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Abstract

Stochastic link capacity degradations are common phenomena in transport network which

can cause travel time variations and further can affect travelers’ daily route choice behav-

iors. This paper formulates a deterministic dynamic model, to capture the day-to-day (DTD)

flow evolution process in the presence of degraded link capacity degradations. The aggre-

gated network flow dynamics are driven by travelers’ study of uncertain travel time and their

choice of risky routes. This paper applies the exponential-smoothing filter to describe travel-

ers’ study of travel time variations, and meanwhile formulates risk attitude parameter updat-

ing equation to reflect travelers’ endogenous risk attitude evolution schema. In addition, this

paper conducts theoretical analyses to investigate several significant mathematical charac-

teristics implied in the proposed DTD model, including fixed point existence, uniqueness,

stability and irreversibility. Numerical experiments are used to demonstrate the effective-

ness of the DTD model and verify some important dynamic system properties.

1. Introduction

Day-to-day (DTD) traffic assignment model seems to be the most widely used approach in

existing literatures to describe traveler’s individual route switching behavior, and the corre-

sponding network traffic dynamic evolution at an aggregate level. Since the early work of

Horowitz [1], the field has grown to potentially encompass a rather wide range of approaches,

including deterministic processes and stochastic processes ([2–6]), and in the deterministic

framework, these proposed processes can be divided into more detailed categories according

to different equilibrium (or convergent) points, such as user equilibrium ([7–22]), stochastic

user equilibrium ([1],[22–28]), partial user equilibrium [29] and bounded rational user equi-

librium ([30,31]). Readers may refer to Cantarella [22] and Watling and [32] for both synthesis

and development of the dynamic evolution process of traffic flows.

In existing DTD models, this adjustment process is usually demonstrated by two related

traveler behavior mechanisms, including the experience learning mechanism and the route

choice mechanism. In degradable transport network, travelers always suffer from within-day

travel time uncertainties because of the intra-day link capacity degradations. In addition,
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travelers also experience day-to-day travel time variations caused by the inter-day fluctuation

of traffic flow. The within-day and the day-to-day travel time variations together result in the

route uncertainty or unreliability. In the context of route choice, the effect of route reliability is

largely determined by traveler’s risk attitude. Therefore, for a realistic representation of the

DTD traffic dynamics, it is essential to contain the integration of travel time uncertainty in the

experience learning mechanism, and meanwhile account for travelers’ risk-taking behaviors in

the route choice mechanism.

The DTD models previously introduced have addressed the integration of past experiences

or other information sources to estimate the perceived mean travel time. However, they do not

address the updating of travel time uncertainty, nor consider travelers’ risk-taking behaviors

in the route choice processes. Jha et al. [33], Chen and Mahmassani [34] applied Bayesian

learning model to complete the integration of travel time and its associated uncertainty.

According to the learning rule governed by Bayesian theorem, these two studies only address

the updating of the inherent within-day travel time uncertainty, but do not address the updat-

ing of day-to-day travel time uncertainty which is caused by the inter-day fluctuation of traffic

flow. In addition, they have not considered travelers’ risk-taking behaviors in the context of

route choice.

Risk attitudes can be captured by several theories such as prospect theory (PT) [35] or its

cumulative representation (CPT) [36] and expected utility theory (EUT). In EUT, travelers are

usually supposed to have exogenous risk attitudes which are reflected in the shape (concavity

or convexity) of the utility function. This may be unreasonable because travelers’ past travel

experiences are likely to influence their risk attitudes. In contrast with EUT, PT provides an

implicit way to handle with the risk attitude evolution issue by updating the locations of refer-

ence points ([37–39]). Recently, some scholars (e.g. [40–42]) applied PT or CPT to examine

the role of risk attitude in travelers’ DTD dynamic behaviors. Their models are potential to

provide well-supported descriptive paradigm for decision making under uncertainty, but at

the same time, these models adopt a quite large number of behavioral parameters which may

lead to the difficulty of model calibration and validation.

The main objective of this paper is to describe the aggregate network flow DTD dynamics

by considering both travelers’ study of uncertain travel time and their choice of risky routes.

This work is mainly inspired by the objective reality that uncertainties often exist in traffic sys-

tems because of the inter-day traffic flow variations and the intra-day road capacity degrada-

tions. With the presented model, this paper also makes some efforts to examine the effects of

travel time uncertainties and travelers’ risk attitudes on traffic flow evolution and other

dynamic system properties, particularly convergence, stability and irreversibility.

In the presented DTD model, the notion of variation range is adopted to indicate travel

time uncertainty information. Mathematically, this notion is expressed as the difference

between the longest and the shortest travel time values. In contrast with the traditional travel

time variance (or its distribution), variation range seems to be a more reasonable indicator

reflecting travel time uncertainty because in the real world travelers appear more sensitive to

the extreme travel time value (e.g. the longest or shortest one) than to the specific travel time

distribution. In addition, in the proposed model, an endogenous risk attitude evolution

schema is given to reflect that travelers constantly adjust their risk attitudes through learning

their past travel experiences.

This study advances previous work by making the following specific contributions. First, a

simple but effective indicator about travel time, namely variation range, is used to indicate its

uncertainty information. Second, the within-day and the day-to-day travel time variation

ranges, which are respectively caused by the intra-day road capacity degradations and the

inter-day traffic flow fluctuation, are both considered to reflect traveler’s sense of route
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unreliability or risk. Third, an endogenous risk attitude evolution schema is adopted to reflect

the change of traveler’s risk attitude in the context of day-to-day traffic evolution. Finally, the

above ideas are integrated into a DTD model to examine their effects on the whole day-to-day

behavior of traffic flows.

