method is better. Based on the

image datasets described above, the three indices were used to evaluate the twelve integrated

segmentation methods for achieving the best method to segment sub-images for further image

recognition in this study.

After segmentation, in each final binary lesion segmentation image, each independent

white region (i.e., connected component) was labeled a lesion, and the black background

region was labeled the healthy region. The location of the smallest rectangle containing each

lesion, namely, the independent white region, was determined. After multiplying each of color

channels (R, G and B) of the original sub-image with the corresponding final binary lesion

segmentation image, the obtained images were integrated into a new RGB image using the

MATLAB system function “cat” to remove the background of the original sub-image and

retain only the lesion regions. Based on the location information of each smallest rectangle

containing a lesion, each rectangle was cut down from the new RGB image using the MATLAB

system function “imcrop” to achieve multiple lesion images. For example, if there were two

lesions in an original sub-image, two lesion images were achieved through the above opera-

tions. After segmentation using the best segmentation method based on the 899 sub-images of
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the four types of alfalfa leaf diseases, a total of 1,651 typical lesion images, each of which con-

tained only one lesion, were obtained for further feature extraction, feature selection and dis-

ease image recognition. For building disease recognition models, the typical lesion images

were divided into a training set and a testing set in a ratio of 2:1. The training set consisted of

1,100 lesion images including 111 lesion images of alfalfa common leaf spot, 267 lesion images

of alfalfa rust, 371 lesion images of alfalfa Leptosphaerulina leaf spot and 351 lesion images of

alfalfa Cercospora leaf spot. The testing set consisted of 551 lesion images including 56 lesion

images of alfalfa common leaf spot, 133 lesion images of alfalfa rust, 185 lesion images of alfalfa

Leptosphaerulina leaf spot and 177 lesion images of alfalfa Cercospora leaf spot.

Feature Extraction and Normalization

A total of 129 texture, color and shape features were extracted from the 1,651 typical lesion

images of the four alfalfa leaf diseases. The 90 extracted texture features included the seven Hu

invariant moments (63 features), contrast (nine features), energy (nine features) and homoge-

neity (nine features) of the gray images of the nine components in RGB color space, HSV

color space and L�a�b� color space. There were 30 color features including the first moments

(nine features), the second moments (nine features) and the third moments (nine features) of

the gray images of the nine components in RGB, HSV and L�a�b� color spaces, and three color

ratios (r, g and b) of R, G and B components. Of the nine extracted shape features, circularity

of disease lesion, complexity of disease lesion and the seven Hu invariant moments of the

binary lesion image were included.

Hu invariant moments used to depict the texture features of an image are invariant to trans-

lation, rotation and scaling. Contrast is applied to measure the gray level of a pixel in compari-

son with the neighbor pixels in an image, energy is a measure of the consistency of an image,

and homogeneity is used to measure the spatial closeness of elements with the diagonal distri-

bution in a co-occurrence matrix [35]. Circularity denotes the degree that a lesion region is cir-

cular, and a bigger value indicates that the lesion region is more circular [11]. Complexity

refers to the complexity and discrete degree of a lesion region, and a bigger value indicates the

lesion region with higher complexity and greater discrete degree [11]. The seven Hu invariant

moments were calculated using the calculation formulas as described in [36]. The other

extracted features were calculated according to the formulas shown in Table 1.

Because of the great differences between the ranges of extracted features, which may impact

the accuracies of disease recognition models, the values of each extracted feature were normal-

ized to the range of 0–1 using the following formula: Xi
norm ¼ ðX

i � Xi
minÞ=ðX

i
max � X

i
minÞ, where

Xi
norm was the value of the ith feature after normalization and Xi, Xi

min and Xi
max were the value

of the ith feature, the minimum value and the maximum value of the feature before normaliza-

tion, respectively.

Feature Selection

To reduce the complexity of image recognition resulting from excessive features and improve

the accuracy and applicability of image recognition methods, the extracted features were

screened after feature normalization. Based on the training set including 1,100 lesion images

described above, feature selection was conducted using the ReliefF method, the 1R method

and the CFS method.

For the ReliefF method, a high weight was assigned to a feature that has a high correlation

with categories, and a feature with a higher weight indicates that this feature is more impor-

tant. For the 1R method, the classification accuracy is calculated with each feature as the input

of the 1R classifier successively and is used to evaluate the importance of the feature. Higher
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classification accuracy indicates that the corresponding feature is more important. The CFS

method is unlike the ReliefF method and the 1R method, and is aimed to obtain the optimal

feature subset. The correlation between the optimal feature subset and dependent variable

should be as high as possible. Meanwhile, the correlations among the features in the optimal

feature subset should be as small as possible. In this study, the three methods for feature selec-

tion, including the ReliefF method, the 1R method and the CFS method, were all implemented

using the open source software Weka (Waikato Environment for Knowledge Analysis) 3.7,

developed by The University of Waikato in Hamilton, New Zealand. The default values were

used for all the parameters involved in the methods. The importance ranking of each feature

for classification and recognition could be obtained using the ReliefF method and the 1R

method, respectively. A higher ranking for a feature indicates that it is more likely to yield bet-

ter recognition results if used to build the recognition model. To find the best combination of

features, according to the importance ranking of each feature for classification and recogni-

tion, the top N (N = 1, 2, 3, . . ., 129) features were treated as inputs for the disease recognition

models based on random forest, SVM and KNN. According to the recognition accuracies of

the training set and the testing set, the best top N features were selected as the best feature com-

bination to build the disease recognition models. For the CFS method, the best feature combi-

nation, namely, the optimal feature subset, was obtained directly for modeling.

Table 1. Extracted image features (excluding Hu invariant moments) and calculation formulas.

Feature

parameter

Calculation formula Reference

Contrast XM

i¼1

XM

j¼1

ði � jÞ2pij, where M×M denotes the size of a co-occurrence matrix, M = 1, 2, . . ., and pij denotes the quotient of the

element (i, j) of a co-occurrence matrix divided by the sum of the elements of the co-occurrence matrix.

[35]

Energy XM

i¼1

XM

j¼1

p2

ij , where M×M denotes the size of a co-occurrence matrix, M = 1, 2, . . ., and pij denotes the quotient of the

element (i, j) of a co-occurrence matrix divided by the sum of the elements of the co-occurrence matrix.

[35]

Homogeneity XM

i¼1

XM

j¼1

pij
1þ ji � jj

, where M×M denotes the size of a co-occurrence matrix, M = 1, 2, . . ., and pij denotes the quotient of the

element (i, j) of a co-occurrence matrix divided by the sum of the elements of the co-occurrence matrix.

