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Abstract

Introduction

Human papillomavirus (HPV) 52 is a carcinogenic, high-risk genotype frequently detected in

cervical cancer cases from East Asia, including Korea.

Materials and Methods

Sequences of HPV52 detected in 91 cervical samples collected from women attending

Seoul St. Mary’s Hospital were analyzed. HPV52 genomic sequences were obtained by

polymerase chain reaction (PCR)-based sequencing and analyzed using Seq-Scape soft-

ware, and phylogenetic trees were constructed using MEGA6 software.

Results

Of the 91 cervical samples, 40 were normal, 22 were low-grade lesions, 21 were high-grade

lesions and 7 were squamous cell carcinomas. Four HPV52 variant lineages (A, B, C and D)

were identified. Lineage B was the most frequently detected lineage, followed by lineage C.

By analyzing the two most frequently detected lineages (B and C), we found that distinct var-

iations existed in each lineage. We also found that a lineage B-specific mutation K93R

(A379G) was associated with an increased risk of cervical neoplasia.

Conclusions

To our knowledge, we are the first to reveal the predominance of the HPV52 lineages, B and

C, in Korea. We also found these lineages harbored distinct genetic alterations that may

affect oncogenicity. Our findings increase our understanding on the heterogeneity of HPV52

variants, and may be useful for the development of new diagnostic assays and therapeutic

vaccines.
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Introduction

Human papillomavirus (HPV) is the major causative agent of cervical cancer, a leading cause

of death among women worldwide [1]. The virus genome is divided into three functional

regions: an upstream regulatory region, an early region, and a late region. The upstream regu-

latory region is a non-coding region, referred as the long control region (LCR), which regu-

lates transcriptional and replication activities. In comparison, the early and late regions are

coding regions. Early regions (E1, E2, E4, E5, E6 and E7) encode for non-structural proteins

while late regions (L1 and L2) encode for structural proteins [2]. HPV is markedly heteroge-

neous with more than 200 genotypes which are classified into types, lineages, and sub-lineages

based on the L1 sequence. The L1 sequences among different types differ by at least 10%, and

those of lineages differ by>1% [3, 4]. The persistence of HPV contributes to the progression

of cervical infection to cervical cancer. In particular, oncogenicity varies according to the HPV

genotype, as well as the lineage of some genotypes [4–6]. Eight most common high-risk HPV

genotypes (HPV16, HPV18, HPV31, HPV33, HPV35, HPV45, HPV52 and HPV58) are

responsible for 91% of cervical cancers [7, 8]. Of these, HPV52 is a high-risk genotype and one

of the nine HPV types (HPV6, HPV11, HPV16, HPV18, HPV31, HPV33, HPV45, HPV52 and

HPV58) targeted by the recent Food and Drug Administration (FDA) approved HPV 9-valent

vaccine [9].

Given that HPV52 is recognized as a high-risk genotype commonly found in cervical can-

cers from East Asia [10–12], we attempted to characterize HPV52 variants circulating in Korea

and to investigate their association with cervical cancer development.

Materials and Methods

Cervical samples

Altogether, 91 cervical cytology/tissue samples that had tested positive for HPV52 were used

for this study. These samples had been collected as part of the routine clinical management at

Seoul St. Mary’s Hospital (Seoul, Korea) and all were treatment-naive. This study was

approved by the institutional review board of the Catholic University of Korea, College of

Medicine and the participants provided written informed consent. Pathologic features of

patients are summarized in Table 1. The quality of DNA extracted from cytology/tissue

Table 1. Cervical pathologies of study subject.

Cervical pathology Number of subjects (percentage) (n = 91) Lineages Mean age (years) (±SD)

A (n = 5) B (n = 79) C n = 6) D (n = 1)

Normal 40 (44.0) 3 35 2 0 40.2 (±9.6)

Low-grade lesions 22 (24.2) 2 19 0 1 39.6 (±10.7)

ASCUS 2

LGSIL 20

High-grade lesions 21 (23.1) 0 17 4 0 46.7 (±11.9)

HGSIL 14

CIN3 4

CIS 3

SCC 7 (7.7) 0 7 0 0 57.6 (±18.0)

Unknown 1 (1.1) 0 1 0 0

ASCUS: atypical squamous cells of undetermined significance; CIN3: cervical intraepithelial neoplasia 3; CIS: carcinoma in situ; LGSIL: low-grade

squamous intraepithelial lesions; HGSIL: high-grade squamous intraepithelial lesions; SCC: squamous cell carcinoma.

doi:10.1371/journal.pone.0168178.t001
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samples was assessed by amplifying a 932-bp fragment of the long-control region (LCR). The

HPV genotype was ascertained by demonstrating a nucleotide sequence similarity of>90%,

compared with the HPV52 prototype (GenBank accession no. X74481).