In the next section, a new DTD model, which contains both travelers’ study of uncertain

travel time and their choices towards risky travel route, is proposed to describe the realistic

dynamic traffic flow evolution process. In Section 3, some theoretical analyses are conducted

to investigate the mathematical properties implied in the proposed DTD model. Section 4

applies the proposed model to a test network to demonstrate the effectiveness of the model

and verify some important dynamic system properties such as convergence, stability and irre-

versibility. Section 5 concludes the paper.

2. Description of the DTD Model

2.1 Degradable Traffic Network and Relevant Notions Definition

A traffic network is a directed graph (N,L) where N represents the node set and L corresponds

to the link or road set. The notions that will be used in this paper are listed in Table 1.

2.2 Travelers’ Perceptions of Route Travel Time and Its Variation

Ranges

Following the previous works (e.g. [1,4,22,23,26–28]), travelers’ perceptions of mean route

travel time are built up through an exponential-smoothing style of learning process, which

involves a weighted combination of the perceived and actual mean time on the previous days.

This learning process can be represented by the following recursion equation:

~Stþ1

r ¼ a � _St
r þ ð1 � aÞ � ~St

r ¼ a �
P

l2LLlr � clðx
t
l ; _ut

lÞ þ ð1 � aÞ � ~St
r; 8r 2 Rod; ð1Þ

where α(0� α� 1) denotes a constant parameter (independent of t), which reflects travelers’

preference between actual and expected route travel time.

Actually, the exponential-smoothing filter and the preference parameter α together reflect

travelers’ learning mechanisms and memory characteristics about the past experiences, they

may apply not only to the perceptions of mean route travel time, but also to the perceptions of

travel time uncertainties. Therefore, this study uses the same exponential-smoothing filter and

preference parameter to establish the updating equation of route travel time variation ranges

in the following content.

For the day-to-day research framework as considered in our paper, the within-day flow

dynamics of the traffic system is usually neglected in existing literatures. The day-to-day

dynamic model only considers the flow evolution process along the large-scale time scale ‘day’.

The within-day realization process, on the other hand, mainly address the real-time dynamic

traffic flow as the realization of the travellers’ route choices on a particular day, which, in turn,

results in updated information feedback to the day-to-day process. Until now, most works

investigate these two dynamical processes independently, and some attempts (e.g. [43–47]) are

still on the road to combine these two problems into a unified doubly dynamic traffic assign-

ment model.

In this paper, we adopt the within-day flow static assumption to eliminate the effects of

within-day flow dynamics on travel time variations, and focus only on the day-to-day research

framework. The within-day static assumption allows a mathematical formalization that is eas-

ier to manage in theoretical terms. From this point of view, the only cause leading to within-

day link travel time variations ðdct
lÞ is the intra-day link capacity fluctuations. Mathematically,
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dct
l can be expressed as the difference between clðxt

l ; u
t
lÞ and clðxt

l ; u
t
lÞ:

dct
l ¼ clðx

t
l ; u

t
lÞ � clðx

t
l ; u

t
lÞ; 8l 2 L: ð2Þ

The actual variation range of within-day route travel time, namely dSt
r , can then be obtained

immediately according to the link-route topological relation:

dSt
r ¼ St

r � St
r ¼

X

l
Llr � clðxt

l ; u
t
lÞ �

X

l
Llr � clðxt

l ; u
t
lÞ

¼
P

lLlr � ðclðxt
l ; u

t
lÞ � clðxt

l ; u
t
lÞÞ ¼

P
lLlr � dct

l ; 8r 2 Rod:
ð3Þ

Table 1. Notions and the corresponding definitions.

Notion Definition

l 2 L link index;

O origin set, o 2O, O� N;

D destination set, d 2 D, D� N;

Rod route set between OD pair (o,d);

r 2 Rod route index;

qod travel demand on OD pair (o,d);

xtl flow on link l on day t;

f tr flow on route r on day t;

utl stochastic traffic capacity of link l on day t, its value varies from the lower limit utl to the upper limit

utl , u
t
l 2 ½u

t
l ;u

t
l �;

_utl mean capacity of link l on day t;

clðx
t
l ; u

t
l Þ stochastic travel time of link l on day t, as a function of flow xtl and stochastic capacity utl ;

clðx
t
l ; u

t
l Þ lower limit of within-day link travel time, as a function of flow xtl and maximum capacity utl ;

clðx
t
l ; u

t
l Þ upper limit of within-day link travel time, as a function of flow xtl and minimum capacity utl ;

clðx
t
l ; _utl Þ actual mean travel time of link l on day t, as a function of flow xtl and mean capacity _utl ;

dctl actual within-day variation range of link travel time;

Λlr link-route index; if route r traverses link l, Λlr = 1, otherwise, Λlr = 0;

Str stochastic travel time of route r on day t, Str ¼
P

lLlr � clðx
t
l ;u

t
l Þ;

St
r

lower limit of within-day route travel time, St
r
¼
P

lLlr � clðx
t
l ; u

t
l Þ;

Str upper limit of within-day route travel time, Str ¼
P

lLlr � clðx
t
l ;u

t
l Þ;

_S_t
r actual mean travel time of route r on day t,

_S_t
r ¼

P
lLlr � clðx

t
l ; _utl Þ;

~S~t
r

perceived mean travel time of route r on day t;

dStr actual within-day variation range of route travel time, dStr ¼ S
t
r � S

t

r
;

d
~S~t
r

perceived within-day variation range of route travel time;

DStr actual day-to-day variation range of route travel time;

D
~S~t
r

perceived day-to-day variation range of route travel time;

rtod risk attitude parameter for traveling between OD pair (o,d) on day t, its value range is set as

[−ρmax,ρmax], ρmax > 0;

htr systematic disutility value associated to route r on day t;

Ptrod the probability travelers choose path r 2 Rod on day t.

