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Abstract

In recent years, serious infectious diseases tend to transcend national borders and widely
spread in a global scale. The incidence and prevalence of epidemics are highly influenced
not only by pathogen-dependent disease characteristics such as the force of infection, the
latent period, and the infectious period, but also by human mobility and contact patterns.
However, the effect of heterogeneous mobility of individuals on epidemic outcomes is not
fully understood. Here, we aim to elucidate how spatial mobility of individuals contributes to
the final epidemic size in a spatial susceptible-exposed-infectious-recovered (SEIR) model
with mobile individuals in a square lattice. After illustrating the interplay between the mobility
parameters and the other parameters on the spatial epidemic spreading, we propose an
index as a function of system parameters, which largely governs the final epidemic size. The
main contribution of this study is to show that the proposed index is useful for estimating
how parameter scaling affects the final epidemic size. To demonstrate the effectiveness of
the proposed index, we show that there is a positive correlation between the proposed index
computed with the real data of human airline travels and the actual number of positive inci-
dent cases of influenza B in the entire world, implying that the growing incidence of influenza
B is attributed to increased human mobility.

Introduction

Pandemics are recognized as a serious threat and concern all over the world. To cope with this
issue, considerable efforts have been made for investigating the mechanism of the spread of
infectious diseases and finding possible control measures for preventing epidemic outbreaks.
In particular, recent epidemics are more likely to spread in a broad area than before, because
of the effect of worldwide human mobility through a variety of transportation networks [1, 2].
Mathematical models have been a powerful tool to reveal the effect of human behaviour on
epidemic spreading and examine the effectiveness of countermeasures against emerging and
re-emerging infectious diseases. To study spatial spreading of epidemics which cannot be
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that no competing interests exist. many mathematical models have incorporated both spatial structures and host mobility. The
two major classes of such computational models are the individual-based (agent-based) mod-
els and the metapopulation models [5].

The individual-based models have been widely used to simulate the spreading of epidemics
at a microscopic level (i.e. a level of individual hosts), assuming stochastic processes for infec-
tion, recovery, birth, death, and movement events [5]. Many recent models have incorporated
directly or indirectly the real data of population distributions, human mobility patterns, and
human proximity, for investigating the spatiotemporal dynamics of epidemic spreading and
assessing the effects of preventive measures [2, 6-11]. The advantage of individual-based mod-
els is that they can enhance the reality of simulations by appropriately setting many parameters
estimated from available data sources. However, the outcome of the simulation can be largely
variable from trial to trial due to the repeated stochastic calculations and highly dependent on
the parameter conditions as well as initial conditions. Therefore, it is tough to gain an insight
into essential factors that mainly contribute to the spatial spreading of epidemics in individ-
ual-based models without a large number of simulations.

On the other hand, metapopulation models describe the epidemic dynamics of subpopula-
tions in spatially separated patches connected via migration pathways and deal with human
mobility patterns at a macroscopic level [12, 13]. The statistical properties of various human
traveling patterns via transportation networks, such as airlines, railways, and commuting
roads, have been well incorporated into the metapopulation models [14-25]. Compared with
individual-based models, the metapopulation models are analytically tractable. The previous
studies have theoretically derived the global invasion threshold [18, 20, 21] and the critical
intervention threshold for containment of epidemics [26] in metapopulation models with het-
erogeneous patch connectivity. However, the stochastic nature of the movement of individual
hosts is not explicitly considered in the metapopulation models because they only describe the
mobility dynamics of subpopulations.

In various types of epidemic models, it has been the central issue how the final epidemic
size is determined by the individual system parameters or the composite of them. The impor-
tant measures which determine the epidemic threshold and predict the final epidemic size
have been derived for several model types, e.g. the basic reproduction number for the standard
compartment models [4, 5] and the global invasion threshold for the metapopulation models
[20, 21]. However, such a measure is yet to be established for individual-based models with
stochastic mobility of individuals. This issue has motivated the present study.

In this study, we aim to perceive the key factors that govern the final epidemic size in spatial
epidemic models with heterogeneous mobility of individuals and clarify how each key factor
contributes to the final epidemic size. For this purpose, we employ a susceptible-exposed-
infectious-recovered (SEIR) model with mobile individuals in a square lattice. Since multiple
individuals can be located at a single lattice site, our model is similar to a spatial metapopula-
tion model where each site of the lattice corresponds to the patch containing a subpopulation
[5, 16, 27]. However, in our model, the subpopulation dynamics is given not by deterministic
differential equations but by individual-based stochastic processes. Spatial metapopulation
models have been frequently used for data-driven simulations to investigate geographical
propagation of measles [28-30], influenza [31, 32], and smallpox [10, 19], but universal prop-
erties of such models have been less studied so far. The purpose of our study is to clarify how
the final epidemic size is determined by the interplay between disease characteristics and spa-
tial mobility of individuals. Note that the time-varying contact patterns in our model cannot
be represented by the lattice-based cellular automata models where contact relationships are
static [33-39].