[35]

First moment
1

L

XL� 1

i¼0

fipðfiÞ, where μ1, μ2 and μ3 refer to the first moment, second moment and third moment, respectively, fi represents a

random variable of gray level, p(fi) represents the gray level histogram of an image region, i = 0, 1, 2, . . ., L-1, and L is the

number of different gray levels.

[37]

Second moment
1

L

XL� 1

i¼0

ðfi � m1Þ
2pðfiÞ

" #1
2

, where μ1, μ2 and μ3 refer to the first moment, second moment and third moment, respectively, fi

represents a random variable of gray level, p(fi) represents the gray level histogram of an image region, i = 0, 1, 2, . . ., L-1,

and L is the number of different gray levels.

[37]

Third moment
1

L

XL� 1

i¼0

ðfi � m1Þ
3pðfiÞ

" #1
3

, where μ1, μ2 and μ3 refer to the first moment, second moment and third moment, respectively, fi

represents a random variable of gray level, p(fi) represents the gray level histogram of an image region, i = 0, 1, 2, . . ., L-1,

and L is the number of different gray levels.

[37]

Color ratio r R
RþGþB

[11]

Color ratio g G
RþGþB

[11]

Color ratio b B
RþGþB

[11]

Circularity 4pS
L2 , where S and L represent the area and perimeter of a lesion region, respectively. [11]

Complexity L2

S , where S and L represent the area and perimeter of a lesion region, respectively. [11]

doi:10.1371/journal.pone.0168274.t001

Image Recognition of Alfalfa Leaf Diseases

PLOS ONE | DOI:10.1371/journal.pone.0168274 December 15, 2016 7 / 26



Building of Disease Recognition Models

After the segmentation, feature extraction, feature normalization and feature selection

described above, disease recognition models were built based on the 1,651 typical lesion

images of the four alfalfa leaf diseases using three supervised learning methods including ran-

dom forest, SVM and KNN. All models were built using the MATLAB R2013b software. The

recognition accuracies of both the training set and the testing set were calculated and used to

evaluate the disease recognition models.

Random forest is a combination model composed of a number of fully grown decision trees

[38]. Each decision tree produces a predictive value, and the final prediction result of the

model can be determined by voting. To a certain extent, the classification effects of a random

forest depend on the number of decision trees that constitute the model. Consequently, it is

necessary to determine the optimal number of decision trees by testing a variety of values

based on the classification results of the random forests. To build a disease recognition model

based on the random forest method, the number of decision trees was assigned as 10, 20, 30,

40, 50, 60, 70, 80, 90, and 100, and the optimal number of decision trees was determined

according to the recognition results of the model. The number of features randomly selected

by each decision tree was set as the arithmetic square root of the total number of features. If

the arithmetic square root was a decimal, the value obtained by rounding up the decimal was

treated as the number of features randomly selected by each decision tree.

SVM can be well applied to high-dimensional data [39, 40]. It has been widely used in

image recognition of plant disease [11, 20, 28, 41]. In this study, SVM models for disease

image recognition were built with a radial basis function as the kernel function using C-SVM

in the LIBSVM package developed by Chih-Jen Lin Group from Taiwan, China [42]. For each

SVM model, both the optimal penalty parameter C and the optimal kernel function parameter

g were searched using the grid search algorithm in the range of 2−10–210 with a searching step

of 0.4. The recognition accuracies were calculated at all points within the grid by running three

complete cross validations based on the training set. The values of C and g were selected as the

optimal parameters as the recognition accuracy was the highest, and were recorded as Cbest

and gbest, respectively.

The KNN algorithm treats each sample as a point in a multidimensional space, and a point

in the testing set is assigned to a class that most of the K points nearest to that point in the

training set belong to [43, 44]. The distance of that point to each of the K points is commonly

measured by Euclidean distance. An appropriate value of K is the key to high classification

accuracy using the KNN algorithm. In this study, to build the KNN models for image recogni-

tion using Euclidean distance, the K values were set as 5, 9 and 13, respectively, and the optimal

value of K was determined according to the recognition results of the models.

For the supervised learning methods, the true class that each sample in the training set

belongs to is known. In other words, all samples in the training set are labeled samples. In

some cases, the cost of obtaining training samples is low, but the cost of determining the true

class of the training samples is very high, which requires a large amount of manpower and

material resources. When a small number of samples in the training set are labeled, a recogni-

tion model can be built using a semi-supervised learning method. In practice, when many dis-

ease images are acquired with lower costs, the experts in the corresponding field just need to

make artificial recognition and classification of a small number of disease images. Disease rec-

ognition models can be built using semi-supervised learning methods, which will greatly

reduce the costs of building a plant disease automatic recognition system. In this study, the fea-

tures used to build the optimal supervised model were transformed using PCA and the disease

recognition semi-supervised models were built using a self-training algorithm based on Naive
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Bayes classifiers [32, 33]. In this method, an initial classifier is built based on the given labeled

samples and used to predict the unlabeled samples in the training set. The prediction labels

with high confidence in the classifier and their corresponding samples are added to a dataset

comprising the labeled samples from the training set. Subsequently, based on the new dataset

comprising the labeled samples, a new classifier is built. The above process continues until a

certain criterion is reached. The criterion may be the number of iterations reaching the maxi-

mum number of iterations or the number of labeled samples reaching the set ratio, etc. In this

study, based on the same training set and testing set as used for building the supervised models

described above, disease recognition semi-supervised models were built with ratios of the

labeled and unlabeled samples in the training set equal to 2:1, 1:1 and 1:2. The first n principal

components were successively used to build the disease recognition semi-supervised models,

and the corresponding recognition accuracies of the training set and the testing set were

obtained. According to the accuracies, the recognition effects of the models were evaluated,

and the optimal number of principal components was determined. The above disease recogni-

tion semi-supervised models were built using the R3.1.2 software and the function “SelfTrain”

in the package “DMwR” as the default values were used for the model parameters.

Results

Image Segmentation Results

Based on the image datasets described above, the comparison results of the twelve segmenta-

tion methods integrated with the clustering algorithms and the supervised classification algo-

rithms are shown in Table 2.

For the image dataset of alfalfa common leaf spot, when the segmentation method inte-

grated with K_median clustering algorithm and linear discriminant analysis was used, the

highest Scores with a mean of 0.8562 and the median of 0.8810 were obtained, and the highest

Recalls with a mean of 0.7905 and the median of 0.8199 were also obtained. When the segmen-

tation method integrating with K_means clustering algorithm and linear discriminant analysis

was used based on the image dataset, the highest Precisions with a mean of 0.9235 and the

median of 0.9392 were obtained.

