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Abstract

In recent years, serious infectious diseases tend to transcend national borders and widely

spread in a global scale. The incidence and prevalence of epidemics are highly influenced

not only by pathogen-dependent disease characteristics such as the force of infection, the

latent period, and the infectious period, but also by human mobility and contact patterns.

However, the effect of heterogeneous mobility of individuals on epidemic outcomes is not

fully understood. Here, we aim to elucidate how spatial mobility of individuals contributes to

the final epidemic size in a spatial susceptible-exposed-infectious-recovered (SEIR) model

with mobile individuals in a square lattice. After illustrating the interplay between the mobility

parameters and the other parameters on the spatial epidemic spreading, we propose an

index as a function of system parameters, which largely governs the final epidemic size. The

main contribution of this study is to show that the proposed index is useful for estimating

how parameter scaling affects the final epidemic size. To demonstrate the effectiveness of

the proposed index, we show that there is a positive correlation between the proposed index

computed with the real data of human airline travels and the actual number of positive inci-

dent cases of influenza B in the entire world, implying that the growing incidence of influenza

B is attributed to increased human mobility.

Introduction

Pandemics are recognized as a serious threat and concern all over the world. To cope with this

issue, considerable efforts have been made for investigating the mechanism of the spread of

infectious diseases and finding possible control measures for preventing epidemic outbreaks.

In particular, recent epidemics are more likely to spread in a broad area than before, because

of the effect of worldwide human mobility through a variety of transportation networks [1, 2].

Mathematical models have been a powerful tool to reveal the effect of human behaviour on

epidemic spreading and examine the effectiveness of countermeasures against emerging and

re-emerging infectious diseases. To study spatial spreading of epidemics which cannot be
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treated by deterministic compartmental models assuming a well-mixed population [3, 4],

many mathematical models have incorporated both spatial structures and host mobility. The

two major classes of such computational models are the individual-based (agent-based) mod-

els and the metapopulation models [5].

The individual-based models have been widely used to simulate the spreading of epidemics

at a microscopic level (i.e. a level of individual hosts), assuming stochastic processes for infec-

tion, recovery, birth, death, and movement events [5]. Many recent models have incorporated

directly or indirectly the real data of population distributions, human mobility patterns, and

human proximity, for investigating the spatiotemporal dynamics of epidemic spreading and

assessing the effects of preventive measures [2, 6–11]. The advantage of individual-based mod-

els is that they can enhance the reality of simulations by appropriately setting many parameters

estimated from available data sources. However, the outcome of the simulation can be largely

variable from trial to trial due to the repeated stochastic calculations and highly dependent on

the parameter conditions as well as initial conditions. Therefore, it is tough to gain an insight

into essential factors that mainly contribute to the spatial spreading of epidemics in individ-

ual-based models without a large number of simulations.

On the other hand, metapopulation models describe the epidemic dynamics of subpopula-

tions in spatially separated patches connected via migration pathways and deal with human

mobility patterns at a macroscopic level [12, 13]. The statistical properties of various human

traveling patterns via transportation networks, such as airlines, railways, and commuting

roads, have been well incorporated into the metapopulation models [14–25]. Compared with

individual-based models, the metapopulation models are analytically tractable. The previous

studies have theoretically derived the global invasion threshold [18, 20, 21] and the critical

intervention threshold for containment of epidemics [26] in metapopulation models with het-

erogeneous patch connectivity. However, the stochastic nature of the movement of individual

hosts is not explicitly considered in the metapopulation models because they only describe the

mobility dynamics of subpopulations.

In various types of epidemic models, it has been the central issue how the final epidemic

size is determined by the individual system parameters or the composite of them. The impor-

tant measures which determine the epidemic threshold and predict the final epidemic size

have been derived for several model types, e.g. the basic reproduction number for the standard

compartment models [4, 5] and the global invasion threshold for the metapopulation models

[20, 21]. However, such a measure is yet to be established for individual-based models with

stochastic mobility of individuals. This issue has motivated the present study.