Nucleotide sequencing

E6, E7, L1 and LCR sequences were amplified with long- or short-fragment polymerase chain

reaction (PCR). Long-fragment PCR was performed on good-quality samples with primers

50-ATG TCC ATT GAG TCA GGT CC-30 and 50-TGC ATT TTC ATC CTC GTC C-30. When

the first-round PCR product was not strong enough for sequencing, a second-round PCR was

performed using inner primers 50-GGT CCT GAC ATT CCA TTA CC-30 and 50-CCT CTA
CTT CAA ACC AGC CT-30 when necessary 0 (S1 Table). Each PCR was conducted in a 50-μL

reaction mixture containing 1 unit of Phusion Hot Start II High-Fidelity DNA Polymerase

(Thermo Fisher Scientific, Waltham, USA), 200 μM of dNTPs and 0.25 μM of each primer. An

aliquot of 5 μL of extracted DNA was added as template. The thermal cycling began with a

30-sec initial denaturation and enzyme activation at 98˚C, followed by 35 cycles of 10-sec

denaturation at 98˚C, 30-sec annealing at 62˚C and 100-sec extension at 72˚C, and ended with

an 10-min final extension at 72˚C. When long-fragment PCR was not successful, short-frag-

ment PCR was performed with primer pairs E6/E7 (50-TGC ACT ACA CGA CCG GTT A-30

and 50-CAT CCT CGT CCT CTG AAA TG-30), L1A (50-ATG TCC ATT GAG TCA GGT CC-30

and 50-GCA CAG GGT CAC CTA AGG TA-30), L1B (50-AGG ATG GGG ACA TGG TAG AT-30

and 50-CAC AGA CAA TTA CCC AAC AGA C-30) and LCR (50-GTC TGC ATC TTT GGA GGA
CA-30 and 50-TGC GTT AGC TAC ACT GTG TTC-30), respectively. When necessary, a sec-

ond-round PCR, using inner primers E6/E7 (50-TTA CCG TAC CCA CAA CCA CT-30 and

50-CCT CTA CTT CAA ACC AGC CT-30), L1A (50-GGT CCT GAC ATT CCA TTA CC-30 and

50-GGG CAC ATC ACT TTT ACT AGC-30), L1B (50-ACA GGA TTT GGT TGC ATG G-30 and

50-TTC TTT GTG GAG GTA CGT GG-30) and LCR (50-TTT GTT ACA GGC AGG GCT AC-30

and 50-CGT TTT CGG TTA CAC CCT A-30), was performed (S2 Table). Each PCR was con-

ducted in a 30-μL reaction mixture containing 0.75 unit of HotStarTaq Plus DNA Polymerase

(QIAGEN, Hilden, Germany), 200 μM of dNTPs and 0.25 μM of each primer. An aliquot of

3 μL of extracted DNA was added as template. The thermal cycling began with a 5-min initial

denaturation and enzyme activation at 95˚C, followed by 35 cycles of 1-min denaturation at

94˚C, 1-min annealing at 58˚C and 40-sec extension at 72˚C, and ended with an 8-min final

extension at 72˚C. PCR products were sequenced from both directions and analyzed using

Seq-Scape software (version 2.5, Applied Biosystems, Foster City, CA, USA). Repeated

sequencing was performed as a confirmation when mutations occurred only once.

Phylogenetic tree construction

A maximum-likelihood tree was constructed using MEGA6 (Molecular Evolutionary Genetic

Analysis software program, version 6.0; http://www.megasoftware.net) [13]. The tree was com-

prised of concatenated E6-E7-L1-LCR sequences of unique HPV52 strains collected in this

study and from a published reference strain of each lineage (A1: X74481, A2: HQ537739, B1:

HQ537740, B2: HQ537743, C1: HQ537744, C2: HQ537746, D: HQ537748). Bootstrap values

of key nodes were generated by 1000 resamplings. To root the tree, HPV67 prototype

sequences (NCBI accession no. NC_004710) were set as the outgroup.

Statistical analysis

Statistical analysis was performed using a commercially available statistical software package

(SPSS statistical software version 18.0 [SPSS Inc, Chicago, IL, USA]). Fisher’s exact test and
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logistic regression analysis were used to analyze categorical data. The level of significance was

set at P< 0.05.