Some other parameters used in the proposed DTD model will be defined when first introduced.

doi:10.1371/journal.pone.0168241.t001
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Then the perceived variation range ðd~Stþ1
r Þ can be achieved by applying the exponential-

smoothing updating process:

d~Stþ1

r ¼ a � dSt
r þ ð1 � aÞ � d~St

r ¼ a �
P

lLlr � dct
l þ ð1 � aÞ � d~St

r; 8r 2 Rod: ð4Þ

Besides of the within-day variation dSt
r , travelers will also perceive day-to-day travel time

fluctuation ðDSt
rÞ from their past experiences. Mathematically, DSt

r can be represented as the

difference of the mean route travel time on two consecutive days:

DSt
r ¼ j

_St
r �

_St� 1

r j ¼ j
P

lLlr � clðx
t
l ; _ut

lÞ �
P

lLlr � clðx
t� 1

l ; _ut� 1

l Þj; 8r 2 Rod: ð5Þ

In Eq 5, the absolute value sign |�| is applied to guarantee the non-negativity of DSt
r. Note

that the effect of intra-day link capacity fluctuation is not reflected in DSt
r because it has been

considered by the within-day variation dSt
r.

Then the perceived day-to-day variation range can be updated still through the exponen-

tial-smoothing type recursion equation:

D~Stþ1

r ¼ a � j
P

lLlr � clðx
t
l ; _ut

lÞ �
P

lLlr � clðx
t� 1

l ; _ut� 1

l Þj þ ð1 � aÞ � D~St
r; 8r 2 Rod: ð6Þ

d~Stþ1
r and D~Stþ1

r together present the integrated description of travel time uncertainties. In

this paper, the integrated travel time variation range is defined as the sum of d~Stþ1
r and D~Stþ1

r ,

its updating equation can be easily achieved by combining Eqs 4 and 6 together:

d~Stþ1

r þ D~Stþ1

r ¼ a � ðdSt
r þ DSt

rÞ þ ð1 � aÞ � ðd~St
r þ D~St

rÞ

¼ a � ð
P

lLlr � dct
l þ j

P
lLlr � clðx

t
l ; _ut

lÞ �
P

lLlr � clðx
t� 1

l ; _ut� 1

l ÞjÞ þ ð1 � aÞ � ðd~St
r

þ D~St
rÞ; 8r 2Rod: ð7Þ

2.3 Travelers’ Perception of Systematic Disutility Associated to Every

Route

To model travelers’ route choice and adjustment, the key is to calculate the systematic disutility

of every alternative route. Traditionally, the systematic disutility is usually defined as an affine

transformation of the mean route travel time without consideration of travel time variations.

In this section, the traditional disutility representation is modified to reflect the effect of travel

time uncertainty. This modification is derived under some mild assumptions as stated below.

Assumption I: All the possible values of the perceived route travel time are distributed

continuously in an interval whose length is defined by the integrated variation range ðd~Stþ1
r þ

D~Stþ1
r Þ; the perceived mean route travel time ð~Stþ1

r Þ is located at the middle point of this inter-

val, and the other route travel time are distributed symmetrically on the left and right sides of

~Stþ1
r .

Assumption II: If the integrated variation range is zero, then the systematic disutility ðhtþ1
r Þ

is equal to the perceived mean route travel time ð~Stþ1
r Þ.

For ease of description, we define η(x) and μ(x), respectively, to represent the disutility

function and the probability density function (PDF) of the perceived route travel time x.

Assumption reveals’ the following conditions:

x 2 ½~Stþ1

r � 0:5ðd~Stþ1

r þ D~Stþ1

r Þ;
~Stþ1

r þ 0:5ðd~Stþ1

r þ D~Stþ1

r Þ�;

mðxÞ ¼ mð2~Stþ1
r � xÞ and @mðxÞ=@x ¼ � @mð2~Stþ1

r � xÞ=@x (the symmetrical distribution).

In addition, according to the nature of PDF, if d~Stþ1
r þ D~Stþ1

r ¼ 0, then htþ1
r ¼ ~Stþ1

r , which

actually presents an anchor point of the applied disutility function, namely Zð~Stþ1
r Þ ¼

~Stþ1
r . On
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the other hand, if d~Stþ1
r þ D~Stþ1

r > 0, the systematic disutility htþ1
r can be represented as fol-

lows:

htþ1
r ¼

Z ~Stþ1
r þ0:5ðd~Stþ1

r þD~Stþ1
r Þ

~Stþ1
r � 0:5ðd~Stþ1

r þD~Stþ1
r Þ

ZðxÞ � mðxÞdx

¼

Z ~Stþ1
r

~Stþ1
r � 0:5ðd~Stþ1

r þD~Stþ1
r Þ

ZðxÞ � mðxÞdxþ
Z ~Stþ1

r þ0:5ðd~Stþ1
r þD~Stþ1

r Þ

~Stþ1
r

ZðxÞ � mðxÞdx

¼

Z ~Stþ1
r

~Stþ1
r � 0:5ðd~Stþ1

r þD~Stþ1
r Þ

ZðxÞ � mðxÞdx �
Z ~Stþ1

r � 0:5ðd~Stþ1
r þD~Stþ1

r Þ

~Stþ1
r

Zð2~Stþ1
r � xÞ � mð2~Stþ1

r � xÞdx

¼

Z ~Stþ1
r

~Stþ1
r � 0:5ðd~Stþ1

r þD~Stþ1
r Þ

ðZðxÞ þ Zð2~Stþ1
r � xÞÞ � mðxÞdx; 8r 2 Rod:

ð8Þ

Although the value of htþ1
r cannot be achieved from Eq 8 since the specific formulations of η

(x) and μ(x) are both not given in this study, however, some fundamental properties implied

in htþ1
r can still be analyzed by considering the conditions given by Assumptions I and II as

well as travelers’ risk attitudes. These properties are essential to establish simplified expression

and then to calculate approximate value of the systematic disutility htþ1
r .