In this study, we aim to perceive the key factors that govern the final epidemic size in spatial

epidemic models with heterogeneous mobility of individuals and clarify how each key factor

contributes to the final epidemic size. For this purpose, we employ a susceptible-exposed-

infectious-recovered (SEIR) model with mobile individuals in a square lattice. Since multiple

individuals can be located at a single lattice site, our model is similar to a spatial metapopula-

tion model where each site of the lattice corresponds to the patch containing a subpopulation

[5, 16, 27]. However, in our model, the subpopulation dynamics is given not by deterministic

differential equations but by individual-based stochastic processes. Spatial metapopulation

models have been frequently used for data-driven simulations to investigate geographical

propagation of measles [28–30], influenza [31, 32], and smallpox [10, 19], but universal prop-

erties of such models have been less studied so far. The purpose of our study is to clarify how

the final epidemic size is determined by the interplay between disease characteristics and spa-

tial mobility of individuals. Note that the time-varying contact patterns in our model cannot

be represented by the lattice-based cellular automata models where contact relationships are

static [33–39].

Parameter Scaling for Epidemic Size in a Model with Mobile Individuals

PLOS ONE | DOI:10.1371/journal.pone.0168127 December 14, 2016 2 / 16

Competing Interests: The authors have declared

that no competing interests exist.



We separate the infected individuals into the exposed ones and infectious ones. The

exposed individuals are not able to transmit a disease to other susceptible individuals, whereas

the infectious individuals are able to do. We assume that the mobility of infectious individuals

can be lower than that of the other classes of individuals due to severe symptoms and/or travel

restrictions [40–42]. Under the individual’s mobility depending on its internal state, we first

perform individual-based simulations of the SEIR model in a square lattice and clarify the

interplay between the latent period and the mobility for the final epidemic size. We find that

the distance that each infected individual moves during the latent and infectious periods plays

a decisive role for the final epidemic size. Then, based on the theory of diffusion processes, we

present an index giving an epidemic threshold that is almost invariant under parameter scal-

ing. Finally, we demonstrate a strong correlation between the proposed index incorporating

the real data of human airline travels and the incidence of influenza B. Our result implies an

important role of human mobility on the final epidemic size.

Methods

Models

We adopt the spatial SEIR model in which individuals move randomly on a two-dimensional

lattice with the periodic boundary condition as illustrated in Fig 1. As time goes by, each indi-

vidual can change its internal state as well as its spatial position.

First, we explain the state transition of individuals. Each individual is in a susceptible state

(S), an exposed state (E), an infectious state (I), or a recovered state (R). Note that both exposed

and infectious individuals are infected but only infectious ones are capable of transmitting the

disease to susceptible ones. The individuals sharing the same lattice site are regarded to be in

contact with each other. Susceptible individuals can be infected only when they share a lattice

site with one or more infectious individuals. We assume that a susceptible individual becomes

an exposed one with probability p for a contact with each infectious individual in one unit of

time. If a susceptible individual shares a site with ν infectious individuals, then the susceptible

individual becomes an exposed one with probability 1 − (1 − p)ν in one unit of time. This prob-

ability is independent of the numbers of susceptible, exposed, and recovered individuals posi-

tioned at the site. An exposed individual becomes an infectious individual after a latent period

of fixed length τE. Then, after an infectious period of fixed length τI, an infectious individual

becomes a recovered individual who never again becomes susceptible.

Second, we describe the mobility of individuals. Each individual is positioned at one lattice

site, and then, in one unit of time, will hop from site to site in a probabilistic manner. Multiple

individuals can be positioned at a single site. It is possible that a site contains no individuals.

With a single hop, an individual can move to one of its eight neighbouring sites as indicated in

Fig 1. The probability that susceptible, exposed, and recovered individuals hop to each one of

the destination sites is given by the normal hopping rate λ with 0 < l � 1

8
, while infectious

individuals can have a lower hopping rate αλwith 0� α� 1 because they are usually less active

and sometimes the target of social distancing [40–42]. The value 1 − α represents the mobility

reduction rate of infectious individuals. Both the normal and lower hopping rates are indepen-

dent of the situation of the destination site. In the case of α = 0, infectious individuals do not

move, while in the case of α = 1 there is no mobility reduction.

