
RESEARCH ARTICLE

A Study of Memory Effects in a Chess

Database

Ana L. Schaigorodsky1,2*, Juan I. Perotti3, Orlando V. Billoni1,2
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Abstract

A series of recent works studying a database of chronologically sorted chess games–con-

taining 1.4 million games played by humans between 1998 and 2007– have shown that the

popularity distribution of chess game-lines follows a Zipf’s law, and that time series inferred

from the sequences of those game-lines exhibit long-range memory effects. The presence

of Zipf’s law together with long-range memory effects was observed in several systems,

however, the simultaneous emergence of these two phenomena were always studied sepa-

rately up to now. In this work, by making use of a variant of the Yule-Simon preferential

growth model, introduced by Cattuto et al., we provide an explanation for the simultaneous

emergence of Zipf’s law and long-range correlations memory effects in a chess database.

We find that Cattuto’s Model (CM) is able to reproduce both, Zipf’s law and the long-range

correlations, including size-dependent scaling of the Hurst exponent for the corresponding

time series. CM allows an explanation for the simultaneous emergence of these two phe-

nomena via a preferential growth dynamics, including a memory kernel, in the popularity dis-

tribution of chess game-lines. This mechanism results in an aging process in the chess

game-line choice as the database grows. Moreover, we find burstiness in the activity of sub-

sets of the most active players, although the aggregated activity of the pool of players dis-

plays inter-event times without burstiness. We show that CM is not able to produce time

series with bursty behavior providing evidence that burstiness is not required for the expla-

nation of the long-range correlation effects in the chess database. Our results provide fur-

ther evidence favoring the hypothesis that long-range correlations effects are a

consequence of the aging of game-lines and not burstiness, and shed light on the mecha-

nism that operates in the simultaneous emergence of Zipf’s law and long-range correlations

in a community of chess players.

Introduction

In recent years the scope of statistical physics has been extended to other fields to study, for

instance, how humans behave individually or collectively [1–3]. In particular, the struggle of
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humans when playing games with a well defined set of rules provides a convenient experimen-

tal setup to understand human behavior and decision making processes [4–16]. This is partic-

ularly convenient from the physics’ point of view because, under the rules of a game, the

variables of the behavior under study are highly constrained. Moreover, recent studies on

game records [9–15] have shown that useful parallels can be established between the statistical

patterns of game-based human behavior and well defined theories of physical processes.

The game of chess, which is viewed as a symbol of intellectual prowess, is particularly inter-

esting [5, 17, 18]. There are very large world-wide communities of chess players producing

extensive game records providing a source of data suitable for large-scale analyses. Exploring

chess databases, Blasius and Tönjes [5] observed that the pooled distribution of chess opening-

line weights follows a Zipf law with universal exponent. They explained these findings in terms

of an analytical treatment of a multiplicative process. Moreover, in a previous work, where we

studied the dynamics of the growth of the game tree, we have found that the emerging Zipf and

Heaps laws can be explained in terms of nested Yule-Simon preferential growth processes [17].

The study of long-range correlations and burstiness in systems where Zipf’ s law is present

is also of great research interest [19, 20]. In recent studies, we found that temporal series gener-

ated from an empirical and chronologically ordered chess database does exhibit long-range

memory effects [18], establishing a striking similarity between chess databases and literary cor-

pora [19]. These memory effects cannot be explained in terms of the multiplicative process,

nor in terms of the nested Yule-Simon processes. In this sense, the mechanism for the game

aggregation in the database needs new ingredients to reproduce the observed long-range

correlations.

In the present work, we investigate how memory effects emerge in a “corpus” of chess

games. We tackle this problem following a result of Cattuto et al. [21], who introduced a modi-

fication of the Yule-Simon process by incorporating a probabilistic memory kernel. Cattuto’s

model (CM) introduces memory while preserving the long-tailed frequency distribution char-

acteristic of Zipf’s law [19]. However, the nature of the memory effects introduced by the ker-

nel has not been yet explored. Here we show that CM reproduces the statistical properties

observed in the chess database since the model does not only exhibit memory, but also long-

range correlations and size effects. Moreover, we show that a bursty behavior is associated to

individual players, and the most active set of players, but disappears when the full pool of play-

ers is analyzed, while long-range correlations prove to be more robust and are found in every

analyzed set of games.

This work is divided in three sections. In Section 1 we provide relevant information of the

game of chess and the database. We also introduce Cattuto’s model, the method for the analy-

sis of long-range correlations and inter-event time distributions. In Section 2 we show and dis-

cuss the analysis of the data obtained from both, the generated and real database. Finally, in

Section 3 we discuss the contributions of this work.

1 Theoretical background

1.1 Zipf’s law in chess

A chess game can usually be divided in three stages, opening, middle-game and endgame.