For the image dataset of alfalfa rust, when the segmentation method integrated with

K_median clustering algorithm and linear discriminant analysis was used, the highest values

of Scores, Recalls and Precisions were obtained. The results showed that the mean of Scores

was 0.9061 and the median of Scores was 0.9137, that the mean of Recalls was 0.8516 and the

median of Recalls was 0.8596 and that the mean of Precisions was 0.9606 and the median of

Precisions was 0.9671.

For the image dataset of alfalfa Leptosphaerulina leaf spot, when the segmentation method

integrated with K_median clustering algorithm and linear discriminant analysis was used, the

highest values of Scores and Recalls were obtained. The results showed that the mean of Scores

was 0.9462 and the median of Scores was 0.9583 and that the mean of Recalls was 0.9287 and

the mean of Recalls was 0.9495. For this image dataset, when the segmentation method inte-

grated with K_means clustering algorithm and linear discriminant analysis was used, the high-

est mean of Precisions was obtained and its value was 0.9657. For this image dataset, when the

segmentation method integrating with fuzzy C-means clustering algorithm and logistic regres-

sion analysis was used, the highest median of Precisions was obtained, and its value was

0.9733.

For the image dataset of alfalfa Cercospora leaf spot, when the segmentation method inte-

grated with K_median clustering algorithm and linear discriminant analysis was used, the

highest values of Scores, Recalls and Precisions were obtained. The mean and the median of

Image Recognition of Alfalfa Leaf Diseases
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Table 2. Performance evaluations of the twelve segmentation methods based on the sub-images of four alfalfa leaf diseases.

Image dataset Clustering method Supervised classification

method

Recall Precision Score

Mean Median Mean Median Mean Median

Image dataset of alfalfa common leaf

spot

K_means clustering

algorithm

Logistic regression analysis 0.6443 0.6727 0.8940 0.9127 0.7691 0.7925

Naive Bayes algorithm 0.6318 0.6379 0.8922 0.9047 0.7620 0.7644

CART 0.5547 0.5683 0.8716 0.8829 0.7132 0.7300

Linear discriminant analysis 0.7694 0.7981 0.9235 0.9392 0.8465 0.8743

Fuzzy C-means clustering

algorithm

Logistic regression analysis 0.6117 0.6455 0.8859 0.9119 0.7488 0.7783

Naive Bayes algorithm 0.5725 0.5894 0.8785 0.8876 0.7255 0.7484

CART 0.4856 0.4684 0.8570 0.8686 0.6713 0.6639

Linear discriminant analysis 0.7389 0.8036 0.9155 0.9357 0.8272 0.8736

K_median clustering

algorithm

Logistic regression analysis 0.6989 0.7261 0.9010 0.9272 0.7999 0.8291

Naive Bayes algorithm 0.6850 0.6785 0.8982 0.9234 0.7916 0.7949

CART 0.6153 0.5926 0.8806 0.9001 0.7479 0.7435

Linear discriminant analysis 0.7905 0.8199 0.9220 0.9366 0.8562 0.8810

Image dataset of alfalfa rust K_means clustering

algorithm

Logistic regression analysis 0.7508 0.7714 0.9459 0.9568 0.8484 0.8626

Naive Bayes algorithm 0.7200 0.7354 0.9396 0.9517 0.8298 0.8444

CART 0.7021 0.7370 0.9372 0.9518 0.8197 0.8413

Linear discriminant analysis 0.8303 0.8376 0.9583 0.9639 0.8943 0.9013

Fuzzy C-means clustering

algorithm

Logistic regression analysis 0.6741 0.6772 0.9338 0.9423 0.8039 0.8091

Naive Bayes algorithm 0.6366 0.6424 0.9266 0.9386 0.7816 0.7872

CART 0.5998 0.6156 0.9197 0.9314 0.7598 0.7721

Linear discriminant analysis 0.8051 0.8116 0.9549 0.9609 0.8800 0.8870

K_median clustering

algorithm

Logistic regression analysis 0.8166 0.8384 0.9542 0.9644 0.8854 0.9025

Naive Bayes algorithm 0.8019 0.8288 0.9458 0.9595 0.8738 0.8968

CART 0.7915 0.8341 0.9475 0.9640 0.8695 0.9019

Linear discriminant analysis 0.8516 0.8596 0.9606 0.9671 0.9061 0.9137

Image dataset of alfalfa

Leptosphaerulina leaf spot

K_means clustering

algorithm

Logistic regression analysis 0.8329 0.8736 0.9634 0.9722 0.8982 0.9248

Naive Bayes algorithm 0.8561 0.8908 0.9635 0.9713 0.9098 0.9335

CART 0.7665 0.7933 0.9571 0.9697 0.8618 0.8803

Linear discriminant analysis 0.9002 0.9285 0.9657 0.9716 0.9330 0.9510

Fuzzy C-means clustering

algorithm

Logistic regression analysis 0.8102 0.8334 0.9622 0.9733 0.8862 0.9040

Naive Bayes algorithm 0.8181 0.8407 0.9623 0.9718 0.8902 0.9078

CART 0.7188 0.7458 0.9536 0.9674 0.8362 0.8569

Linear discriminant analysis 0.8900 0.9170 0.9652 0.9723 0.9276 0.9441

K_median clustering

algorithm

Logistic regression analysis 0.8919 0.9255 0.9613 0.9691 0.9266 0.9481

Naive Bayes algorithm 0.9091 0.9480 0.9583 0.9626 0.9337 0.9565

CART 0.8629 0.9156 0.9556 0.9656 0.9093 0.9409

Linear discriminant analysis 0.9287 0.9495 0.9636 0.9690 0.9462 0.9583

Image dataset of alfalfa Cercospora

leaf spot

K_means clustering

algorithm

Logistic regression analysis 0.5851 0.6044 0.8250 0.8471 0.7051 0.7172

Naive Bayes algorithm 0.5296 0.5394 0.8044 0.8173 0.6670 0.6823

(Continued )
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Scores were 0.8369 and 0.8496, respectively. The mean and the median of Recalls were 0.7786

and 0.7938, respectively, and the mean and the median of Precisions were 0.8951and 0.9109,

respectively.

For the aggregated image dataset comprising 899 sub-images of the four alfalfa leaf diseases,

when the segmentation method integrated with K_median clustering algorithm and linear dis-

criminant analysis was used, the highest values of Scores, Recalls and Precisions were obtained.

The results showed that the mean and the median of Scores were 0.8771 and 0.8997, respec-

tively, that the mean and the median of Recalls were 0.8294 and 0.8514, respectively and that

the mean and the median of Precisions were 0.9249 and 0.9424, respectively.