Finally, the simulation methods are described. The number of susceptible, exposed, infec-

tious, and recovered individuals at time t are denoted by nS(t), nE(t), nI(t), and nR(t), respec-

tively. Since birth and death of individuals are neglected in our model, the total number of

individuals, given by n+1� nS(t) + nE(t) + nI(t) + nR(t), remains constant with time. At the ini-

tial condition, all the individuals are distributed randomly in the lattice sites. They are all
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susceptible except for a single infectious individual which is randomly chosen. Therefore, we

have nS(0) = n, nI(0) = 1, and nE(0) = nR(0) = 0. The initial density of susceptible individuals is

denoted by r0 �
n

L2 for an L × L square lattice. At the end of an epidemic outbreak, it follows

that nE(t) = nI(t) = 0 and nS(t) + nR(t) = n+1. We define the proportion of the recovered indi-

viduals as r(t)� nR(t)/(n+1). Then r1� limt!1r(t) represents the final size of an epidemic.

The final size r1 depends on the parameters, ρ0,τE, τI,p,λ, and α. The parameter values are set

at ρ0 = 0.4 (L = 500, n = 105) and p = 1, unless otherwise noted.

Results

Interplay between the latency period and the mobility

Fig 2 demonstrates the spatial spreading of an epidemic in our model with lattice size L = 100.

The snap shots in Fig 2(A)–2(D) represent the time evolution of the spatial distributions of the

infectious individuals. We see that an infectious individual initially located close to the centre

causes the diffusion of the infection towards the lattice boundary. This spatial pattern is pretty

irregular due to the stochastic mobility of the individuals compared with the ring-shaped

Fig 1. Schematic illustration of the spatial SEIR model with mobile individuals in the square lattice. The individuals randomly hops from site

to site. Each of the susceptible (S), exposed (E), and recovered (R) individuals hops to one of the eight neighbouring sites with the hopping rate λ,
while each of the infectious individuals (I) hops similarly with the rate λα where 1−α represents the mobility reduction rate.

doi:10.1371/journal.pone.0168127.g001
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propagation generated by other lattice-based models [5, 39]. The number of the infectious

individuals, nI(t) varies with time as shown in Fig 2(E). Initially nI(t) grows rapidly until the

highest peak is achieved, and then, almost monotonically decays to zero. We can evaluate the

final size r1 of this outbreak by the value of r(t) at the end of the outbreak. Whether the initial

infectious individual brings about a global spread of infection or not depends on the parameter

conditions as well as initial conditions.

The population density ρ0 is one of the essential parameters that give a critical epidemic

threshold separating the non-epidemic and epidemic regimes [20]. The larger the epidemic

threshold is, the less likely to spread the epidemic is. Fig 3 shows that the final size exhibits a

sharp transition at a critical value of ρ0 in all the four cases with different combinations of the

latent period (τE = 1,20) and the mobility reduction (α = 0,1). The epidemic threshold is larger

for a shorter latent period and a larger mobility reduction rate. The significant increase in the

epidemic threshold is observed only when the latent period is short (τE = 1) and the mobility

reduction is full (α = 0). The short latent period limits the area where the exposed individuals

move around, and as a result, the region where they turn to infectious individuals becomes

small. On the other hand, the large mobility reduction prevents the infectious individuals from

moving around in a wide region. If either one of the two conditions is not satisfied, the infec-

tious individuals contact with many susceptible individuals, causing a large-scale outbreak.

This result suggests that the social distancing of infectious individuals, such as travel restric-

tions and quarantine, is not so much effective for infectious diseases with a long latent period.

We infer that the mobility of exposed individuals is also required to be reduced for diminish-

ing the risk of an outbreak if the latent period is long.

The characteristic length associated with the final epidemic size

To clarify how the final size depends on the mobility parameters, we consider the mobility of

each individual as a random walk. We introduce the characteristic length l which represents

the distance that the pathogens are carried by a single infected individual. The typical distance

that an individual moves with a hopping rate λ during time τ is given by 2
ffiffiffiffiffiffiffi
3lt
p

(see Appendix

for the derivation). Thus, we introduce a characteristic length l for the latent and infectious

periods as follow:

l ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lðtE þ atIÞ

p
; ð1Þ

because the hopping rate for the latent period is λ and that for the infectious period is αλ. Dur-

ing the infectious period, the frequency of infection events is influenced by the mobility of sus-

ceptible individuals who come to the site where infectious individuals are present. To evaluate

the effective range that the pathogens can reach during the latent and infectious periods, we

correct the characteristic length in Eq 1 as follows:

l� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lðtE þ ð1þ aÞtIÞ

p
; ð2Þ

where the movement of susceptible individuals with hopping rate λ during the period τI is