Results

Characteristics of cervical samples

Of the 91 cervical cytology samples, 40 (44.0%) showed normal pathologic findings (normal

squamous cell epithelium; Table 1). We separated pre-malignant lesions into ‘low-grade

lesions’ and ‘high-grade lesions’. ‘Low-grade lesions’ (n = 22) included ASCUS (atypical squa-

mous cells of undetermined significance) and LGSIL (low-grade squamous intraepithelial

lesions), while ‘high-grade lesions’ (n = 21) included HGSIL (high-grade squamous intrae-

pithelial lesions), CIN3 (cervical intraepithelial neoplasia 3) and CIS (carcinoma in situ). For

malignant lesions, seven (7.7%) squamous cell carcinomas (SCCs) were included.

Lineage identification

Altogether, four HPV52 variant lineages were identified based on the phylogenetic tree topol-

ogy (Fig 1). Lineages A, B and C were closely related, while lineage D was relatively distant.

Lineage B was most frequently detected (86.8%, 79 of 91 samples; Table 1). The majority of

high-grade lesions (80.9%, 17 of 21 samples) belonged to lineage B, and the remaining high-

grade lesions belonged to lineage C (19.1%). Lineage B harbored all of the seven SCCs and

their association was significant (P = 0.02).

HPV52 sequence variations

In this study, 40.6% (3226 nucleotides) of the HPV52 genome (7942bps, X74481) was

sequenced (S3–S6 Tables). Nine E6 variants with 11 nucleotide positions showing sequence

polymorphisms were identified, encompassing three nonsynonymous mutations (S3 Table).

Five variants with 12 nucleotide positions showing sequence polymorphisms with seven non-

synonymous mutations were identified in E7 (S4 Table). L1 harbored 26 variants and 54 nucle-

otide sequence polymorphisms with 11 nonsynonymous mutations (S5 Table). The

noncoding LCR was the most heterogeneous, encompassing 38 variants showing 87 nucleotide

sequence variations (S6 Table).

An analysis of sequences for the E6, E7, L1 and LCR genes suggested that HPV52 harbors

lineage-specific variations. Lineage B, the most frequently detected lineage, harbored a number

of lineage-specific variations (Table 2). Of the 91 samples, K93R (A379G), the most frequently

detected nonsynonymous mutation (85.71%) in E6, was only found in lineage B. In addition, a

novel mutation, 7935_7936 insT in LCR was significantly associated with lineage B

(P< 0.0001). Lineage C also harbored lineage-specific variations (Table 3), of which an E6

nonsynonymous mutation (L83V, concurrent mutations of C348G and G350T) and five E7

nonsynonymous mutations, S52D (concurrent mutations of A706G and G707A), Y55D

(T727G), H61Y (C733T), D64N (G742A) and L99R (T848G), showed significant associations

with the lineage (P< 0.0001).

Discussion

HPVs are circular double-stranded DNA viruses that consist of heterogeneous variants with

different pathogenicities [4, 14]. HPV52 is one of the most frequently detected carcinogenic

high-risk genotypes in East Asia [15–17] and is one of the genotypes targeted by the recent,

USA FDA-approved HPV 9-valent vaccine [9]. However, only a few studies on the pathogenic-

ity of HPV52 are available [18]. In this regard, we attempted to achieve three aims. Firstly, we
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aimed at identifying HPV52 variants and lineages based on E6, E7, L1 and LCR sequences.

Secondly, we attempted to delineate lineage-specific variations. Lastly, we sought to examine

the risk association of various lineages, variants and mutations. As a result, we identified four

HPV52 variant lineages (A, B, C and D), with lineage B (86.8%) being the most frequently

detected, followed by lineages C (6.6%), A (5.5%), and D (1.1%). By further analyzing the two

most frequently detected lineages, we found distinct sequence variations in each lineage. Of

note, one of lineage B-specific mutations was found to associate with a higher risk for cervical

cancer.

Our findings of the two most frequently detected lineages in HPV52, B and C, also confirm

previous observations [19, 20]. These two lineages are associated with high-grade lesions

[19, 21], and we have shown that they harbor a number of lineage-specific variations (Tables 2

and 3). Lineage B-specific mutations included the most frequently detected nonsynonymous

mutation K93R (A379G) in E6, while lineage C-specific mutations included an E6 nonsynon-

ymous mutation (L83V, concurrent mutations of C348G and G350T) and five E7 nonsynon-

ymous mutations, S52D (concurrent mutations of A706G and G707A), Y55D (T727G), H61Y

(C733T), D64N (G742A) and L99R (T848G)).