There are many specific openings—move sequences in the opening stage— that are very well

documented because they are considered competitively good plays. As a consequence, in a

chess database many of the recorded games have their first moves in common. The openings

evolve continuously and the complexity of the positions determines their extension. The

knowledge of opening-lines is part of the theoretical background of the chess players and how

many opening-lines the players know in depth is certainly related to the expertise of the player.
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In practice, the extension of the opening stage cannot be precisely defined. In this work we will

talk of opening-lines and game-lines to refer to sequences with the same number of moves.

In the game of chess each possible move sequence, or game-line, can be mapped as one

directed path in a corresponding game-tree (see Fig 1(a)), where the root node is the initial

position of the chess pieces in the board. In the game tree each move is represented by an edge,

and there is a one-to-one correspondence between game-lines and nodes. The topological dis-

tance between the root and a node is the depth d of the corresponding game-line.

Let us introduce some mathematical notation. A node, or game-line in the tree, is denoted

by g. The popularity of a game-line g—i.e. the number of times g appears in the database— is

denoted by kg. In Fig 1(a) we show a partial game-tree where the popularity is represented by

the size of the vertices. This tree was computed from ChessDB [22], which contains around 1.4

million chess games played between the years 1998 and 2007. This is the database we use for

the rest of the analysis. The number of branches coming out of a node g is denoted by bg, and

the depth of g by dg. The number of nodes at depth d is denoted by nd, and corresponds to the

number of different game-lines that can be found in the database at depth d. Similarly, Nd is

the total number of games of the database that have reached depth dg = d.

An average branching factor, or branching ratio, can be computed at each depth d by using

the formula

bdh i ¼
1

nd

X

g:dg¼d

bg ¼
ndþ1

nd
; ð1Þ

where the summation goes over all existing nodes g at depth d. In practice, the chess database

is continuously growing, i.e. new games are incorporated to the database as time evolves.

Therefore, all these quantities change with time. For practical reasons, we do not use the real

time, but an ordinal time denoted by t. In this sense, g(t) is the game-line associated to the t-th

game appearing in the database. Similarly, kg(t) is the number of those t games that have

reached node g, Nd(t) is the number of games that reached depth d and nd(t) is the number of

different game-lines among those Nd(t) games [17].

From the statistical point of view the popularity of a given game-line depends on the num-

ber of moves considered, i.e. the depth d of the game. Blasius and Tönjes found that the distri-

bution of popularities follows a power law with an exponent that depends on d. This means

that there are few opening-lines which are very popular, and the rest are rarely played. We

reproduce these results in Fig 1(b), where the popularity distribution is shown for d = 1, 2, 3

and 4, and the curves are fitted using least square linear regression. Clearly, the exponent

increases with d, as it was reported [5]. A specific sequence of moves at a certain depth can be

thought as a word, a string in algebraic notation, and then the database as a literary corpus

where the t-th game would correspond to the t-th word. In this way, analyzing the database at

different depths is analogous to analyze different texts, all extracted from the same database,

and all with different Zipf’s exponents.

The structure of the game-tree also depends on d. In Fig 2 the mean branching ratio is

shown as a function of d. The branching ratio quantifies both, the complexity of the game and

the memory of the chess players when following the opening-lines. The branching ratio hbdi
reaches a value� 1 for d = 25, this means that the generation of new branches is negligible

from this depth on, marking the beginning of the stage known as middle-game. In Fig 2 we

also show the number of different game-lines nd as function of the depth d. At the beginning

of the games, e.g. up to d = 4, the number of game-lines followed by the players is relatively

small, and a significant number of the players follow the most popular game-line. The statisti-

cal complexity of the game is reflected by the branching ratio hbdi. Note that hbdi depends on
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Fig 1. (a) Chess tree corresponding to the main opening-lines up to depth d = 4. The size of the nodes is

proportional to their popularity. Here only the main lines are shown. (b) Distribution of popularities of the nodes

at depth d = 1, 2, 3 and 4; these distributions are well fitted by power laws P(k)/ k−α with α = 1.10 ± 0.05,

1.29 ± 0.03, 1.47 ± 0.02 and 1.59 ± 0.02 (R2 = 0.972, 0.993, 0.996 and 0.997), respectively. Errors estimated

by the fitting.