Consider the first situation in which travelers are assumed to be risk averse. According to

EUT, risk aversion is associated with a convex disutility function. The convexity implies the

following inequality:

ZðxÞ þ Zð2~Stþ1

r � xÞ > 2~Stþ1

r ; ðx 6¼ ~Stþ1

r Þ:

With this inequality, the systematic disutility htþ1
r given by Eq 8 can be compared with the

perceived mean route travel time ð~Stþ1
r Þ as follows:

htþ1

r ¼
R ~Stþ1

r
~Stþ1

r � 0:5ðd~Stþ1
r þD~Stþ1

r Þ
ðZðxÞ þ Zð2~Stþ1

r � xÞÞ � mðxÞdx > ~Stþ1

r ; 8r 2 Rod: ð9Þ

In addition, when x 2 ð~Stþ1
r � 0:5ðd~Stþ1

r þ D~Stþ1
r Þ;

~Stþ1
r Þ, the convexity of the disutility func-

tion also implies the increase velocity of Zð2~Stþ1
r � xÞ towards its right side is larger than the

decrease velocity of η(x) towards the left side.This means when the integrated variation range

ðd~Stþ1
r þ D~Stþ1

r Þ increases, the systematic disutility htþ1
r perceived by travelers will increase

simultaneously. Through the above analysis, we can find the first property implied in the sys-

tematic disutility which is associated with risk aversion. This property is stated as below.

Property I: Under the conditions of Assumptions I and II, if travelers are assumed to be

risk averse, then their perceived systematic disutility has a larger value than the perceived

mean route travel time, this disutility is positively associated with their perceived travel time

variation ranges.

Besides of risk aversion, risk proneness and risk neutrality can also be reflected in EUT,

which correspond respectively to concave and linear disutility functions. In both situations,

the previous analysis can still be carried out to study the other properties of the systematic dis-

utility. These properties are summarized as below.

Property II: Under the conditions of Assumptions I and II, if travelers are risk prone, then

their perceived systematic disutility has a smaller value than the perceived mean route travel

time, which is negatively associated with the perceived travel time variation ranges.
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Property III: Under the conditions of Assumptions I and II, if travelers are risk neutral,

then their perceived systematic disutility is equal to the perceived mean route travel time,

regardless of their perceived travel time variation ranges.

After acquiring Properties I~III, it is time now to establish a simplified expression of htþ1
r

reflecting travelers’ perception of route systematic disutility. In this study, htþ1
r is formulated as

the weighted sum of the perceived mean route travel time and its associated variation ranges:

htþ1

r ¼ ~Stþ1

r þ rtþ1

od � ðd
~Stþ1

r þ D~Stþ1

r Þ; 8r 2 Rod; ð10Þ

Where rtþ1
od is defined as the risk attitude parameter, its value range is set as [−ρmax,ρmax].

According to Properties I~III, a positive value of rtþ1
od indicates risk aversion, while risk prone-

ness is associated with a negative rtþ1
od , and when travelers are risk neutral, rtþ1

od is equal to zero.

In reality, different travelers always have different risk attitudes, this suggests the risk atti-

tude parameter should be defined at the individual level. However, defining specific risk atti-

tude for every traveler is a tedious work, which may greatly hinder the execution efficiency of

the proposed DTD model. The focus of this paper is not to study traveler’s individual behavior,

but to investigate the network traffic dynamic evolution at an aggregate level. Therefore, the

unified parameter rtþ1
od in Eq 10 can be treated as an aggregated form of the realistic travelers’

risk attitudes.

2.4 The Evolution of Travelers’ Risk Attitudes

Most of the existing studies concerning risk-taking behaviors focus only on static decision sce-

nario in which travelers’ risk attitudes are exogenous and changeless, the suitability extension

to consider endogenous risk attitude evolution in the dynamical or time-varying environment

is quite lacking. Barkan and Busemeyer [37] examined decision makers’ risk attitude change in

a sequential two-gamble scenario, and found risk prone after an anticipated loss while risk

aversion after an anticipated gain, which could be explained by the reference point changes in

PT or CPT.

In the DTD traffic dynamics, travelers can get their travel time saving (namely travel gain),

if the actual travel time cost they experienced on the current day is shorter than the perceived

travel time (reference point) they estimated on the previous day. As a result, these travelers will

show risk attitude change trend towards risk aversion. Conversely, travelers learn loss if the

experienced travel time is longer than the perceived one, and in this situation, travelers will

behave attitude change towards risk proneness. According to this rule, an updating equation

about the risk attitude parameter ðrt
odÞ is proposed to reflect the endogenous risk attitude evo-

lution schema:

rtþ1

od ¼
2rmax � ðrmax þ rt

odÞ

rmax þ rt
od þ ðrmax � rt

odÞ � expfs � z
t
odg
� rmax; ð11Þ

where z
t
od is defined to represent travel time saving or losing perceived by travelers on day t, its

value is calculated as ð
P

r2Rod
_St

r � f
t

r �
P

r2Rod
~St

r � f
t� 1

r Þ=qod. The constant parameter σ(σ� 0) in

Eq 11 is defined to represent travelers’ sensitivity to their travel time saving or losing. The

updating process of rtþ1
od defined by Eq 11 is depicted in Fig 1.