PLOS ONE | DOI:10.1371/journal.pone.0168127 December 14, 2016 2/16



@° PLOS | ONE

Parameter Scaling for Epidemic Size in a Model with Mobile Individuals

We separate the infected individuals into the exposed ones and infectious ones. The
exposed individuals are not able to transmit a disease to other susceptible individuals, whereas
the infectious individuals are able to do. We assume that the mobility of infectious individuals
can be lower than that of the other classes of individuals due to severe symptoms and/or travel
restrictions [40-42]. Under the individual’s mobility depending on its internal state, we first
perform individual-based simulations of the SEIR model in a square lattice and clarify the
interplay between the latent period and the mobility for the final epidemic size. We find that
the distance that each infected individual moves during the latent and infectious periods plays
a decisive role for the final epidemic size. Then, based on the theory of diffusion processes, we
present an index giving an epidemic threshold that is almost invariant under parameter scal-
ing. Finally, we demonstrate a strong correlation between the proposed index incorporating
the real data of human airline travels and the incidence of influenza B. Our result implies an
important role of human mobility on the final epidemic size.

Methods
Models

We adopt the spatial SEIR model in which individuals move randomly on a two-dimensional
lattice with the periodic boundary condition as illustrated in Fig 1. As time goes by, each indi-
vidual can change its internal state as well as its spatial position.

First, we explain the state transition of individuals. Each individual is in a susceptible state
(S), an exposed state (E), an infectious state (I), or a recovered state (R). Note that both exposed
and infectious individuals are infected but only infectious ones are capable of transmitting the
disease to susceptible ones. The individuals sharing the same lattice site are regarded to be in
contact with each other. Susceptible individuals can be infected only when they share a lattice
site with one or more infectious individuals. We assume that a susceptible individual becomes
an exposed one with probability p for a contact with each infectious individual in one unit of
time. If a susceptible individual shares a site with v infectious individuals, then the susceptible
individual becomes an exposed one with probability 1 — (1 — p)” in one unit of time. This prob-
ability is independent of the numbers of susceptible, exposed, and recovered individuals posi-
tioned at the site. An exposed individual becomes an infectious individual after a latent period
of fixed length 5. Then, after an infectious period of fixed length 7, an infectious individual
becomes a recovered individual who never again becomes susceptible.

Second, we describe the mobility of individuals. Each individual is positioned at one lattice
site, and then, in one unit of time, will hop from site to site in a probabilistic manner. Multiple
individuals can be positioned at a single site. It is possible that a site contains no individuals.
With a single hop, an individual can move to one of its eight neighbouring sites as indicated in
Fig 1. The probability that susceptible, exposed, and recovered individuals hop to each one of
the destination sites is given by the normal hopping rate A with 0 < / < 1, while infectious
individuals can have a lower hopping rate a4 with 0 < a < 1 because they are usually less active
and sometimes the target of social distancing [40-42]. The value 1 — & represents the mobility
reduction rate of infectious individuals. Both the normal and lower hopping rates are indepen-
dent of the situation of the destination site. In the case of & = 0, infectious individuals do not
move, while in the case of o = 1 there is no mobility reduction.

Finally, the simulation methods are described. The number of susceptible, exposed, infec-
tious, and recovered individuals at time t are denoted by ns(t), ng(t), ni(t), and ng(t), respec-
tively. Since birth and death of individuals are neglected in our model, the total number of
individuals, given by n+1 = ng(t) + ng(t) + ni(t) + ng(t), remains constant with time. At the ini-
tial condition, all the individuals are distributed randomly in the lattice sites. They are all

PLOS ONE | DOI:10.1371/journal.pone.0168127 December 14, 2016 3/16



@’PLOS | ONE

Parameter Scaling for Epidemic Size in a Model with Mobile Individuals

0-~0-+0-0

Fig 1. Schematic illustration of the spatial SEIR model with mobile individuals in the square lattice. The individuals randomly hops from site
to site. Each of the susceptible (S), exposed (E), and recovered (R) individuals hops to one of the eight neighbouring sites with the hopping rate A,
while each of the infectious individuals (I) hops similarly with the rate Aa where 1-a represents the mobility reduction rate.

doi:10.1371/journal.pone.0168127.9001

susceptible except for a single infectious individual which is randomly chosen. Therefore, we
have n5(0) = n, n;(0) = 1, and ng(0) = ng(0) = 0. The initial density of susceptible individuals is
denoted by p, = /5 for an L x L square lattice. At the end of an epidemic outbreak, it follows
that ng(¢) = ny(t) = 0 and ng(f) + ng(f) = n+1. We define the proportion of the recovered indi-
viduals as r(t) = ng(t)/(n+1). Then r,, = lim,_,,.r(t) represents the final size of an epidemic.
The final size ., depends on the parameters, py,7g, T,p,4, and a. The parameter values are set
at po = 0.4 (L = 500, n = 10°) and p = 1, unless otherwise noted.