Fig 1. HPV52 variant lineage distribution of study samples. (A) Lineages A (sublineages: A1 and A2), B (sublineage: B2), C

(sublineage: C2) and D were detected. (B) A phylogenetic tree was constructed from 57 HPV52 variants using concatenated L1, LCR, E6

and E7. A maximum-likelihood tree was constructed using the program, MEGA6. Bootstrap values of key nodes generated by 1,000

resamplings are shown. The length of the scale bar represents 0.005 substitutions per nucleotide position. To root the tree, HPV67 prototype

sequences (NCBI accession no. NC_004710) were set as outgroup. The GenBank accession no. of study samples are

KY077824-KY077901.

doi:10.1371/journal.pone.0168178.g001
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Our findings suggest that lineage-specific mutations may contribute to the carcinogenicity

of each HPV52 lineage. E6 is an oncogene that interacts with a well-known tumor suppressor,

TP53, increasing the risk for the accumulation of genetic changes [22] and inhibiting cellular

responses such as cell cycle arrest, induction of apoptosis and DNA damage repair [23, 24].

K93R (A379G) is a nonsynonymous mutation located in the E6 oncogene, which may have a

specific role in carcinogenesis: it is not only the most frequently detected variation [25], but is

also independently associated with high-grade lesions [26]. An alteration at nucleotide posi-

tion 350 in E6 was found for both lineages B and C. However, lineage C harbored an additional

alteration at nucleotide position 348, yielding a nonsynonymous mutation, L83V. L83V have

been reported not only in HPV52, but also in HPV16 and HPV33 [25, 27, 28]. In addition, an

association of HPV16 L83V with high-grade lesions has been shown [29], suggesting that it

may contribute to the pathogenicity of lineage C [19]. It is noticeable that E7 nonsynonymous

mutations (S52D, 55D, H61Y, D64N and L99R) were harbored by lineage C, but not by lineage

Table 2. List of nucleotide variations associated with HPV52 lineage B.

Non-B lineages (n = 12) B lineage (n = 79) P value* Adjust odds ratio† (95% CI) P value†

E6 nucleotide change

G350T 7 79 <0.0001 77.31 (12.39 –Infinity) <0.0001

A379G 0 78 <0.0001 186.39 (48.04 –Infinity) <0.0001

E7 nucleotide change

C751T 0 79 <0.0001 92.87 (35.35 –Infinity) <0.0001

A801G 7 79 <0.0001 77.31 (12.39 –Infinity) <0.0001

L1 nucleotide change

A5771G 0 76 <0.0001 350.56 (59.44–Infinity) <0.0001

T5972C 0 78 <0.0001 186.39 (48.04– Infinity) <0.0001

G6110A 0 79 <0.0001 92.87 (35.35–Infinity) <0.0001

G6218A 7 79 <0.0001 77.31 (12.39–Infinity) <0.0001

T6710G 0 79 <0.0001 92.87 (35.35–Infinity) <0.0001

T6764C 0 79 <0.0001 92.87 (35.35–Infinity) <0.0001

A6794G 0 78 <0.0001 186.25 (47.99–Infinity) <0.0001

C6824T 0 79 <0.0001 92.87 (35.35–Infinity) <0.0001

C6917A 7 78 <0.0001 84.04 (7.25–974.61) 0.0004

G7052A 2 78 <0.0001 166.80 (21.96–Infinity) <0.0001

LCR nucleotide change

G7168C 6 71 0.0025 8.89 (2.31–34.20) 0.0015

C7207A 7 73 0.0051 9.32 (2.17–40.10) 0.0027

G7371T 4 77 <0.0001 171.31 (14.34–Infinity) <0.0001

G7622A 7 79 <0.0001 77.31 (12.39–Infinity) <0.0001

T7624G 7 79 <0.0001 77.31 (12.39–Infinity) <0.0001

A7657C 0 79 <0.0001 92.87 (35.35–Infinity) <0.0001

T7659C 6 79 <0.0001 105.84 (17.45–Infinity) <0.0001

G7712C 7 79 <0.0001 77.31 (12.39–Infinity) <0.0001

G7861A 7 79 <0.0001 77.31 (12.39–Infinity) <0.0001

A7865G 1 77 <0.0001 225.24 (41.70–Infinity) <0.0001

7935_7936 insT 7 79 <0.0001 77.31 (12.39–Infinity) <0.0001

A7938G 1 48 <0.0001 18.05 (2.19–148.62) 0.0071

T13C 0 79 <0.0001 92.87 (35.35–Infinity) <0.0001

Statistical analyses were performed using *Fisher’s exact test, †multivariable logistic regression (age-adjusted).

doi:10.1371/journal.pone.0168178.t002
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B. E7 interacts with the retinoblastoma (Rb) protein, causing uncontrolled cell division and

inactivating its function as a tumor suppressor [30, 31].