Fig 2. Spatial spreading of an epidemic. Time evolution of the epidemic spreading in individual-based

simulations of the spatial SEIR model is shown. Initially all the individuals are susceptible except for a single

infectious individual located at the centre of the lattice space. The parameter values are set at L = 100, n = 104,

τE = 8, τI = 16, p = 1.0, l ¼ 1

8
, and α = 0.5. (a)-(d) The snap shots of the spatial distribution of the infectious

individuals for (a) t = 100, (b) t = 300, (c) t = 400, and (d) t = 500. The density of the infectious individuals in each

site is indicated by the colour strength. (e) The time course of the number nI(t) of infectious individuals. The

diamonds correspond to the patterns (a)-(d).

doi:10.1371/journal.pone.0168127.g002
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counted as an additional movement of infectious individuals with the same hopping rate in

the same duration.

Now we numerically investigate the dependency of the final size on the corrected character-

istic length l�. The computed final size r1 is a randomly sampled value from 100 simulation

results with different initial conditions for each set of parameter values. Fig 4 shows that r1
depends strongly on the corrected characteristic length for the latent and the infectious peri-

ods. In this figure, the values of the final size are superimposed for 375 parameter sets includ-

ing all possible combinations of τE = 2,4,8,16,32, tI ¼ 2; 4; 8; 16; 32; l ¼ 1

8
; 1

9
; 1

18
, and α =

0,0.1,0.5,0.9,1. The result shows that all data points approximately collapse to a single curve.

This means that the final size can be characterized by the single quantity l�.
Next, the relationship between the corrected characteristic length and the infection process

is examined. We introduce a distance d that represents the maximum distance between the ini-

tial position of the initial infectious individual and the position at which an individual who

was infected by a contact with the initial infectious individual changes to an infectious individ-

ual. In other words, this distance measures the strength of the spatial diffusion of the pathogens

carried by individuals that are infected initially. Fig 5 shows that d is positively correlated

with the corrected characteristic length l�. The line fitting indicates approximately a linear

Fig 3. Interplay between the latent period and the mobility for the final size. The final size r1 is plotted against the population

density ρ0. For each parameter value, the results of 100 simulations are plotted. The four cases are compared with respect to the latent

period and the mobility, including τE = 1 and α = 0 (blue circles), τE = 1 and α = 1 (orange diamonds), τE = 20 and α = 0 (red squares),

and τE = 20 and α = 1 (purple triangles). The other parameter values are set at L = 500, τI = 20, p = 1, and λ ¼ 1

9
.

doi:10.1371/journal.pone.0168127.g003
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correlation between l� and d. Therefore, it is validated that the characteristic length l� in Eq 2

plays an important role in the diffusion processes of the infection events, and thus, in the final

size.

An index associated with the final epidemic size

In order to describe the essential contributions of the parameters more thoroughly by adding

the effects of the population density ρ0 and the transmission probability p to the corrected

characteristic length, we define an index ϕ as follows:

� � l�2pr0; ð3Þ

which contains the contributions of all the parameters, ρ0, τE, τI, p, λ, and α. This index is

defined based on the following considerations: (i) the final size would be proportional to the

maximum size of the area where an exposed individual can move around before becoming an

infectious one, i.e. d2 ~ l�2; (ii) the final size would be proportional to the transmission proba-

bility p as in the basic reproduction number that gives the epidemic threshold in the standard

SEIR population model [38]; (iii) the final size would be proportional to the density ρ0 of the

initial susceptible individuals. Fig 6 shows the relationship between ϕ and r1, where the data

points correspond to 12600 parameter sets, L = 100 and n = 103, 104, 105, 106, and L = 500 and

Fig 4. The dependence of the final size on the corrected characteristic length. The final size r1 computed with 375 parameter sets,

including all possible combinations of τE = 2,4,8,16,32, τI ¼ 2; 4;8;16;32; λ ¼ 1

8
; 1

9
; 1

18
, and α = 0,0.1,0.5,0.9,1, are plotted against the

corrected characteristic length l* given in Eq 2.