In summary, when the segmentation method integrated with K_median clustering algo-

rithm and linear discriminant analysis was used, the segmentation effects for the sub-images

of the four alfalfa leaf diseases were best. The segmentation results of the sub-images of the

four alfalfa leaf diseases using the segmentation method integrated with K_ median clustering

algorithm and linear discriminant analysis are shown in Fig 2. Using this segmentation

method, all lesions in the original sub-images were effectively segmented. The results indicated

Table 2. (Continued)

Image dataset Clustering method Supervised classification

method

Recall Precision Score

Mean Median Mean Median Mean Median

CART 0.4240 0.4184 0.7627 0.7672 0.5933 0.5908

Linear discriminant analysis 0.7656 0.7824 0.8932 0.9041 0.8294 0.8431

Fuzzy C-means clustering

algorithm

Logistic regression analysis 0.5808 0.5954 0.8231 0.8401 0.7019 0.7184

Naive Bayes algorithm 0.5089 0.5184 0.7968 0.8122 0.6529 0.6680

CART 0.4184 0.4120 0.7620 0.7667 0.5902 0.5878

Linear discriminant analysis 0.7508 0.7695 0.8877 0.9027 0.8192 0.8330

K_median clustering

algorithm

Logistic regression analysis 0.6237 0.6330 0.8362 0.8612 0.7300 0.7488

Naive Bayes algorithm 0.5705 0.5885 0.8171 0.8373 0.6938 0.7149

CART 0.4876 0.4702 0.7824 0.7985 0.6350 0.6292

Linear discriminant analysis 0.7786 0.7938 0.8951 0.9109 0.8369 0.8496

Aggregated image dataset K_means clustering

algorithm

Logistic regression analysis 0.6789 0.7040 0.8846 0.9116 0.7818 0.8057

Naive Bayes algorithm 0.6510 0.6474 0.8730 0.8960 0.7620 0.7690

CART 0.5650 0.5728 0.8481 0.8791 0.7065 0.7138

Linear discriminant analysis 0.8105 0.8317 0.9242 0.9419 0.8674 0.8870

Fuzzy C-means clustering

algorithm

Logistic regression analysis 0.6567 0.6633 0.8808 0.9044 0.7687 0.7814

Naive Bayes algorithm 0.6132 0.6041 0.8658 0.8830 0.7395 0.7412

CART 0.5288 0.5180 0.8430 0.8679 0.6859 0.6922

Linear discriminant analysis 0.7940 0.8184 0.9201 0.9388 0.8571 0.8777

K_median clustering

algorithm

Logistic regression analysis 0.7282 0.7648 0.8916 0.9270 0.8099 0.8468

Naive Bayes algorithm 0.7022 0.7042 0.8795 0.9119 0.7908 0.8028

CART 0.6407 0.6714 0.8600 0.9035 0.7504 0.7868

Linear discriminant analysis 0.8294 0.8514 0.9249 0.9424 0.8771 0.8997

Note: The aggregated image dataset was obtained after aggregation of four image datasets of alfalfa common leaf spot, alfalfa rust, alfalfa

Leptosphaerulina leaf spot and alfalfa Cercospora leaf spot.

doi:10.1371/journal.pone.0168274.t002
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that this segmentation method could effectively implement the automatic segmentation of

sub-images of the four alfalfa leaf diseases. Therefore, lesion segmentation was implemented

using the segmentation method integrated with K_median clustering algorithm and linear dis-

criminant analysis for further feature extraction, feature normalization, feature selection and

building of disease recognition models in this study.

Feature Selection Results Using the Methods of ReliefF, 1R and CFS

For convenience, each extracted feature was given a name, and the names of the 129 image fea-

tures extracted are listed in Table 3. φLab_L1 denoted the first Hu invariant moment of the

gray image of the L� component in L�a�b� color space, φshape1 denoted the first Hu invariant

moment of the binary lesion image, the first moment RGB_R denoted the first moment of the

gray image of the R component in RGB color space, Color ratio RGB_R denoted the color

ratio r of the R component in RGB color space, Contrast RGB_R denoted the contrast of the

gray image of the R component in RGB color space, Energy RGB_R denoted the energy of the

gray image of the R component in RGB color space and Homogeneity RGB_R denoted the

homogeneity of the gray image of the R component in RGB color space. The remaining feature

names can be deduced by analogy.

The results of feature selection using the ReliefF method, 1R method and CFS method

are shown in Table 3. The selection results of both the ReliefF method and the 1R method

were the importance ranking of each feature for disease recognition. As shown in Table 3,

there were great differences between the importance rankings of features obtained using

the ReliefF method and the 1R method. The top 10 features with the highest recognition

importance selected using the ReliefF method successively were Energy RGB_B, Circular-

ity, Color ratio RGB_R, second moment RGB_B, Energy Lab_a, Energy HSV_H, first

moment HSV_S, first moment HSV_H, Homogeneity HSV_S and Color ratio RGB_G,

which included four texture features, one shape feature and five color features. The top 10

features with the highest recognition importance selected using the 1R method in sequence

were φLab_a1, Contrast Lab_a, Homogeneity HSV_H, Complexity, Circularity, Contrast

HSV_H, Contrast Lab_b, Homogeneity HSV_S, second moment Lab_b and first moment

Lab_b, which included six texture features, two shape features and two color features. Only

two features, Circularity and Homogeneity HSV_S, were simultaneously selected in the top

10 features with the highest recognition importance using the ReliefF method and the 1R

method. The best feature combination (i.e., the optimal feature subset) obtained using the

CFS method consisted of 21 features including φLab_a1, φHSV_H1, φHSV_S1, Circularity,

Complexity, φshape1, first moment RGB_G, first moment RGB_B, Color ratio RGB_R,

Color ratio RGB_G, first moment HSV_H, first moment HSV_V, first moment Lab_b, sec-

ond moment RGB_G, second moment HSV_H, third moment HSV_S, Energy RGB_B,

Energy HSV_S, Homogeneity HSV_S, Homogeneity Lab_L and Contrast Lab_a.