doi:10.1371/journal.pone.0168213.g001
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the size of the database since new branches are generated as the database grows, and at the

same time the popularity range depends on the depth d. Then, at d = 4 we can capture both,

the memory and the complexity of the game, since the more important opening-lines can be

identified at this depth and the branching ratio is still higher than one (hbdi � 3.5). Also, at

this depth the exponent of the popularity distribution is α< 2 and then the range in which the

popularity spans is more extensive than for higher depths. Computing the distribution of the

number of branches generated by each node bg for different values of the depth d we have

found that for lower depths (d� 19) the distribution is exponential, while for depths beyond

d = 20 a power law provides a better fit. However, it should be noticed that the range of fit cov-

ers around one order of magnitude only and, as a consequence, the power-law fit is not accu-

rate. In Fig 2 (Inset) we show the variance of bg as a function of the depth. The fluctuations

decay exponentially as d increases. Two regimes can be identified and the transition between

them is related to the change of regime seen in hbdi and nd. Therefore, our analysis will be

restricted to the 6279 opening-lines of length d = 4 found in the database. In particular, we pay

special attention to the most popular opening-line at this depth—which is: 1 e4 e5 2♘f3

♘c6—as it represents nearly the 7.8% of the games in the database. The reason for this is that

several popular openings have these four initial moves in common. For example: 3♗b5 (Ruy

Lopez, by far the most popular), 3♗c4 (Giuoco piano), 3 d4 (Scotch opening) just to cite a

few of them.

1.2 Zipf’s law models

One of the first models able to explain the emergence of Zipf’s law was introduced by Yule

[23], which was devised to explain the emergence of power laws in the distribution of sizes of

biological genera. Later on, Simon [24] introduced a similar, but less general, variation of the

model [25], which fits more naturally in the context of Zipf’s law. It is known as the Yule-

Fig 2. Average branching ratio, hbdi and number of different game-linesnd as function of the depth

level d in the database. Inset: variance of the distribution of branches per node bg as function of the depth d

and linear fit of the two exponential regimes.

doi:10.1371/journal.pone.0168213.g002
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Simon Model (YSM), and different variations re-emerged in the literature several times. The

most recent variant, known as preferential attachment, became one of the most important

ideas at the beginning of the development of complex networks theory [26]. Cattuto et al. [21]

introduced another variant of the YSM, which includes memory effects by incorporating a

probabilistic kernel, while at the same time preserving the long-tailed frequency distribution

exhibited by the original YSM. The YSM applied to chess game-line generation is as follows.

We begin with an initial state of n0 game-lines, strictly speaking opening-lines at depth d. At

each time step t there are two options: i) to introduce a new game-line with probability p or ii)

to copy an already existing game-line with probability �p ¼ 1 � p. In the latter case we have to

determine which of the previous game-lines is to be copied. Note that since at each time step

an opening-line is added, at time t the total number of elements in the constructed database is

N = t + n0. The probability of choosing a particular game-line, or opening-line, that has already

occurred k times is assumed to be �pkpðk; tÞ, where π(k, t) is the fraction of game-lines with

popularity k at time t. To fix ideas, lets take N = 5 × 105 and 100 different game-lines with pop-

ularity k at a time t, then pðk; tÞ ¼ 100

5�105 ¼ 0:0002. This means that, in the YSM, copying a cer-

tain game-line does not depend on how far back in time the game-line took place, but only on

how popular is the corresponding game-line up to the present time t. For this reason, the pro-

cess does not exhibit long-range memory effects. On the contrary, in CM, the probability of

copying a previous game-line depends on how far back in time it occurred for the last time,

taking into account the age of the game-line. If the game-line occurred at time t − Δt, the prob-

ability is given by

Qðt;DtÞ ¼
CðtÞ

tc þ Dt
: ð2Þ

In Eq (2), τc is a time scale in which recently added game-lines have comparable associated

probabilities, and it can be considered as a measure of the memory kernel extension. C(t) is a

logarithmic normalization factor. The probability distribution density for the popularity of the

game-lines that results from this process is [21]:

PCMðkÞ ¼
p

ðn0 þ ptÞðKaÞk
ln ðA=kÞ

K

� �1
a� 1

; ð3Þ

where a ¼ �p, K ¼ 1� a

aO
, A = eKtα and O is a fit parameter. Note that, strictly speaking, the men-

tioned models do not produce different sequences of moves, but elements that constitute an

artificial database with the same distribution as the database. These models are of not use

when trying to reconstruct the game tree, but are used to reproduce the statistical properties of

the system.

1.3 Time series and correlations

In order to study the long-range correlations of the chronologically ordered set of games in the

database, we map the set of game-lines of length d = 4 to a discrete time series.