Conclusions

HPV52 is the second to fifth most frequently detected high-risk HPV genotype in Korea [15,

32–34]. Our data demonstrated for the first time that HPV52 lineages (B and C) circulating in

Korea harbor distinct genetic alterations that may affect pathogenicity. We also observed that

most of the cervical samples (ranging from normal cervix to SCC) were infected with HPV52

lineages B or C that carried putative high-risk mutations. Our findings may provide a useful

basis to understand the heterogeneity of HPV52 variants in Korea, and to assist the develop-

ment of diagnostic assays and vaccines.
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S1 Table. Primers for HPV-52 long-fragment PCR amplification.

(XLSX)

S2 Table. Primers for HPV-52 short-fragment PCR amplification.

(XLSX)

S3 Table. Nucleotide sequence variations of HPV52 E6.

(XLSX)

S4 Table. Nucleotide sequence variations of HPV52 E7.

(XLSX)

Table 3. List of nucleotide variations associated with HPV52 lineage C.

Non-C lineages (n = 85) C lineage (n = 6) P value* Adjust odds ratio† (95% CI) P value†

E6 nucleotide change

A530G 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

C348G and G350T 0 3 <0.0001 52.83 (7.31–Infinity) 0.0011

E7 nucleotide change

T573A 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

C662T 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

A706G and G707A 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

T727G 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

C733T 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

G742A 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

T848G 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

L1 nucleotide change

T5578C 0 3 <0.0001 140.86 (16.81–Infinity) 0.0001

G5720A 0 3 <0.0001 52.83 (7.31–Infinity) 0.0011

A5909G 0 5 <0.0001 155.81 (26.17–Infinity) <0.0001

G6083A 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

C6443T 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

G6698A 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

G7112A 0 6 <0.0001 41.78 (14.64–Infinity) <0.0001

Statistical analyses were performed using *Fisher’s exact test, †multivariable logistic regression (age-adjusted).

doi:10.1371/journal.pone.0168178.t003
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31. Jones DL, Münger K. Interactions of the human papillomavirus E7 protein with cell cycle regulators.

Semin Cancer Biol. 1996; 7:327–37. doi: 10.1006/scbi.1996.0042 PMID: 9284525

32. Lee GH, Kang HJ, Kim SY, Park CM. The prevalence of human papilloma virus infections according to

Pap smear results in Jeju island. Korean J Obstet Gynecol. 2011; 54:689–95.

33. Choi IH, Jin SY, Lee DW, Kim DW, Jeen YM. Cytomorphologic features according to HPV DNA type in

histologically proven cases of the uterine cervix. Korean J Pathol. 2011; 45:612–20.

34. Kim TE, Kim HW, Lee KE. Distribution of human papillomavirus 52 and 58 genotypes, and their expres-

sion of p16 and p53 in cervical neoplasia. Korean J Pathol. 2014; 48:24–9. doi: 10.4132/KoreanJPathol.

2014.48.1.24 PMID: 24627691

Human Papillomavirus 52 in Korea

PLOS ONE | DOI:10.1371/journal.pone.0168178 December 15, 2016 10 / 10

http://dx.doi.org/10.1086/379198
http://www.ncbi.nlm.nih.gov/pubmed/14624377
http://dx.doi.org/10.1086/424854
http://www.ncbi.nlm.nih.gov/pubmed/15478061
http://dx.doi.org/10.1158/1055-9965.EPI-05-0864
http://www.ncbi.nlm.nih.gov/pubmed/16614130
http://www.ncbi.nlm.nih.gov/pubmed/2537532
http://dx.doi.org/10.1006/scbi.1996.0042
http://www.ncbi.nlm.nih.gov/pubmed/9284525
http://dx.doi.org/10.4132/KoreanJPathol.2014.48.1.24
http://dx.doi.org/10.4132/KoreanJPathol.2014.48.1.24
http://www.ncbi.nlm.nih.gov/pubmed/24627691