doi:10.1371/journal.pone.0168127.g004
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n = 103, 104, 105, for all the combination of τE = 0,2,4,8,16,32, τI = 2,4,8,16,32, p = 0.1, 0.5, 0.9,

1, l ¼ 1

8
; 1

9
; 1

18
, and α = 0,0.1,0.5,0.9,1. For each parameter set, the average of the final size r1

over 100 trials is plotted with the error bar indicating the standard deviation. In spite of the

great variability of ϕ over these parameter sets, the plotted points of the final size in Fig 6 show

much less variability. For instance, the difference in the transition points of ρ0 for the four

cases in Fig 3 is significantly reduced by the transformation in Eq 3: the numerically obtained

critical values of ϕ are given by 17.9, 8.53, 9.84, and 10.56 for (α,τE) = (0, 1), (0, 20), (1, 1), and

(1, 20), respectively. The result indicates that the final size r1 can be expressed approximately

as a function of ϕ. The approximate invariance of the shape of the function under the scaling

with ϕ implies a universal property of the epidemic spreading process.

Near the epidemic threshold, the fluctuation of the final epidemic sizes for the 100 trials

tends to be large. The susceptibility measure and the variability measure are often used to char-

acterize the sample-to-sample variability and numerically estimate the epidemic threshold

[43–45]. Thus, we calculated these two measures with variation of the index ϕ as shown in Fig

A of S1 File. The results show that the susceptibility measure well captures the large fluctua-

tions near the epidemic threshold, corresponding to the state transition in Fig 6, although our

index may be unsuitable for rigorous identification of the epidemic threshold.

So far we have assumed that the destination of the mobility is restricted to the neighbouring

sites. However, in reality, there could be a more distant movement in a unit time. Thus, we

have examined how our index in Eq 2 changes when the hopping to a more extended area is

allowed. The results show that the index is qualitatively the same as Eq 2 but with different

coefficients (see S1 File for the details).

Fig 5. The correlation between the corrected characteristic length and the transport distance of the

pathogens in the initial stage. The numerically computed values of the transport distance d is plotted against the

corrected characteristic length l*. The parameter values are the same as those used in Fig 4. The straight line

indicates the result of line fitting for the data, represented as d = 1.69l* - 0.15.

doi:10.1371/journal.pone.0168127.g005
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Correlation between the index and the incidence

Here we analyse a correlation between the index ϕ and the incidence of infectious diseases

using real data. We focus on influenza B as one of the infectious diseases which cause out-

breaks all over the world and are not responsible for recent pandemics. We suppose that an

outbreak in the spatial SEIR model as found in Fig 2(E) is repeated every year for influenza B

in the real world. For estimating ϕ from real data, we employ human mobility data through

international airline networks.

We extracted the data of the number of specimens positive for influenza B from 2000 to

2014 in 44 countries from WHO statistics (FluNet) [46], after eliminating the countries for

which the data in some years within the 15 years are unavailable or missing. The number of pos-

itive cases is deeply related to the incidence rate of influenza B. We denote the total number of

positive cases in year Y by NC(Y) for Y = 2000, . . ., 2014. Since in some countries the outbreak

of influenza B shows biennial patterns caused by outbreak periods including the year end, we

smoothed the total number of positive cases by averaging those in the previous, current, and

next years as follows: �N CðYÞ ¼ ðNCðY � 1Þ þ NCðYÞ þ NCðY þ 1ÞÞ=3 for Y = 2001, . . ., 2013.

The time series of the smoothed data shows that the number of positive cases of influenza B has

an upward trend, particularly in recent several years.