Results
Interplay between the latency period and the mobility

Fig 2 demonstrates the spatial spreading of an epidemic in our model with lattice size L = 100.
The snap shots in Fig 2(A)-2(D) represent the time evolution of the spatial distributions of the
infectious individuals. We see that an infectious individual initially located close to the centre
causes the diffusion of the infection towards the lattice boundary. This spatial pattern is pretty
irregular due to the stochastic mobility of the individuals compared with the ring-shaped
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Fig 2. Spatial spreading of an epidemic. Time evolution of the epidemic spreading in individual-based
simulations of the spatial SEIR model is shown. Initially all the individuals are susceptible except for a single
infectious individual located at the centre of the lattice space. The parameter values are setat L = 100, n= 10%,
£=8,71=16,p=1.0, 2 =1, and a = 0.5. (a)-(d) The snap shots of the spatial distribution of the infectious

g7
individuals for (a) =100, (b) =300, (c) t=400, and (d) t=500. The density of the infectious individuals in each
site is indicated by the colour strength. (e) The time course of the number ny(1) of infectious individuals. The
diamonds correspond to the patterns (a)-(d).

doi:10.1371/journal.pone.0168127.9002

propagation generated by other lattice-based models [5, 39]. The number of the infectious
individuals, n;(f) varies with time as shown in Fig 2(E). Initially n;(¢) grows rapidly until the
highest peak is achieved, and then, almost monotonically decays to zero. We can evaluate the
final size 7., of this outbreak by the value of (t) at the end of the outbreak. Whether the initial
infectious individual brings about a global spread of infection or not depends on the parameter
conditions as well as initial conditions.

The population density p, is one of the essential parameters that give a critical epidemic
threshold separating the non-epidemic and epidemic regimes [20]. The larger the epidemic
threshold is, the less likely to spread the epidemic is. Fig 3 shows that the final size exhibits a
sharp transition at a critical value of py in all the four cases with different combinations of the
latent period (73 = 1,20) and the mobility reduction (o = 0,1). The epidemic threshold is larger
for a shorter latent period and a larger mobility reduction rate. The significant increase in the
epidemic threshold is observed only when the latent period is short (1 = 1) and the mobility
reduction is full (o = 0). The short latent period limits the area where the exposed individuals
move around, and as a result, the region where they turn to infectious individuals becomes
small. On the other hand, the large mobility reduction prevents the infectious individuals from
moving around in a wide region. If either one of the two conditions is not satisfied, the infec-
tious individuals contact with many susceptible individuals, causing a large-scale outbreak.
This result suggests that the social distancing of infectious individuals, such as travel restric-
tions and quarantine, is not so much effective for infectious diseases with a long latent period.
We infer that the mobility of exposed individuals is also required to be reduced for diminish-
ing the risk of an outbreak if the latent period is long.

The characteristic length associated with the final epidemic size

To clarify how the final size depends on the mobility parameters, we consider the mobility of
each individual as a random walk. We introduce the characteristic length [ which represents
the distance that the pathogens are carried by a single infected individual. The typical distance
that an individual moves with a hopping rate A during time 7 is given by 2v/31t (see Appendix
for the derivation). Thus, we introduce a characteristic length [ for the latent and infectious
periods as follow:

1=2+/3(t; + a1,), (1)

because the hopping rate for the latent period is 4 and that for the infectious period is aA. Dur-
ing the infectious period, the frequency of infection events is influenced by the mobility of sus-
ceptible individuals who come to the site where infectious individuals are present. To evaluate
the effective range that the pathogens can reach during the latent and infectious periods, we
correct the characteristic length in Eq 1 as follows:

=231, + (1 + o)1), (2)

where the movement of susceptible individuals with hopping rate A during the period 1 is
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Fig 3. Interplay between the latent period and the mobility for the final size. The final size r. is plotted against the population
density po. For each parameter value, the results of 100 simulations are plotted. The four cases are compared with respect to the latent
period and the mobility, including 7g = 1 and a = 0 (blue circles), 7 =1 and a = 1 (orange diamonds), 7g = 20 and a = 0 (red squares),
and 7e = 20 and a =1 (purple triangles). The other parameter values are set at L =500, 7,=20, p=1,and A = J.

doi:10.1371/journal.pone.0168127.9003

counted as an additional movement of infectious individuals with the same hopping rate in
the same duration.