The particular assignation rule that maps the sequence of the 1.4 × 106 games of the data-

base to a time series, can have a direct effect in the degree of persistence observed in the series

[27]. Specifically, long-range correlations are affected by both, the intrinsic properties of the

database and the mapping code. Therefore, we choose to work with different assignation rules

in order to provide robustness to the results. One of these rules, which is introduced in the

analysis of literary corpora [19] and was already employed in a chess database [18], is the Pop-

ularity Assignation Rule (PAR). In PAR, each element X(t) of the time series corresponds to

the popularity at depth d of the t-th game-line in the database over the entire record. In this

A Study of Memory Effects in a Chess Database

PLOS ONE | DOI:10.1371/journal.pone.0168213 December 22, 2016 6 / 18



work we introduce two more assignation rules for the analysis: the Gaussian Assignation Rule

(GAR), and the Uniform Assignation Rule (UAR). GAR and UAR are random assignation

rules, where a random number Xg taken from the probability distribution function, Gaussian

for GAR and uniform for UAR, is assigned to each game-line g in the database. In this way, the

time series is X(t) = Xg(t). These random assignation rules are not expected to introduce spuri-

ous correlations. Additionally, they have the advantage over PAR that the fluctuations in the

values of the time series are bounded; large fluctuations in the values of a time series may

induce spurious long-range memory effects [28].

There exists a wide variety of techniques used to detect long-range correlations in time

series. However, not all of them are suitable to analyze all kinds of series, especially if they are

non-stationary or exhibit underlying trends. Peng et. al. [29] introduced the Detrended Fluctu-

ation Analysis (DFA), a useful technique to detect long-range correlations in time series with

non-stationarities. In the DFA method, a cumulated series YðiÞ ¼
Pi

t¼1
XðtÞ is segmented

into intervals of size ℓ. Each segment s of the cumulated series is fitted to a polynomial Y ðsÞn ðiÞ
of degree n, and the fluctuation function is obtained with

Fð‘Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Z

XZ

t¼1

½YðiÞ � Y ðsiÞn ðiÞ�2
s

: ð4Þ

Here, Z is the total number of data points in the time series, and si is the segment of the i-th

data point. A log-log plot of F(ℓ) is expected to be linear. If the slope is less than unity, it corre-

sponds to the Hurst exponent (H). When H = 0.5 the cumulated time series, Y(i), resembles a

memoryless random walker. On the other hand, for H> 0.5 (H< 0.5), it resembles a random

walker with persistent (anti-persistent) long-range correlations or memory effects.

1.4 Inter-event time analysis

Inter-event time analysis is common to many natural system comprising, earthquakes [30, 31],

sunspots [32], neuronal activity [33], and human behavior in general [34, 35]. In particular,

the time distribution of the opening-lines in a chess database can be analyzed in a similar man-

ner than the occurrence of words in a text [20]. All the game-lines up to depth d can be enu-

merated according to its order of appearance in the chronologically ordered database.

Specifically, we denote by td 2 {1, 2, . . ., Nd} the sequence of ordinal times of appearance of the

different opening-lines of length d. Therefore, the j-th inter-event time of an opening-line g is

defined as

t
ðgÞ
j ¼ tðgÞd ðjþ 1Þ � tðgÞd ðjÞ; ð5Þ

where tðgÞd ðjÞ represents the time of the j-th appearance of the opening-line g. If the opening-

line g occurs with frequency ng ¼ NðgÞd =Nd, we can estimate the average inter-event time as

hτ(g)i � 1/νg. Here, NðgÞd is the number of times the particular opening-line g of length d occurs

in the database. The mean inter-event time hτ(g)i is usually called the Zipf’s wavelength in text

analysis [20], where g represents a particular word.

The simplest point process for the analysis of inter-event times is the Poisson process. In

the context of chess game-lines it can be described as follows. A particular opening-line g
occurs with a probability per unit of time equal to μg, which we assume to be a constant. As a

consequence, the inter-event time distribution for the opening-line g is the exponential distri-

bution f(τ(g)) = μg exp(−μg τ(g)). Here, the rate μg� νg. The relation is approximate because of

two reasons. Firstly, Poisson processes are defined for a continuous time, while for the chess

A Study of Memory Effects in a Chess Database
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database we are considering a discrete time. Secondly, the fraction νg corresponds to a finite

number of events, while a Poisson process describes an infinitely large stationary process.

Besides this, the approximation μg� νg works well as long as νg� 1 and Nd � NðgÞd � 1.