To examine the trend of influenza B incidence from the proposed index ϕ, we extracted the

data of the number of international airline passengers [47] and the total population in 214

Fig 6. A scaling property for the final size. The average of the final size r1 over 100 trials with the error bar indicating

the standard deviation is plotted against the index ϕ which is a function of the characteristic length l*, the transmission

probability p, and the population density ρ0. The data points correspond to 12600 parameter sets, L = 100 and n = 103,

104, 105, 106, and L = 500 and n = 103, 104, 105, for all the combination of τE = 0,2,4,8,16,32, τI = 2,4,8,16,32, p = 0.1, 0.5,

0.9, 1, λ ¼ 1

8
; 1

9
; 1

18
, and α = 0,0.1,0.5,0.9,1.

doi:10.1371/journal.pone.0168127.g006
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countries [48] from the World Bank, after eliminating the airlines for which the data in some

years are missing. We denote the number of the international airline passengers and the total

population in year Y by NP(Y) and N(Y), respectively, for Y = 2001, . . ., 2013. The population

density is approximated as ρ0*N(Y)/R where R is the size of the habitation area. The hopping

rate, approximately corresponding to the probability that the individuals move to other places

by flights, is given by λ*NP(Y)/N(Y). Therefore, it follows that ρ0λ/ NP(Y). From Eq 3, we

obtain the proposed index for year Y as follows:

�ðYÞ / �eðYÞ � NPðYÞðtE þ ð1þ aÞtIÞ: ð4Þ

Assuming that the number of positive cases is proportional to the final size multiplied by

the total population and the final size tends to increase with the index ϕ, we roughly assume

that the number of positive cases is represented as follows:

~NCðYÞ ¼ ANðYÞNPðYÞðtE þ ð1þ aÞtIÞ; ð5Þ

where A is a scaling parameter. We assume that the latent and infectious periods are set at τE =

2 (days) and τI = 4 (days) [49]. Then, we numerically fitted the unknown parameters A and α
using the gradient-based method so that the total error

P2013

Y¼2001
j ~NCðYÞ � �NCðYÞj

2
ð6Þ

is minimized. Using the estimated parameter values of A and α, we can obtain the value of ϕe

defined in Eq 4. Fig 7 shows the positive correlation between the estimated value of ϕe and the

incidence. The incidence rate of positive cases was calculated from the smoothed number �NC

of cases of influenza B by normalizing with the total population in the world. By this operation,

we can eliminate the influence of the population growth. The result suggests that the recent

increase in the incidence of influenza B attributes to the increased frequency of human travels.

The index ϕ including both the disease-dependent property and the human mobility effect is

useful for estimating the trend of the incidence of infectious diseases in modern societies with

globalized human mobility.

Discussion

We have investigated the spatial SEIR model with stochastic mobility of individuals on the

square lattice to reveal how heterogeneous spatial mobility influences the final epidemic size.

Our model is characterized by six parameters: the initial density of susceptible individuals, the

length of latent period, the length of infectious period, the transmission probability, the hop-

ping rate, and the mobility reduction rate. The main contribution of this study is the proposal

of the index ϕ as an explicit function of these six parameters, which is largely associated with

the final epidemic size. Through this index, it is obvious how parameter scaling changes the

final epidemic size. This index can be regarded as a control parameter governing the final epi-

demic size in the presence of spatial mobility of individuals.

It has been commonly recognized that the factors promoting the spreading of epidemics

include the transmission rate and the population density [4, 5] in many types of epidemic

models, but the role of human mobility is still not fully elucidated. In this study, we have illus-

trated that the mobility parameter interacts with the latent period and therefore the mobility

reduction of infectious individuals is effective only in the case with a short latent period. This

result implies the limitation of social distancing measures including travel restrictions and

quarantine. For infectious diseases with a long latent period, a countermeasure to reduce the

mobility of both exposed and infectious individuals would be beneficial.

Parameter Scaling for Epidemic Size in a Model with Mobile Individuals
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The proposed index is based on the idea that the final size is largely governed by the effec-

tive transport distance that the pathogens can reach during the latent and infectious periods.

The transport distance is well correlated with the characteristic length of the human mobility,

which is theoretically derived using the analysis of diffusion equations. Therefore, the pro-

posed index is represented using the characteristic length and the other system parameters. In

the proposed index, the interplay between the mobility parameter and the other epidemiologi-

cal parameters is clear.

We have demonstrated that the index ϕ incorporating the mobility effects is strongly corre-

lated with the actual number of the incidence of past influenza epidemics using the mobility

data through airline travels. This result indicates a possibility that the increasing trend of the

influenza incidence in recent years is attributed mainly to the expansion of the human travels.