In Fig 1, all possible values of rtþ1
od are located in the range of −ρmax to ρmax. When z

t
od < 0

(in the domain of gain), traveler’s risk attitude act out evolution trend towards risk aversion,

which results in the increase of the risk attitude parameter, namely rtþ1
od > rt

od. On the con-

trary, when z
t
od > 0 (in the domain of loss), travelers behave attitude change towards risk

proneness, which leads to the risk attitude parameter decrease ðrtþ1
od < rt

odÞ.
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2.5 The Evolution of Link Traffic Flow

In reality, because of traffic congestion and perception deviation, some random residuals are

introduced into the systematic disutility htþ1
r to influence travelers’ route choices. If the ran-

dom residuals are assumed to be independent over time scales, OD pairs and routes, and fur-

thermore, if they are identically distributed as Gumbel random variables with zero mean, then

travelers’ route choice probability can be given by a Logit model:

Ptþ1

rod ¼
expf� y � htþ1

r gP
k2Rod

expf� y � htþ1
k g

; 8r 2 Rod: ð12Þ

The positive dispersion parameter θ in Eq 12 reflects the degree of familiarity with condi-

tions by travelers, a higher θ-value means a smaller perception variation.

With travelers’ route choice probability, the evolution of link traffic flow can then be formu-

lated by considering inertial travelers:

xtþ1

l ¼ b �
P

o2O

P
d2D

P
r2Rod

Llr � qod �
expf� y � htþ1

r gP
k2Rod

expf� y � htþ1
k g
þ 1 � bð Þ � xt

l ; 8l 2 L: ð13Þ

The inertial parameter β(0< β< 1) indicates the proportion of travelers reconsidering the

previous choice.

3. Theoretical Analysis of the Proposed DTD Model

This section provides some theoretical analysis to investigate several important properties

implied in the proposed dynamic system. To facilitate the analysis, the DTD model presented

Fig 1. Updatings of the risk attitude parameter ρtþ1
od with different values of parameter σ. A larger σ-

value corresponds to a larger change rate of rtod.

doi:10.1371/journal.pone.0168241.g001
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in Section 2 is reformulated as below.

~Stþ1
r ¼ a �

P
l2LLlr � clðxt

l ; _ut
lÞ þ ð1 � aÞ � ~St

r; 8r 2 Rod;

d~Stþ1
r ¼ a �

P
lLlr � ðclðxt

l ; u
t
lÞ � clðxt

l ; u
t
lÞÞ þ ð1 � aÞ � d~St

r; 8r 2 Rod;

D~Stþ1
r ¼ a � j

P
lLlr � clðxt

l ; _ut
lÞ �

P
lLlr � clðxt� 1

l ; _ut� 1
l Þj þ ð1 � aÞ � D~St

r; 8r 2 Rod;

rtþ1
od ¼

2rmax � ðrmax þ rt
odÞ

rmax þ rt
od þ ðrmax � rt

odÞ � expfs � z
t
odg
� rmax;

htþ1
r ¼ ~Stþ1

r þ rtþ1
od � ðd

~Stþ1
r þ D~Stþ1

r Þ; 8r 2 Rod;

xtþ1
l ¼ b �

P
o2O

P
d2D

P
r2Rod

Llr � qod �
expf� y � htþ1

r gP
k2Rod

expf� y � htþ1
k g
þ ð1 � bÞ � xt

l ; 8l 2 L:

)

ð14Þ

3.1 Fixed Point (FP) of the DTD Evolution Process and Equilibrium State

FP of the DTD dynamic process (14) is obtained from conditions ~Stþ1
r ¼ ~St

r ¼
~S�r ,

d~Stþ1
r ¼ d~St

r ¼ d~S�r , D~Stþ1
r ¼ D~St

r ¼ D~S�r , rtþ1
od ¼ rt

od ¼ r�od and xtþ1
l ¼ xt

l ¼ x�l , thus:

~S�r ¼
P

lLlr � clðx
�

l ; _ut
lÞ; 8r 2 Rod; ð15Þ

~S�r ¼
P

lLlr � ðclðx
�

l ; u
t
lÞ � clðx

�

l ; u
t
lÞÞ; 8r 2 Rod; ð16Þ

D~S�r ¼ j
P

lLlr � clðx
�

l ; _ut
lÞ �

P
lLlr � clðx

�

l ; _ut� 1

l Þj; 8r 2 Rod; ð17Þ

h�r ¼ ~S�r þ r�od � ðd
~S�r þ D~S�r Þ; 8r 2 Rod; ð18Þ

x�l ¼
P

o2O

P
d2D

P
r2Rod

Llr � qod �
expf� y � h�rgP

k2Rod
expf� y � h�kg

; 8l 2 L: ð19Þ

Obviously, FP described by Eq 19 is equivalent to the well-known SUE state, which is exten-

sively reviewed in the literatures. It is worth noting that, fixed-point attractor of the proposed

dynamic process not only depend upon the route systematic disutility h�r but also upon the

route choice behavior and the various kind of parameters (including α, β, σ and θ) adopted in

this model.