Let us simplify the notation by writing τ instead of τ(g), when there is no need to speak

about a particular game-line g. In the empirical analysis of the data, it is convenient to use the

complementary cumulative probability density FðtÞ ¼
R1

t
f ðt0Þdt0 instead of a direct applica-

tion of the probability density f(τ). This is for practical reasons; the function F(τ) is usually sim-

pler than f(τ). For example, a deviation of F(τ) from an exponential behavior indicates the

presence of memory-effects. In the case of words in a text, this deviation is usually well

described by the single parameter stretched exponential distribution, or Weibull function [20],

f ðtÞ ¼
b

t0

t

t0

� �b� 1

e�
t

t0
ð Þ

b

: ð6Þ

For this distribution hti ¼ t0G
bþ1

b

� �
, where Γ is the Gamma function and 0< β� 1. The cor-

responding cumulative distribution is,

FðtÞ ¼ e�
t

t0
ð Þ

b

: ð7Þ

If β deviates from one, the presence of burstiness in the time series is implied. A burst corre-

sponds to an increase in the activity levels over a short period of time followed by long periods

of inactivity [36], and as the value of β approaches zero the appearance of bursts in the time

series increases. To test if the cumulative distribution of inter-event times follows or not a

stretched exponential, it is useful to plot −log(F(τ)) as function of τ in a log − log scale [20, 37].

In this plot a stretched exponential becomes a straight line where the slope is the burstiness

exponent β.

The deviation of F(τ) from a Poisson process can also be characterized with the coefficient

of variation στ/hτi, where στ is the standard deviation of the inter-event times. We use the coef-

ficient of variation to compute the burstiness parameter B as [36],

B ¼
ðst=hti � 1Þ

ðst=hti þ 1Þ
¼

st � hti

st þ hti
: ð8Þ

This parameter is greater than zero for a bursty dynamics and less than zero when dynamics

becomes regular. When B = 0 there is neither burstiness nor regularity.

2 Results

2.1 Fitting the parameters of the models

Let us begin by fitting the model parameters in order to reproduce some basic statistical prop-

erties of the database. The parameters to be fitted are: p in the case of the YSM, and p and τc for

CM. Artificial databases of N = 106 elements are generated by applying both models’ update

rules, introduced in Section 1.2, N times.

The appropriate value of the parameter p can be directly estimated from the database by

using the formula,

p �
ndðttotalÞ

ttotal
: ð9Þ

This estimation is only valid as a first approximation since we implicitly assume that p is a con-

stant function of t but, in fact, the number of different game-lines grows in time according to
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the Heaps’ law [17], and not linearly as in Eq (9). However, in order to keep the analysis sim-

ple, we choose to work within the approximation of constant p, as this is the case for YSM and

CM. For the case of d = 4, the estimated value is p = 0.005. It is worth mentioning that for

larger values of d the approximation of constant p is not as appropriate [17].

To obtain an appropriate value for the parameter τc—a parameter of CM only— we vary τc
until CM is able to reproduce the average inter-event time hτ(g�)i of the most popular game-

line g� in the database at d = 4. Then, provided that p is given by Eq 9, the best approach of CM

occurs for τc = 96, and for this value CM gives hτ(g�)i = 12.41. Furthermore, the most popular

game-line generated by CM, represents the 8.1% of the game-lines; a value close to the empiri-

cal one which is 7.8%.

The YSM also provides a prediction for hτ(g�)i. However, when p is given by Eq 9, the pre-

diction is hτ(g�)i = 7.68; a value considerable smaller than the observed in the database. The

correct prediction can be obtained anyway, if we set p = 0.1, which is a value considerable

larger than the obtained from Eq 9. In other words, the YSM is not able to simultaneously fit

the empirical values of p and hτ(g�)i, while CM does. This is expected, as CM has an extra fitting

parameter.

For comparison, we summarize in Table 1 the different values of p and hτ(g�)i obtained

from the database and the models.

2.2 Comparing the models

After setting the model parameters p and τc, we test the models against complementary statisti-

cal properties measured to the chess database, such as the popularity distribution and the pres-

ence of long-range memory effects.

2.2.1 Popularity distribution. In the following, the parameters of the models are fixed to

the values obtained in the previous section. In Fig 3 we show the distribution of popularities

P(k) of the YSM, CM and the database (opening-lines of length d = 4). The YSM model pro-

duces a power-law distribution, with an exponent very close to 2, which is expected in this pro-

cess for small values of p(= 0.005) [24]. The distribution obtained from CM shows a gentle

curvature, and is very well fitted by the theoretical expression of Eq (3). The distribution P(k)

of the database is much closer to that obtained with CM than with YSM. A similar popularity

distribution can be obtained with the YSM if we relax the restriction where p is given by Eq 9.

2.2.2 Hurst exponent. In order to analyze the presence of long-range correlations, we

measured the Hurst exponent (H) of time series derived from the models and the empirical

data. The time series are obtained using three different assignation rules: PAR, GAR and UAR,

and the Hurst exponent is computed with a linear DFA method (see Section 1). Again, for CM

we set the parameters obtained in Section 2.1. It is worth mentioning that long-range correla-

tions are present in time series constructed from the database for depths greater and lower

than d = 4 [18].

Table 1. Summary of the results corresponding to the inter-event time distributions of Figs 5 and 6.