Our spatial epidemic model explicitly considers the spatial movement of individuals, and

therefore, belongs to the class of individual-based models. Instead of conducting a realistic

simulation with the individual-based model as in many previous studies, we have explored a

universal property with regard to the final epidemic size by assuming the simple hopping rule

from site to site. In this study, the key index ϕ has been introduced based on the numerical

Fig 7. Correlation between the proposed index and the positive incidence of influenza B. The number of positive

cases of influenza B was obtained from the FluNet database [46] and was divided by the total population [48] to

eliminate the influence of the population increase. The proposed index was estimated by using the data of the number

of passengers in international airlines [47] and the total population. A strong positive correlation between the proposed

index and the incidence of influenza B implies that the increased human mobility is responsible for the growing number

of the incidence.

doi:10.1371/journal.pone.0168127.g007
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observations. One of the future issues is to derive a similar index based on analytical calcula-

tions and compare the index with those for other models.

The proposed model can be regarded as a generalization of some existing models, because

it is reduced to a well-mixed population model if the number of sites is set at one and also

equivalent to a spatial metapopulation model if each site contains a sufficiently large subpopu-

lation. So far spatial metapopulation models have been mainly employed for realistic simula-

tions with mobility data, but theoretical analyses of them have received less attention. Our

approach in this study, which has led to parameter scaling for the final epidemic size resulting

from an interaction between epidemiological and mobility parameters, could be a first step to

develop a more general and theoretical understanding of epidemic spreading in spatial meta-

population models with heterogeneous human mobility [50]. A possible direction is to con-

struct a spatial epidemic model to which the mathematical theory of spatial diffusion processes

is applicable, in order to analyse the effect of heterogeneous mobility which largely influences

the final epidemic size.

Appendix

We show that the characteristic length which a random walker with hopping rate λ reaches in

time interval τ in a two-dimensional lattice is approximately given by 2
ffiffiffiffiffiffiffi
3lt
p

in the following

calculations.

Let C(x,y,t) be a probability density function (PDF) of random walkers in a two-dimen-

sional space with coordinate (x, y). The diffusion equation for the PDF is written as follows:

@C
@t
¼ D

@2C
@x2
þ
@2C
@y2

� �

;

where D denotes the diffusion constant. When the initial condition is given by C(x,y,0) = δ(x,

y) where δ is the Dirac’s delta function, we can solve the diffusion equation for C(x,y,t) using

the Fourier transform and obtain the solution as follows:

C x; y; tð Þ ¼
1

4pDt
e�
ðx2þy2Þ

4Dt ;

which is called a normalized Gaussian function [51]. This solution can be rewritten using the

polar representation with x = r cos θ and y = r sin θ as follows:

C r; y; tð Þ ¼
1

4pDt
e� r2

4Dt:

Therefore, the characteristic length for time interval τ in the PDF is given by 2
ffiffiffiffiffiffi
Dt
p

.

If we have a parameter which corresponds to D in our two-dimensional lattice model, its

characteristic length can be represented with the parameter. By discretizing the space and time

with t� nΔt, x� iΔx, and y� jΔx, the time evolution of the PDF of random walkers, ui,j(t), in

the two-dimensional lattice can be represented as follows:

ui;jðt þ DtÞ � ui;jðtÞ

¼ � 8lui;jðtÞ þ l
�
uiþ1;jðtÞ þ ui� 1;jðtÞ þ ui;jþ1ðtÞ þ ui;j� 1ðtÞ þ uiþ1;jþ1ðtÞ þ uiþ1;j� 1ðtÞ

þ ui� 1;jþ1ðtÞ þ ui� 1;j� 1ðtÞ
�
:

The first term in the righthand side represents the outflow from the site (i, j) and the other

terms represent the inflow from the eight neighbouring sites. By neglecting high-order terms
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after the Taylor expansion, the previous equation is approximated as follows:

@uðx; y; tÞ
@t

ffi
3lðDxÞ2

Dt
@2uðx; y; tÞ

@x2
þ
@2uðx; y; tÞ

@y2

� �

:

Comparing this with the original diffusion equation, we obtain D ffi 3lðDxÞ2

Dt . When the unit

time is set at Δt = 1 and the unit length is at Δx = 1, it follows Dffi 3λ. Hence, the characteristic

length of the random walk for time interval τ in the two-dimensional lattice is approximately

given by 2
ffiffiffiffiffiffiffi
3lt
p

.
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