The implicit relation between model parameters α, β and fixed-point attractor of the pro-

posed dynamic process, in fact, is determined by the risk attitude evolution schema ðrtþ1
od Þ

defined by Eq 11. This schema indicates that the endogenous risk attitude is influenced by

travelers’ perceived travel time saving z
t
od, which is further influenced by the model parameters

α and β since the value of z
t
od is calculated as ð

P
r2Rod

_St
r � f

t
r �

P
r2Rod

~St
r � f

t� 1
r Þ=qod.

Furthermore, the evolution of rt
od defined by Eq 11 is an irreversible process (see Section

3.4) which means the latest risk attitude parameter rtþ1
od will change under any small fluctuation

of network traffic flow state. Under this situation, the stable risk attitude r�od in Eq 18 is not

fixed, it is determined by the past system evolution process and therefore is influenced by

parameters α and β. The risk attitude evolution schema (Eq 11) also implies the stable risk atti-

tude r�od is influenced by parameter σ. In addition, the Logit model defines the effect of param-

eter θ on the ultimate route choice results. As a consequence, fixed-point attractor of the

proposed dynamic process is influenced together by the model parameters α, β, σ and θ.
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3.2 FP Existence

Sufficient conditions for fixed-point existence can be easily derived through Brouwer’s fixed

point theorem, requiring continuity of all involved functions. Note that fixed-point condition

presented by Eq 19 actually defines a map of x�l to itself. Then fixed-point existence just needs

the self-map about x�l to be continuous. The Logit model (12) ensures traveler’s route choice

probability is continuous with respect to route systematic disutility. In addition, if the separa-

ble link travel time function ct
lðx

t
l ; u

t
lÞ adopted in the system is assumed to be continuous, then

the route systematic disutility is also continuous with respect to the link flow. This contributes

to the continuous self-map of x�l and therefore the FP existence.

3.3 FP Uniqueness

FP uniqueness is an attractive character of traffic network model, it has been extensively stud-

ied in existing literatures ([22,27,48]). For the dynamic evolution process as considered in this

paper, this issue can be analyzed by investigating the monotonicity of the self-map about x�l . In

DTD system (14), the route choice probability is always non-increasing with respect to the

adopted route systematic disutility h�r . However, the value of h�r usually cannot be assured to be

monotone strictly increasing with respect to the link traffic flow x�l . As a result, the FP unique-

ness cannot be guaranteed. In the context of DTD dynamics, the un-uniqueness of FP or equi-

librium state will give rise to irreversibility issue as discussed below.

3.4 FP Stability and Irreversibility

Stability is an important property of a dynamical model for its applicability in practice

([1,4,7,10,22,23,25,31,48–52]). A FP is (asymptotically) stable if from any (sufficiently close)

starting state the system state tends to the fixed-point as t tends to infinity. If the value of the

sensitivity parameter σ in Eq 11 is positive, then the risk attitude parameter rt
od is an unstable

attribute against the stability of the fixed-point in dynamic system (14). In other words, any

small fluctuation of network traffic flow state will cause the change of rt
od. Obviously, the evo-

lution of rt
od defined by Eq 11 is an irreversible process which means the latest risk attitude

parameter rtþ1
od will never return to the original value rt

od by removing the fluctuation. Under

this situation, the change of route systematic disutility is also irreversible and thus the fixed-

point of the dynamic system is not asymptotically stable.

On the other hand, consider the situation in which the sensitivity parameter σ is equal to

zero-value. Substituting σ = 0 into Eq 11 to get rtþ1
od ¼ rt

od ¼ � � � ¼ r0
od, this actually assumes

exogenous or constant risk attitudes for travelers. In this situation, the FP stability is also sig-

nificantly affected by the parameters (including α, β, σ and θ) adopted in DTD model (14). To

investigate FP stability of a deterministic, discrete-time dynamic model, a common method is

to conduct a spectral analysis about the Jacobian matrix of the transition process contained in

the underlying DTD evolution system. We here give a weaker stability condition by assigning

sufficiently small values for parameters α, β and θ(σ = 0).

A closely related concept to FP instability is its irreversibility. When a traffic network is dis-

turbed by some fluctuations, its flow pattern may deviate from the original FP and evolve to

another new equilibrium state. A FP or equilibrium state is said to be irreversible if it cannot

be restored by revoking the fluctuation. It should be pointed out that the existence of multiple

equilibria is necessary for modelling irreversibility. In the proposed DTD model (14), the irre-

versibility phenomenon or multiple equilibria is mainly caused by the irreversible evolution

process of the risk attitude parameter rt
od defined by Eq 11. In the existing literatures, non-sep-

arable link (or path) cost function or bounded rationality behavior model is applied to describe
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the irreversibility issue ([30,49]). This paper provides a new method to model this problem by

considering travelers’ risk-taking behaviors.

4. Numerical Examples on a Test Network

The proposed DTD model (14) is applied to a three-by-three grid network with nine nodes

and twelve links, whose topology is illustrated in the left side of Fig 2. In the numerical exam-

ple, the link travel time function is of the BPR type:

cl xt
l ; u

t
l

� �
¼ cfree

l � 1þ 0:15
xt

l

ut
l

� �4
" #

; l ¼ 1; 2; � � � 12:

The values of the free flow travel time cfree
l and the mean link capacity _ut

l are given in the

right side of Fig 2. In this example, the stochastic road capacity is assumed to keep a same fluc-

tuation range for every day, ut
l 2 ½0:8 _ut

l ; 1:2 _ut
l �, thus ut

l ¼ 0:8 _ut
l , ut

l ¼ 1:2 _ut
l .

One OD pair from node 1 to node 9 is considered in this network. Clearly, there are 6

routes connecting this OD pair. The daily traffic demand of this OD pair is assumed to be 500.