Data p β τ0 hτ(g*)i � τP

Database 0.005 0.927 ± 0.003 13.0 ± 0.5 12.82

CM 0.005 1.036 ± 0.002 12.9 ± 0.8 12.41

YSM 0.1 1.031 ± 0.003 15.4 ± 0.6 14.12

YSM 0.005 1.059 ± 0.005 8.2 ± 0.6 7.68

Player 0.09 0.583 ± 0.004 4297 ± 200 89.75

doi:10.1371/journal.pone.0168213.t001
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Consistently with a lack of long-range time correlations, the Hurst exponent corresponding

to the YSM is close to 0.5. Moreover, this result (not shown) is independent of both p and the

assignation rule.

In Fig 4(a) we show the Hurst exponent as function of the length of the time series, using

the PAR for CM and the database. The time series generated with CM exhibits both, long-

range correlations and size effects, behaving similarly to the database. The value of H grows up

to 0.69 for the database, and up to a similar value (0.65) in the case of CM. The tendency is dif-

ferent in both cases, while in the database the Hurst exponent becomes large for short time

scales, it grows steadily in CM.

As mentioned in Section 1.3, large fluctuations in the values of the time series X(t) might

introduce spurious long-range memory effects, i.e. values of H significantly different from

0.5. Since the popularity distribution is long-tailed—in both the model and the empirical

database— the PAR rule leads to large fluctuations in the values of X(t). In order to test the

influence of these fluctuations we repeated the calculations of H using time shuffled series

Xshuff(t). The Hurst exponents obtained after the shuffling are very close to 0.5 [18] (not

shown), and thus, the large fluctuations in X(t) are not the cause of the observed long-range

correlations.

In a similar manner, we can check if the condition H> 0.5 persists when the fluctuations in

the values of the time series X(t) are bounded. For that purpose, we used the others assignation

rules, UAR and GAR, as they lead to time series with finite variance. In Fig 4 we also show the

Hurst exponent as a function of the size of the analyzed time series for this two more assigna-

tion rules; GAR Fig 4(b) and UAR Fig 4(c). The obtained Hurst exponents are H> 0.5 almost

everywhere. Therefore, the emergence of long-range correlations is robust against the choice

of the assignation rules. In particular, we obtained a nice agreement between the database and

CM model when using the GAR. Also, it is worth mentioning that it has been found empiri-

cally that DFA tends to be more robust for Gaussian processes [38].

The error bars in Fig 4(a) for the database are the errors resulting from the linear fitting of

F(l), while for CM we have computed 10 realizations of the model, and the error bars reflect

the dispersion of the calculated values of H. However, in panels (b) and (c), which correspond

Fig 3. Log-log plot of the distribution of popularities: measured in the database (black triangles),

fitted with P(k)/ k−α and exponent αd = 1.59 ± 0.02 (R2 = 0.997) (dotted black line); generated with CM,

p = 0.005 and τc = 96 (green diamonds) fitted with PCM(k) (see Eq (3)) with parameterΩ = 1.5 ± 0.3 (full

green line); and generated with YSM model, p = 0.1 (magenta circles) and fitted with P(k) and

exponent αYSM = 2.12 ± 0.03 (R2 = 0.997) (magenta point dashed line).

doi:10.1371/journal.pone.0168213.g003
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to the GAR and UAR, we estimated the errors using 10 different random assignations for each

UAR and GAR, for both CM and the database. The different assignation rules lead to different

values of the Hurst exponent; both, in the model and in the database. This implies that the exis-

tence of long-range correlations is a robust feature from a qualitative point of view but, the

Hurst exponent is not a quantity independent of the assignation rule used to produce the time

series.

2.3 Burstiness

In this subsection, we study another aspect of the existence of non-trivial memory effects,

regarding the occurrence of specific opening-lines in the chess database. Namely, we analyze

the existence of burstiness by following ideas used in the analysis of texts [20].

Before continuing, we remark a couple of issues. First, our calculations assume that the

games in the database are uniformly distributed across the time line. Our results indicate this

assumption is correct. Second, although the games in the chess database are chronologically

ordered, the time resolution of the database is one day, with an average of about� 3600 games

Fig 4. Hurst exponent obtained by the DFA method as a function of the length of the time series in the

database (dotted black line with triangles), and generated with CM, p = 0.005 and τc = 96 (full green

line with diamonds): (a) using the PAR; (b) using the GAR; and (c) using the UAR.

doi:10.1371/journal.pone.0168213.g004
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per day which are randomly shuffled. For this reason, we expect the sequence of inter-event

times τ to be uncorrelated at the short scale of t.
2.3.1 Complete database. We begin the study of burstiness by analyzing the activity of the

most popular opening-line, involving the whole pool of players. We study both the database

and the models.