Built Disease Recognition Models and Comparison of Recognition

Results

Recognition Results of Disease Recognition Models Based on Random Forest. The rec-

ognition results of the random forest models based on the selected features using the ReliefF

method, the 1R method or the CFS method are shown in Table 4. The results showed that

when the ReliefF method was used to select the features, with the increase of the number of

decision trees, the recognition accuracies of the training set and the testing set for the built ran-

dom forest models fluctuated by 0%-2.18%, and the number of applied features changed in a

range of 52–74. The optimal random forest model was built with the number of decision trees
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equal to 70 based on the top 62 features in the importance ranking for recognition, and this

model was recorded as Model 1. For Model 1, the recognition accuracy of the training set was

100% and the recognition accuracy of the testing set was 92.74%. When the 1R method was

used for feature selection, with an increase in the number of decision trees, the recognition

accuracies of the training set and the testing set for the built random forest models fluctuated

by 0%-2.00%, and the number of applied features changed in a range of 76–129. The optimal

random forest model was built with the number of decision trees equal to 60 based on the top

128 features in the importance ranking and was recorded as Model 2. For Model 2, the recog-

nition accuracy of the training set was 100% and the recognition accuracy of the testing set was

91.29%. When the CFS method was applied to feature selection, with the increase of the num-

ber of decision trees, the recognition accuracies of the training set and the testing set for the

built random forest models fluctuated by 0%-2.18%. The optimal random forest model was

built with the number of decision trees equal to 60 based on the 21 selected features, and this

model was recorded as Model 3. For Model 3, the recognition accuracy of the training set was

100% and the recognition accuracy of the testing set was 90.20%. As shown in Table 4, with

increasing number of decision trees, the recognition accuracies of the training set and the test-

ing set for the built random forest models fluctuated within a small range, indicating that the

number of decision trees had little influence on the recognition results of the random forest

models in this study. Considering the recognition accuracies of the training set and the testing

set and the number of applied features for modeling, the optimality ranking of the three opti-

mal models was Model 1, Model 3, and Model 2.

Recognition Results of Disease Recognition Models Based on SVM. The recognition

results of the SVM models based on the selected features busing the ReliefF method, the 1R

method and the CFS method are shown in Table 5. The results showed that when the ReliefF

method was used to select the features, the optimal SVM model was built based on the top 45

features in the importance ranking for recognition, and this model was recorded as Model 4

with the optimal parameters Cbest and gbest of 6.964 and 0.435. For Model 4, the recognition

accuracy of the training set was 97.64% and the recognition accuracy of the testing set was

94.74%. When the 1R method was used to conduct feature selection, the optimal SVM model

was built based on the top 122 features in the importance ranking for recognition, and this

model was recorded as Model 5, with Cbest equal to 36.758 and gbest equal to 0.144. For Model

5, the recognition accuracy of the training set was 97.91% and the recognition accuracy of the

testing set was 94.37%. When the CFS method was used for feature selection, the SVM model

built based on the 21 selected features was recorded as Model 6, with Cbest equal to 21.112 and

gbest equal to 0.758. For Model 6, the recognition accuracy of the training set was 95.18% and

the recognition accuracy of the testing set was 91.83%. Considering the recognition accuracies

of the training set and the testing set and the number of applied features for modeling, the

optimality ranking of the three models shown in Table 5 was Model 4, Model 6, and Model 5.

Recognition Results of Disease Recognition Models Based on KNN. The recognition

results of the KNN models based on the selected features using the ReliefF method, the 1R

method and the CFS method are shown in Table 6. The results showed that when the ReliefF

method was used to select features, with the increase in the value of K, the recognition

Fig 2. Results of automatic segmentation of sub-images of four alfalfa leaf diseases using the

segmentation method integrated with K_ median clustering algorithm and linear discriminant

analysis. A: Sub-image of alfalfa common leaf spot. B: Image after segmentation of alfalfa common leaf spot. C:

Sub-image of alfalfa rust. D: Image after segmentation of alfalfa rust. E: Sub-image of alfalfa Leptosphaerulina

leaf spot. F: Image after segmentation of alfalfa Leptosphaerulina leaf spot. G: Sub-image of alfalfa Cercospora

leaf spot. H: Image after segmentation of alfalfa Cercospora leaf spot.

doi:10.1371/journal.pone.0168274.g002
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Table 3. Names of image features extracted and results of feature selection using the ReliefF method, the 1R method and the CFS method.

Feature

name

Feature

ranking based

on the ReliefF

method

Feature

ranking based

on the 1R

method

Feature name Feature

ranking based

on the ReliefF

method

Feature

ranking based

on the 1R

method

Feature name Feature

ranking based

on the ReliefF

method

Feature

ranking based

on the 1R

method

φLab_L1 61 81 φHSV_H2 71 30 Second moment

RGB_B

4 127

φLab_L2 77 103 φHSV_H3 101 40 Second moment

HSV_H*
32 55

φLab_L3 102 106 φHSV_H4 85 43 Second moment

HSV_S

38 67

φLab_L4 87 128 φHSV_H5 106 24 Second moment

HSV_V

50 114

φLab_L5 95 113 φHSV_H6 88 28 Second moment

Lab_L

28 18

φLab_L6 94 112 φHSV_H7 129 49 Second moment

Lab_b

14 9

φLab_L7 126 126 φHSV_S1* 75 38 Second moment

Lab_a

41 83

φLab_a1* 45 1 φHSV_S2 100 41 Third moment

RGB_R

49 48

φLab_a2 70 31 φHSV_S3 110 72 Third moment

RGB_G

54 53

φLab_a3 84 77 φHSV_S4 111 75 Third moment

RGB_B

42 118

φLab_a4 79 58 φHSV_S5 113 65 Third moment

HSV_H

44 76

φLab_a5 115 123 φHSV_S6 112 50 Third moment

HSV_S*
36 69

φLab_a6 120 98 φHSV_S7 118 88 Third

momentHSV_V

53 110

φLab_a7 116 124 φHSV_V1 63 74 The third

moment Lab_L

30 19

φLab_b1 56 64 φHSV_V2 74 85 Third moment

Lab_b

13 11

φLab_b2 68 46 φHSV_V3 96 102 Third moment

Lab_a

39 79

φLab_b3 105 42 φHSV_V4 83 109 Contrast RGB_R 59 66

φLab_b4 119 61 φHSV_V5 98 104 Energy RGB_R 35 71

φLab_b5 117 121 φHSV_V6 90 86 Homogeneity

RGB_R

18 25

φLab_b6 128 63 φHSV_V7 124 111 Contrast RGB_G 64 100

φLab_b7 114 122 Circularity* 2 5 Energy RGB_G 55 73

φRGB_R1 62 68 Complexity* 69 4 Homogeneity

RGB_G

22 39

φRGB_R2 73 80 φshape1* 66 37 Contrast RGB_B 21 52

φRGB_R3 97 99 φshape2 72 44 Energy RGB_B* 1 34

φRGB_R4 82 91 φshape3 80 59 Homogeneity

RGB_B

16 47

φRGB_R5 99 107 φshape4 81 32 Contrast HSV_H 47 6

φRGB_R6 89 94 φshape5 107 97 Energy HSV_H 6 27

φRGB_R7 125 101 φshape6 93 45 Homogeneity

HSV_H

31 3

φRGB_G1 51 90 φshape7 127 108 Contrast HSV_S 33 16

(Continued )
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accuracies of the training set and the testing set for the built KNN models also fluctuated by