In all test scenarios, ρmax is set as 0.8.

4.1 The Effects of Parameters α, β, σ and θ on the Evolution System

With different combinations of parameters α, β, σ and θ, the DTD system (14) will exhibit dif-

ferent evolution processes about link (or route) flow patterns. Firstly, the DTD model is exe-

cuted repeatedly according to different values of α, β and θ, and the other parameters are kept

unchanged as: r0
19
¼ 0:2 (risk averse), σ = 0.9. For graph simplicity, only the flow on link 2 is

adopted to illustrate the evolution of the dynamic system, as shown in Fig 3.

Fig 3(A) indicates a larger α-value will contribute to a faster process for the dynamic system

to reach a steady state. It also demonstrates that under the condition of endogenous risk at-

titudes, the preference parameter α will significantly affect the fixed-point attractor of the evo-

lution process, this is because α can influence the past travel experiences and further affect

travelers’ perception of risks. In Fig 3(B), the inertial parameter β shows similar effect as the

parameter α. In addition, the comparison of Fig 3(A) and 3(B) shows that, α has greater impact

Fig 2. Illustration of the experiment network. The left part shows network topological structure, and the right part shows link parameters.

doi:10.1371/journal.pone.0168241.g002
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than β on the FP of the system. Fig 3(C) shows the dispersion parameter θ can also greatly

influence the ultimate steady state, and a smaller θ-value is corresponding to a faster evolution

process. In Fig 3(D), six groups of parameters α, β and θ are adopted to examine their com-

bined effects on the evolution system. The result reveals the larger values of α, β and smaller

value of θ together help to accelerate the convergence of the system, a smaller α or β or θ will

lead to a more smooth evolution process, while a combination of larger α, β and θ may cause

greater fluctuations.

Next, consider the situation that travelers have constant risk attitudes, this can be realized

by set σ = 0. In this case, the parameters α and β can only influence travelers’ past experiences

through affecting the evolution process of the dynamic system, but cannot affect travelers’ per-

ception of risks since the risk attitude parameter are assumed to be constant. As a result, these

two parameters will not affect the FP of the dynamic system. For the dispersion parameter θ, it

contributes directly to the randomness of travelers’ route choice behaviors, thus it has an

inherent influence on the FP no matter the risk attitude is constant or not. These analysis

results can be verified by conducting a similar numerical experiment. To avoid redundancy,

these numerical results are omitted here.

Fig 3. Evolution of the system with endogenous risk attitudes (σ = 0.9). Fig 3(a)~3(d) shows the influences of parameters α, β and θ on

both steady state and evolution process of the dynamic system.

doi:10.1371/journal.pone.0168241.g003
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4.2 The Effects of Travelers’ Risk-taking Behaviors on Fluctuation and

Evolution Convergence

Compared with the traditional DTD model, traveler’s risk-taking behavior is an additional

component considered by our dynamic system to influence the whole DTD network traffic

evolution process. In this subsection, a numerical experiment is designed to investigate the

effects of risky route choices on fluctuation and evolution convergence of the dynamic system.

The fluctuation function Y
t
¼
P

ljx
t
l � xt� 1

l j is defined to represent the aggregated link flow

variation between two successive days. Obviously, when network traffic flow reach a FP or

equilibrium state, Θt = 0.

Suppose all links on the network suffer 70% mean capacity reductions on day 60 and

recover to normal on day 81. Firstly, consider the situation that travelers’ risk attitudes are

changeless (σ = 0), the DTD model (14) is executed respectively according to different initial

risk attitude parameters. The other parameters are given as: α = β = θ = 0.3. The evolutions of

Θt for this situation are shown in Fig 4(A) and 4(B).

Whether the link capacities decrease (occur in day 60) or increase (occur in day 81), travel-

ers’ risk aversion route choice behaviors are found to cause some additional flow fluctuations.

Fig 4(A) indicates that a more sharp risk aversion attitude (namely a larger r0
19

) leads to some

greater fluctuations of the dynamic system. The observations achieved from risk aversion situ-

ation are significantly different from that appearing in risk proneness case, as shown in Fig 4

(B). It can be found that in a reasonable bound, travelers’ risk proneness route choices can con-

tribute to a smoother DTD evolution process. Beyond this bound, however, some excessive

risk proneness route choices made by travelers (e.g. r0
19
¼ � 0:65) will result in greater network

flow fluctuation and slower convergence process.

By relaxing the assumption σ = 0, this experiment can also be used to investigate travelers’

risky behaviors with endogenous risk attitudes. Fig 4(C) presents the evolutions of Θt accord-

ing to a same initial risk attitude (r0
19
¼ 0) and four different sensitivity parameters σ. The

associated risk attitude updating processes are shown in Fig 4(D).

In Fig 4(C), the effect of σ reflected in the capacity reduction period is found different from

that appeared in capacity restoration. When link capacity reductions occur, a larger σ can lead

to small flow fluctuation on the early days but slower convergences for later days. And when

link capacities recover to normal, some greater fluctuations but faster convergences are associ-

ated to larger σ. This observation can be explained through studying the updating of rt
19

pre-

sented in Fig 4(D). Obviously, link capacity reductions intensify flow congestions and further

cause travel losing perceived by travelers, this results in the evolution of risk attitude towards

proneness, namely the decreasing of rt
19

. After capacity reductions, a large σ permits rt
19

to

reach a preferable value (e.g. -0.4) quickly, which benefits the smooth-evolution of the dynamic

system on the early days. On the subsequent days, however, a large σ may also push rt
19

to

reach a too small value which reflecting excessive risk proneness behaviors, this certainly give

rise to greater fluctuations and slower convergences. For the situation of capacity restoration, a

similar analysis can be applied to explain the result appearing in Fig 4(C).