We analyze the cumulated inter-event times distribution F(τ) (see 1.4) corresponding to the

most popular opening-line at depth d = 4. In Fig 5, we plot −ln F(τ) as function of τ in a log − log

scale for the case of the empirical database. Analogous plots for CM and YSM (Inset) are also

shown. All cases display a linear regime, admitting a good fit of the Weibull distribution of Eq 7.

The exponent of the Weibull and the burstiness parameter results β� 1 and B� 10−2, respec-

tively, in all cases, indicating the absence of burstiness. The linear regime was estimated by elimi-

nating points from both ends of the curve −ln F(τ) and doing a linear regression for each subset,

until the coefficient of determination R2 reached a stable value with a tolerance of 10−4.

Because there is no burstiness, the other parameter of the Weibull distribution, τ0, should

fit to the characteristic time τP of an associated Poisson process. We corroborated this by

computing a simple approximation, derived for the YSM, but which also works for CM. In

the YSM model, the probability Pt that an already existing game-line g is repeated between

times t and t + δt, is given by Pt � ðð1 � pÞNðgÞd ðtÞ=NdðtÞÞdt, where NðgÞd ðtÞ is number of

game-lines g up to depth d that have been played until time t (see 1.4). After a transient time,

NðgÞd =Nd is expected to be nearly constant—to be precise, a slowly varying quantity—. There-

fore, Pt = δt/τP, where m :¼ 1=tP � ð1 � pÞNðgÞd =Nd is the event rate of the mentioned Poisson

Fig 5. Cumulative distribution of inter-event times of the most popular opening-line measured in the

database (black triangles) and generated with CM for p = 0.005 and τc = 96 (green diamonds). The lines

are fits according to Eq (7) with β = 0.927 ± 0.003 (R2 = 0.999) for the database (black dashed line) and for CM

with β = 1.035 ± 0.003 (R2 = 0.999) (green full line). Inset: cumulative frequency distribution of inter-event

times measured in the database (black triangles), YSM for p = 0.1 (magenta circles) and p = 0.005 (cyan

squares).

doi:10.1371/journal.pone.0168213.g005
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process, and

tP �
NdðttotalÞ

NðgÞd ðttotalÞð1 � pÞ
ð10Þ

the corresponding characteristic time. Here, ttotal is the number of games in the whole data-

base. As summarized in Table 1, it is clear that there is a good agreement between the fit τ0

and the estimation τP.

2.3.2 Single player analysis. According to the results of previous sections, the inter-event

times of the most popular game-line indicate a slight, or absence, of burstiness when the whole

pool of players is considered. In order to shed light on this point, we analyze if there is bursti-

ness in the activity of the game-lines of a single player.

For this analysis, we choose the most active player in the database, who has played 1377

games. We keep the original time indices. The measured value of p for this player is equal to

0.09. In Fig 6 we show the cumulated inter-event time distribution for the most popular open-

ing-line according to this player. The fitted slope of the linear regime is β = 0.583 ± 0.004 and

the burstiness parameter is B = 0.22, indicating the presence of a bursty activity. Also, the val-

ues obtained for τ0 from the fitting of Eq (7) and τP from Eq (10) are very different (see

Table 1). As a consequence, a Poisson process is not a good approximation for the inter-event

time distribution of the single player.

As we already showed, CM does not generate burstiness, hence we cannot reproduce the

results of a single player with this model.

2.3.3 Data aggregation. We also studied the bursty behavior during data aggregation. We

grew the database in two ways, by player aggregation, and by chronological game aggregation.

In the first case, we ordered the players according to the number of games they have in the

database; from most active to least active. We grew the database adding groups of players, each

Fig 6. Cumulated inter-event time distribution for a single player (black triangles). Also, corresponding

fits according to Eq (7) with β = 0.583 ± 0.004 (R2 = 0.993) for the player (black dashed line).

doi:10.1371/journal.pone.0168213.g006
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group representing 5 × 104 games, until we completed the full database. In this way, the most

active players are included first during the growing process. In the second case, game-lines

were added chronologically in sets of size 5 × 104 games, also until the whole database is com-

pleted. For these two data aggregation processes we calculated the burstiness parameter B and

the burstiness exponent β. The resulting values as function of the size of the database are

shown in Fig 7. In this figure, it is noticeable that the points in the players aggregation are not

uniformly distributed across the time scale. This is because when we add new players, many of

the games played by them are already in the growing database if the opponents involved in the

games were already added. The effect is more significant when the growing database reaches a

considerable size.