0%-3.55%. The optimal KNN model was built with a K value of 5 based on the top 68 features

in the importance ranking for recognition. This model was recorded as Model 7. For Model 7,

the recognition accuracy of the training set was 93.55% and the recognition accuracy of the

testing set was 90.38%. When the 1R method was used to select features, with increasing K
value, the recognition accuracies of the training set and the testing set for the built KNN mod-

els fluctuated by 0.18%-3.72%. The optimal KNN model was built with a K value of 5 based on

the top 71 features in the importance ranking for recognition, and this model was recorded as

Model 8. For Model 8, the recognition accuracy of the training set was 92.36% and the recogni-

tion accuracy of the testing set was 88.93%. When the CFS method was used to select features,

with increasing K value, the recognition accuracies of the training set and the testing set for the

built KNN models fluctuated by 0.18%-2.09%. Based on the 21 selected features, the optimal

KNN model was built with a K value of 5, and this model was recorded as Model 9. For Model

9, the recognition accuracy of the training set was 92.27% and the recognition accuracy of the

Table 3. (Continued)

Feature

name

Feature

ranking based

on the ReliefF

method

Feature

ranking based

on the 1R

method

Feature name Feature

ranking based

on the ReliefF

method

Feature

ranking based

on the 1R

method

Feature name Feature

ranking based

on the ReliefF

method

Feature

ranking based

on the 1R

method

φRGB_G2 76 62 First moment

RGB_R

25 17 Energy HSV_S* 52 54

φRGB_G3 104 119 First moment

RGB_G*
27 29 Homogeneity

HSV_S*
9 8

φRGB_G4 86 120 First moment

RGB_B*
24 36 Contrast HSV_V 60 70

φRGB_G5 92 93 Color ratio

RGB_R*
3 14 Energy HSV_V 37 84

φRGB_G6 91 95 Color ratio

RGB_G*
10 12 Homogeneity

HSV_V

19 23

φRGB_G7 123 125 Color ratio

RGB_B

23 92 Contrast Lab_L 67 87

φRGB_B1 48 78 First moment

HSV_H*
8 33 Energy Lab_L 46 96

φRGB_B2 78 60 First moment

HSV_S

7 51 Homogeneity

Lab_L*
20 22

φRGB_B3 109 116 First moment

HSV_V*
26 21 Contrast Lab_a* 58 2

φRGB_B4 103 117 First moment

Lab_L

29 20 Energy Lab_a 5 26

φRGB_B5 121 105 First moment

Lab_b*
15 10 Homogeneity

Lab_a

43 15

φRGB_B6 108 89 First moment

Lab_a

40 82 Contrast Lab_b 65 7

φRGB_B7 122 129 Second

moment

RGB_R

34 115 Energy Lab_b 11 35

φHSV_H1* 12 13 Second

moment

RGB_G*

17 57 Homogeneity

Lab_b

57 56

Note:

* Features marked with an asterisk in the table were selected based on the CFS method.

doi:10.1371/journal.pone.0168274.t003
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testing set was 87.30%. With increasing K value, the recognition accuracies of the training set

and the testing set for the built KNN models shown in Table 6 decreased in small-scale ampli-

tude, indicating that the best K value in this study was 5. Considering the recognition accura-

cies of the training set and the testing set and the number of applied features for modeling, the

optimality ranking of the three models shown in Table 6 was Model 7, Model 9, and Model 8.

Recognition Results of Disease Recognition Models Based on Semi-supervised Learn-

ing. Considering the recognition accuracies of the training set and the testing set and the

number of applied features for modeling, Model 4 was regarded as the optimal model among

the nine models described above. The recognition results of each type of alfalfa leaf disease

using the optimal model are shown in Table 7. To eliminate the linear correlation between the

features, the 45 features used for building Model 4 were transformed using PCA, and the

changes in cumulative contribution rates with increasing number of principal components

were achieved as shown in Fig 3. The results showed that the cumulative contribution rate of

Table 4. Recognition results for four alfalfa leaf diseases using random forest models based on selected features using the ReliefF method, the

1R method and the CFS method.

Number

of

decision

trees

ReliefF method 1R method CFS method

Recognition

accuracy of

training set (%)

Recognition

accuracy of

testing set (%)

Number

of applied

features

Recognition

accuracy of

training set (%)

Recognition

accuracy of

testing set (%)

Number

of applied

features

Recognition

accuracy of

training set (%)

Recognition

accuracy of

testing set (%)

Number

of applied

features

10 99.82 90.56 74 99.73 89.29 90 99.64 89.29 21

20 99.91 91.47 57 99.91 90.20 88 99.91 88.57 21

30 100 92.38 52 99.91 90.56 129 99.91 88.75 21

40 100 92.56 61 100 90.56 126 100 89.47 21

50 100 92.38 59 99.91 90.74 76 100 88.02 21

60 100 92.20 65 100 91.29 128 100 90.20 21

70 100 92.74 62 100 90.74 119 100 89.11 21

80 100 92.56 57 100 90.56 105 100 88.38 21

90 100 92.38 55 100 90.93 107 100 88.57 21

100 100 92.20 54 100 90.93 114 100 89.11 21

Note: For each number of decision trees, only the best random forest model for the recognition of the four alfalfa leaf diseases is shown when the features

were selected using the ReliefF method or 1R method.

doi:10.1371/journal.pone.0168274.t004

Table 5. Recognition results for four alfalfa leaf diseases using SVM models based on selected features using the ReliefF method, the 1R method

and the CFS method.

Model Feature selection

method

Cbest gbest Recognition accuracy of training

set (%)

Recognition accuracy of testing

set (%)

Number of applied

features

Model

4

The ReliefF method 6.964 0.435 97.64 94.74 45

Model

5

The 1R method 36.758 0.144 97.91 94.37 122

Model

6

The CFS method 21.112 0.758 95.18 91.83 21

Note: Only the best SVM model for the image recognition of the four alfalfa leaf diseases is shown when the features were selected using the ReliefF

method or 1R method.

doi:10.1371/journal.pone.0168274.t005
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the first eight principal components reached 90.77% and that the cumulative contribution rate

of the first 12 principal components reached 95.54%.