4.3 The Effects of Travelers’ Risk-taking Behaviors on FP Stability and

Irreversibility

As introduced in the previous Subsection 3.4, the fixed-point stability or reversibility can be

regarded as an indicator evaluating road network resilience against fluctuations. In this

numerical experiment, some reductions of mean link capacity are still introduced into the

DTD model to reflect the external disturbances of the traffic network. A positive-value and a
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zero-value are respectively assigned to the sensitivity parameter σ to reflect two types of travel-

ers’ risk attitude evolution schema. The initial risk attitude parameter r0
19

is set as 0.3 (risk

averse).

On two time periods respectively from the day 40 to 50 and the day 100 to 110, all the links

are assumed to suffer 50% mean capacity reductions, and outside of these two periods, these

link capacities all restore to their original values. Throughout the second experiment, the fol-

lowing model parameters are used and kept fixed: α = β = θ = 0.6. Under this situation, the

DTD model (14) is executed respectively according to different risk attitude evolution sche-

mas. The link flow evolution trajectories and the corresponding FPs are shown in Fig 5.

Fig 5(A) indicates that when travelers’ risk attitudes are endogenous, their route choice

behaviors will cause the FP instability. That is, any fluctuation of link capacity will give rise to

the deviation from the original FP, and drive the dynamic system to reach a new equilibrium

state but not the original one even though the changed link capacities are revoked, this in fact

Fig 4. The effects of traveler risk-taking behaviors on system evolution processes. Fig 4(a) and 4(b) compare the effect difference

between risk aversion and risk proneness attitudes. Fig 4(c) and 4(d) show the influences of parameter σ on both fluctuation functionΘt and

endogenous risk attitude rt
19

.

doi:10.1371/journal.pone.0168241.g004
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corresponds to the irreversibility. In Fig 5(B), however, capacity reduction and restoration are

found only to cause some fluctuations on the evolution process but not to change the ultimate

equilibrium state, which means, under the situation of exogenous or constant risk attitudes,

FP of the DTD model is stable. Note that this stability is only satisfied in the attraction domain

of the FP. This is because the route systematic disutility function usually cannot be assured to

be monotone strictly increasing with respect to the link traffic flow. And as a result, the FP

uniqueness cannot be guaranteed. Therefore the FP only meets, strictly speaking, the asymp-

totically stability condition in this situation.

Due to the short of empirical data, we conducted numerical experiments only on a simple

grid network in this section. A real transport network is usually not so regular and its topologi-

cal structure is more complicated. It is meaningful to test the proposed model on a large-scale

Fig 5. Comparison of effects between two different risk attitude evolution schemas. Fig 5(a) corresponds to the case of endogenous risk

attitudes, and Fig 5(b) corresponds to the case of exogenous risk attitudes.

doi:10.1371/journal.pone.0168241.g005
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real transport network. Meanwhile, a real transport network usually contains multiple travel

OD pairs and a larger number of links. This means the route-based flow assignment approach,

which is defined by the Logit model in this paper, may become invalid since the number of fea-

sible routes will increase exponentially. Therefore, it is also necessary to design a more effective

method for executing the proposed DTD model under the situation of real transport network.

We leave these researches to our future work.

Experimental data appeared in the above-mentioned figures can be achieved directly by

running the program source code of the numerical experiment. In this paper, the experiment

program is written by Visual C and executed on a T2250 CPU (2.50Ghz). The Experimental

data are saved on “S1 Information. Experimental data for Figs 3, 4 and 5.” The program source

code are saved on “S2 Information. Program source code for Figs 3, 4 and 5.”

5. Conclusion and Future Work

This paper aims to model DTD flow dynamics on degradable transport network by consider-

ing both travelers’ study of uncertain travel time and travelers’ choice of risky routes. The

notion of variation range is adopted to represent travelers’ perceptions of travel time uncer-

tainty. In addition, an endogenous risk attitude evolution schema is adopted to reflect the

change of traveler’s risk attitude in the context of DTD traffic dynamics. The uncertain route

travel time and the risk attitude parameter are both integrated into a unified systematic disutil-

ity function to reflect travelers’ perception of route attractiveness. These route disability values

are substituted into a Logit model to describe travelers’ stochastic route choice behaviors. This

paper also makes some effects to investigate several mathematical properties implied in the

proposed DTD model. Numerical results obtained from a test network verify that some mod-

erate risk proneness route choices made by travelers are beneficial to a smoother DTD evolu-

tion process, while risk aversion behaviors as well as excessive risk proneness route choices

will both give rise to greater fluctuation and slower convergence of the dynamic system. In

addition, when travelers’ risk attitudes are endogenous, their DTD dynamic route adjustment

behaviors will indeed lead to FP instability and irreversibility. Although we focus on transport

network in this study, our research may also benefit other relevant fields such as traffic dynam-

ics on complex networks (e.g. [53–56]).

For the proposed DTD model, quite a number of parameters are adopted to influence its

dynamic evolution trajectory. Calibration of these parameters is worth of further research

effort. In this paper, a simple update Eq 11 is formulated to reflect the endogenous risk attitude

evolution schema, but it may not conform to the actual case. Therefore, it is meaningful to

design more realistic formulations reflecting travelers’ risk attitude changes in the future work.

Given that the dynamic model may have multiple equilibria, it is also interesting to analytically

derive the sufficient condition that assures the asymptotically stability of each fixed point.
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