The analysis of Fig 7 reveals that for both, player and game aggregation, β and B, stabilize to

the values of the complete database, meaning that in both cases the burstiness disappears at

some point. Notice, however, they reach the final value at different times. Under game aggre-

gation, the values stabilize at approximately 2 × 105 while under player aggregation, the values

stabilize much later. This is a new indication that the bursty dynamics in the whole database is

Fig 7. (a) Burstiness parameter B and (b) burstiness exponent β as a function of the length of the time

series for the database growing by Player Aggregation (black triangles) and by chronological game

aggregation (gray diamonds). The error bars are not shown because they are of the same size as the

points.

doi:10.1371/journal.pone.0168213.g007
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related to the behavior of individual players. In fact, during the chronological game aggrega-

tion, the incorporation of a small number of game-lines (the first 5 × 104) is already sufficient

to include a relatively large fraction of players (around 12% of the total). This is the reason for

which the bursty behavior disappears at a short time scale under game aggregation. In player

aggregation, however, we have 57 players in the first set, and the burstiness stabilizes when the

number of players is� 1000, which corresponds to 106 games. The remaining 4 × 105 game-

lines correspond to players with few games–most of them with less than ten–. These players

cannot exhibit burstiness by themselves and therefore erase the bursty behavior in the data-

base. Finally, we have checked that all players with an extensive record of games exhibit a

bursty dynamics.

3 Discussion

In this work we analyzed a chess database that exhibit a power law popularity distribution of

the opening lines and long-range correlations in the aggregation of new games during the

growth process of the database. As a complementary test of the memory present in the data-

base we also looked for the presence of a bursty dynamics in the apparition of the most popular

opening-line.

We have analyzed the database within the framework of two models based on a preferential

grow mechanism, Yule-Simon Model (YSM) and Cattuto’s Model (CM), since both models

allow to generate artificial databases for opening-lines with power law distribution. In particu-

lar, the model proposed by Cattuto et al. includes a memory kernel to this process. Our analy-

sis demonstrates that both models can reproduce to a certain extent the popularity

distribution obtained from the chess database, but CM seems to be more realistic since it

reproduces the power law distribution of opening-lines using the measured value for the prob-

ability of introducing a new opening-line. In addition, due to the memory kernel, we show

that CM is also able to reproduce the long-range correlations and size effects observed in the

database while, as expected, YSM lacks memory. Finally, neither CM or YSM generate a bursty

dynamics, for this reason CM is adequate to model the whole database but not to analyze this

specific dynamic in individual players.

Specifically, we showed that the popularity distribution of opening-lines at depth d = 4 is

well described by CM using the parameters p measured in the database, and τc determined by

the fitting of the mean inter-event time of the most popular opening-line. YSM reproduces

this popularity distribution but using a value of p that is much greater than the measured

value. Furthermore, CM exhibits long-range correlation and size effects, independently of the

assignation rule used to construct the time series, though the degree of persistence does

depend on the assignation. In particular, CM reproduces the size effects and persistence

observed in the database when the Gaussian Random Assignation rule (GAR) is used. This

suggests that there are some underlying correlations relating the popularity of chess game-

lines and the corresponding generated time series, which are not captured by CM.

Furthermore, we found from the fit of the cumulated inter-event time distribution of the

complete chess database—using the most popular opening-line— that we cannot assure the

presence of burstiness. The exponent of the Weibull distribution is essentially one (β = 0.927)

and, therefore, the dynamics can be well approximated by a Poisson process. This is validated

further using the burstiness parameter since B� 10−2 and also because the fitted value of τ0

(see Eq (7)) and the computed value of τP (see Eq (10)) are very similar. In addition, since the

inter-event times of both CM and YSM are also well described by a Poisson process, then the

inter-event times of the database can be reproduced using both models. The lack of burstiness

in CM suggests that burstiness phenomena–which is frequently used to explain the emergence
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of long-range memory effects– may play a marginal role in the presence of long-range correla-

tion effects. Instead, long-range correlations emerge due to the aging of game-lines as database

grows.

Although the behavior of the complete set of players does not exhibit bursty behavior, the

analysis of the inter-event times of individual players, provided that they have a sufficient long

number of played games, does have bursty behavior. This indicates that the lack of burstiness

at the group level is a consequence of the aggregation of the data. The two growing mecha-

nisms tested in this work, player aggregation and game aggregation confirm this idea, since

the first preserves burstiness in a much longer time scale than the second. This may be due to

underlying correlations between players, e.g. the two contenders in a game tend to have similar

ELO rankings, and then the game-lines are necessarily correlated.

Concluding, the long-range memory observed in the opening-lines of the growing chess

database can be well described with CM. However, new ingredients are necessary to explain

the bursty dynamics present in some growing stages of the database and in individual players.

Moreover, further studies are necessary to test the implications of the memory kernel in the

mechanism of the database generation.
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