Based on the same training set and testing set as used for building the supervised models

described above, the disease recognition semi-supervised models were built using a ratio of

labeled to unlabeled samples in the training set equal to 2:1. The corresponding recognition

accuracies of the training set and the testing set were obtained using the first n principal com-

ponents as the inputs. The changes in recognition accuracies of the training set and testing set

are shown in Fig 4 with an increased number of principal components. The results showed

that for disease recognition semi-supervised models with a varying number of principal com-

ponents, there were no obvious differences between the recognition accuracies of the training

set and the recognition accuracies of the testing set. Moreover, both the recognition accuracy

of the training set and the recognition accuracy of the testing set first increased and then

decreased with increasing n. Similarly, the disease recognition semi-supervised models were

built with ratios of labeled and unlabeled samples in the training set equal to 1:1 and 1:2. The

first n principal components were used as the inputs, and the corresponding recognition accu-

racies of the training set and the testing set, as shown in Figs 5 and 6, were obtained. The

results showed that the recognition accuracies of the training set and the testing set obtained

using the semi-supervised models with the different ratios of labeled and unlabeled samples

presented similar change tendencies.

The recognition results for the four alfalfa leaf diseases using optimal semi-supervised mod-

els with the different ratios of labeled and unlabeled samples are as shown in Table 8. The

results showed that when the ratio of labeled to unlabeled samples was 2:1, the optimal semi-

supervised model for disease recognition was built with the first nine principal components

and was recorded as Model 10. For Model 10, the recognition accuracy of the training set was

82.82% and the recognition accuracy of the testing set was 82.76%. When the ratio of the

labeled samples to the unlabeled samples was 1:1, the optimal semi-supervised model for dis-

ease recognition was built with the first ten principal components and was recorded as Model

11. For Model 11, the recognition accuracy of the training set was 80.36% and the recognition

Table 6. Recognition results for four alfalfa leaf diseases using KNN models based on selected features using the ReliefF method, the 1R method

and the CFS method.

K ReliefF method 1R method CFS method

Recognition

accuracy of

training set (%)

Recognition

accuracy of

testing set (%)

Number of

applied

features

Recognition

accuracy of

training set (%)

Recognition

accuracy of

testing set (%)

Number of

applied

features

Recognition

accuracy of

training set (%)

Recognition

accuracy of

testing set (%)

Number of

applied

features

5 93.55 90.38 68 92.36 88.93 71 92.27 87.30 21

9 91.27 89.66 39 90.00 88.75 71 90.64 87.11 21

13 90.00 89.66 38 88.64 88.20 84 90.18 86.93 21

Note: Only the best KNN model for the image recognition of the four alfalfa leaf diseases is shown when the features were selected using the ReliefF

method or 1R method.

doi:10.1371/journal.pone.0168274.t006

Table 7. Recognition results of each alfalfa leaf disease using the optimal model (Model 4).

Individual disease Recognition accuracy of training set (%) Recognition accuracy of testing set (%)

Alfalfa common leaf spot 89.19 75.00

Alfalfa rust 99.63 96.24

Alfalfa Leptosphaerulina leaf spot 97.30 96.76

Alfalfa Cercospora leaf spot 99.15 97.74

doi:10.1371/journal.pone.0168274.t007
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accuracy of the testing set was 80.58%. When the ratio of the labeled samples to the unlabeled

samples was 1:2, the optimal semi-supervised model for disease recognition was built with the

first ten principal components and was recorded as Model 12. For Model 12, the recognition

accuracy of the training set was 79.18% and the recognition accuracy of the testing set was

80.58%. For Model 10, Model 11 and Model 12, the recognition accuracies of the training set

and the testing set were all approximately 80%, indicating that the ratio of the labeled samples

to the unlabeled samples in the training set had relatively small effects on the recognition

Fig 3. Changes in cumulative contribution rates with increasing number of principal components based on 45

features used for building Model 4.

doi:10.1371/journal.pone.0168274.g003

Fig 4. Recognition results for four alfalfa leaf diseases using semi-supervised models at a ratio of labeled

to unlabeled samples of 2:1.

doi:10.1371/journal.pone.0168274.g004
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results of the disease recognition semi-supervised models when the models were built with the

three ratios.

Discussion

In this study, lesion image segmentation was conducted using the segmentation methods inte-

grated with clustering algorithms and supervised classification algorithms. Compared to

image segmentation methods using only clustering algorithms, there was no need to calculate

Fig 5. Recognition results for four alfalfa leaf diseases using semi-supervised models at a ratio of labeled

to unlabeled samples of 1:1.

doi:10.1371/journal.pone.0168274.g005

Fig 6. Recognition results for four alfalfa leaf diseases using semi-supervised models at a ratio of labeled

to unlabeled samples of 1:2.

doi:10.1371/journal.pone.0168274.g006
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and choose optimal clustering numbers for the clustering algorithms of the segmentation

methods used in this study, which reduced computational costs. For the image segmentation

methods using only the supervised classification algorithms, typical lesion pixels and typical

health pixels are usually chosen from a large number of disease images to construct the train-

ing set. Based on this training set, a supervised classification model with general applicability is

built for the lesion segmentation of all the disease images. There may be a certain degree of var-

iation in the color of the lesion regions and the healthy regions of disease images due to the dif-

ferent causal agents and the different stages of disease development. This may result in

difficulties in disease image recognition [45]. In the methods used in this study, a targeted

training set containing typical lesion pixels and typical healthy pixels was constructed based on

each sub-image, and the supervised classification model based on this training set was more

suitable for lesion segmentation of this sub-image. However, these segmentation methods are

only suitable for lesion segmentation of disease images in which theH component values of

the lesion regions are less than theH component values of the healthy regions in HSV color

space. Since there are many alfalfa leaf diseases with great differences in color between the

lesions of different diseases, it is necessary to develop a lesion image segmentation method

with a wider range of application in future studies.

In this study, a total of 129 texture, color and shape features were extracted for disease

image recognition. Satisfactory recognition results were obtained using the disease recognition

models built after feature selection, indicating that the features extracted from the lesion

images could be effectively used to recognize and identify the four alfalfa leaf diseases. How-

ever, the 129 extracted features are commonly used in the field of image recognition and

greatly differ from disease features used by plant disease experts during disease identification

via naked-eye observation, resulting in a poor interpretation of the disease recognition models

based on these extracted features. In future studies, attempts could be made to construct lesion

image features suitable for certain plant diseases, according to the experience of plant diseases

experts, in combination with image processing techniques.

In this study, the best recognition effects were observed in the SVM model based on the top

45 features in the importance ranking obtained using the ReliefF method. The recognition

accuracy of the testing set was highest among all the models built in this study and was very

close to the recognition accuracy of the training set, which indicated that this model not only

could be used to obtain satisfactory recognition results but also had strong generalization abil-

ity. When the ReliefF method was used to conduct feature selection, the possible correlation

between the features was not considered. However, the existence of the correlation could lead

to the redundancy of features and increase the complexity of the disease recognition models.

In further studies, the ReliefF method could be combined with the feature transformation

methods such as PCA and independent component analysis to remove the correlation between

Table 8. Recognition results of four alfalfa leaf diseases using optimal semi-supervised models with various ratios of labeled to unlabeled

samples.

Model The ratio of labeled samples

to unlabeled samples

The number of Principal

components

Cumulative

contribution rate (%)

Recognition accuracy of

training set (%)

Recognition accuracy of

testing set (%)

Model

10

2:1 9 92.22 82.82 82.76

Model

11

1:1 10 93.45 80.36 80.58

Model

12

1:2 10 93.45 79.18 80.58

doi:10.1371/journal.pone.0168274.t008
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the features, reduce the dimension of features and decrease the complexity of the disease rec-

ognition models.

Semi-supervised learning is a technique to conduct training and classification using a small

number of labeled samples and a large number of unlabeled samples. In the field of image rec-

ognition, the cost of obtaining image samples is very low in some cases, but the cost of adding

class labels to samples is very high. In this case, a semi-supervised learning method can be used

to build an image recognition model to obtain satisfactory recognition results and reduce the

cost of modeling. In research on plant disease image recognition, determining the true catego-

ries of diseases requires specialized agricultural technical personnel to conduct naked-eye

observations, microscopic observation of morphological characteristics of causal agents, or

pathogen detection using molecular biology techniques [7]. Thus, a large amount of man-

power and material resources are usually required. Therefore, attempts were made to use

semi-supervised learning methods to build image recognition models of alfalfa leaf diseases.

The results showed that the recognition accuracies of the training set and the testing set were

all approximately 80% for the optimal semi-supervised model when the proportion of the

labeled samples in the training set was only 33.33% (i.e., the ratio of the labeled and unlabeled

samples was 1:2). This indicated that it was feasible to build an image recognition model of

alfalfa leaf diseases based on semi-supervised learning.

The image recognition of only four alfalfa leaf diseases was investigated in this study. There-

fore, it is necessary to build a standard and comprehensive lesion image database to lay the

foundation for the application of the automatic disease image recognition technology. In addi-

tion, the complex background of plant disease images poses great challenges for image seg-

mentation and image recognition [45]. The images of alfalfa leaf diseases used in this study

were taken on a white background in the laboratory. Further studies are needed to determine

whether the image recognition methods used in this study are suitable for the automatic iden-

tification and diagnosis of alfalfa leaf diseases in nature.

Presently, the use of smart phones to take pictures and process data has become very power-

ful. Smart phone-based plant disease image recognition systems have been reported [46–49].

A mobile application could be developed using the optimal image recognition model of alfalfa

leaf diseases built in this study to realize functions such as disease image acquisition, disease

diagnosis and disease information sharing based on smart phone platforms. Such an applica-

tion could facilitate disease management.

Generally, the diagnosis and identification of alfalfa leaf diseases are performed by agricul-

tural experts or agricultural technicians mainly using the conventional diagnostic methods

including naked-eye observations of disease symptoms and microscopic observations of mor-

phological characteristics of causal agents. The accuracy and efficiency mainly depend on the

experience of experts or technicians. It is subjective and time-consuming. When using PCR

techniques to detect the infection of a specific alfalfa leaf disease, professional instruments,

reagents and materials are required, and professional personnel are also required to perform

operations [7, 50]. In addition, it will take some time to obtain detection results [7, 50]. With

increasingly widespread applications of portable cameras or mobile phones with picture-tak-

ing features, it is easier to obtain camera equipment than PCR instruments. After image acqui-

sition, it is only needed to input the image into a computer with a disease image recognition

system, and then the results of disease identification can be achieved. This process does not

require professional personnel or any chemical reagents. It is faster than PCR techniques to

achieve identification results. Especially, when the computer image recognition system based

on Internet or App (mobile application) based on smart phone is developed, it will be more

convenient for image recognition of alfalfa leaf diseases. However, PCR techniques can play an

important role in disease detection in the early stage of diseases, especially in detection of
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latently infected leaves without symptom appearance [50]. The identification and recognition

of infected alfalfa leaves in the early stage of diseases using image recognition technology still

need more investigations in future studies. Moreover, the method for identification of alfalfa

leaf diseases in this study was developed based on the images of four types of alfalfa leaf dis-

eases, it is necessary to conduct further research on evaluating this method with other leaf dis-

orders to evaluate the risk of false positive.

Conclusions

In this study, lesion image segmentation using the methods integrating with clustering algo-

rithms and supervised classification algorithms, feature extraction of lesion images, feature

normalization and feature selection were conducted. The disease recognition models were

built by using pattern recognition methods. The satisfactory recognition results for four alfalfa

leaf diseases were obtained. A feasible solution was provided for diagnosis and identification

of alfalfa leaf diseases.

Among the twelve lesion segmentation methods integrating with clustering algorithms and

supervised classification algorithms, the segmentation effects were best when the segmentation

method integrating with the K_median clustering algorithm (from the clustering algorithms)

and the linear discriminant analysis (from the supervised classification algorithms) was used

based on an aggregated image dataset comprising 899 sub-images of four types of alfalfa leaf

diseases. This segmentation method was thus used to carry out the segmentation of sub-images

of four types of alfalfa leaf diseases for further feature extraction, feature normalization, feature

selection and modeling.

A total of 129 texture, color and shape features were extracted from the 1,651 typical lesion

images, each of which contained only one lesion. Attempts were made to conduct feature

selection using three methods including the ReliefF method, the 1R method and the CFS

method. The disease recognition models were built using three supervised learning methods,

including random forest, SVM and KNN. The results demonstrated that the recognition

effects were best in the SVM model based on the top 45 features in the importance ranking for

recognition when the ReliefF method was used to conduct feature selection. For this model,

the recognition accuracies of the training set and the testing set were 97.64% and 94.74%,

respectively. In addition, after the 45 features used for building the model were transformed

using PCA, the disease recognition semi-supervised models were constructed using a self-

training algorithm based on Naive Bayes classifiers. For the optimal semi-supervised models

built with ratios of labeled to unlabeled samples equal to 2:1, 1:1 and 1:2, the recognition accu-

racies of the training set and the testing set were all approximately 80%. The results indicated

that it was feasible to identify and recognize four types of alfalfa leaf diseases using the solution

provided in this study.
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