Now we numerically investigate the dependency of the final size on the corrected character-
istic length I*. The computed final size r, is a randomly sampled value from 100 simulation
results with different initial conditions for each set of parameter values. Fig 4 shows that 7,
depends strongly on the corrected characteristic length for the latent and the infectious peri-
ods. In this figure, the values of the final size are superimposed for 375 parameter sets includ-
ing all possible combinations of 7 = 2,4,8,16,32, 1, = 2,4,8,16,32, A = {,;,;cand @ =
0,0.1,0.5,0.9,1. The result shows that all data points approximately collapse to a single curve.
This means that the final size can be characterized by the single quantity I.

Next, the relationship between the corrected characteristic length and the infection process
is examined. We introduce a distance d that represents the maximum distance between the ini-
tial position of the initial infectious individual and the position at which an individual who
was infected by a contact with the initial infectious individual changes to an infectious individ-
ual. In other words, this distance measures the strength of the spatial diffusion of the pathogens
carried by individuals that are infected initially. Fig 5 shows that d is positively correlated
with the corrected characteristic length /*. The line fitting indicates approximately a linear
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Fig 4. The dependence of the final size on the corrected characteristic length. The final size r,, computed with 375 parameter sets,
including all possible combinations of 7¢ = 2,4,8,16,32, 7, = 2,4,8,16,32, A =1 1 1 and a=0,0.1,0.5,0.9,1, are plotted against the
corrected characteristic length /* given in Eq 2.

doi:10.1371/journal.pone.0168127.g004

8’9718’

correlation between I* and d. Therefore, it is validated that the characteristic length [ in Eq 2
plays an important role in the diffusion processes of the infection events, and thus, in the final
size.

An index associated with the final epidemic size

In order to describe the essential contributions of the parameters more thoroughly by adding
the effects of the population density py and the transmission probability p to the corrected
characteristic length, we define an index ¢ as follows:

¢ = l*prov (3)

which contains the contributions of all the parameters, py, Tg, 73, p> 4, and a. This index is
defined based on the following considerations: (i) the final size would be proportional to the
maximum size of the area where an exposed individual can move around before becoming an
infectious one, i.e. d” ~ I*?; (ii) the final size would be proportional to the transmission proba-
bility p as in the basic reproduction number that gives the epidemic threshold in the standard
SEIR population model [38]; (iii) the final size would be proportional to the density p, of the
initial susceptible individuals. Fig 6 shows the relationship between ¢ and r.,, where the data
points correspond to 12600 parameter sets, L = 100 and n = 10°, 10% 107, 10, and L = 500 and
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Fig 5. The correlation between the corrected characteristic length and the transport distance of the
pathogens in the initial stage. The numerically computed values of the transport distance dis plotted against the
corrected characteristic length /*. The parameter values are the same as those used in Fig 4. The straight line
indicates the result of line fitting for the data, represented as d=1.69/* - 0.15.

doi:10.1371/journal.pone.0168127.g005

n =107, 10% 10°, for all the combination of 7 = 0,2,4,8,16,32, 71 = 2,4,8,16,32, p = 0.1, 0.5, 0.9,
1,2 =4,4,75and @ = 0,0.1,0.5,0.9,1. For each parameter set, the average of the final size r.
over 100 trials is plotted with the error bar indicating the standard deviation. In spite of the
great variability of ¢ over these parameter sets, the plotted points of the final size in Fig 6 show
much less variability. For instance, the difference in the transition points of p, for the four
cases in Fig 3 is significantly reduced by the transformation in Eq 3: the numerically obtained
critical values of ¢ are given by 17.9, 8.53, 9.84, and 10.56 for (o,7%) = (0, 1), (0, 20), (1, 1), and
(1, 20), respectively. The result indicates that the final size ., can be expressed approximately
as a function of ¢. The approximate invariance of the shape of the function under the scaling
with ¢ implies a universal property of the epidemic spreading process.

Near the epidemic threshold, the fluctuation of the final epidemic sizes for the 100 trials
tends to be large. The susceptibility measure and the variability measure are often used to char-
acterize the sample-to-sample variability and numerically estimate the epidemic threshold
[43-45]. Thus, we calculated these two measures with variation of the index ¢ as shown in Fig
A of S1 File. The results show that the susceptibility measure well captures the large fluctua-
tions near the epidemic threshold, corresponding to the state transition in Fig 6, although our
index may be unsuitable for rigorous identification of the epidemic threshold.

So far we have assumed that the destination of the mobility is restricted to the neighbouring
sites. However, in reality, there could be a more distant movement in a unit time. Thus, we
have examined how our index in Eq 2 changes when the hopping to a more extended area is
allowed. The results show that the index is qualitatively the same as Eq 2 but with different
coefficients (see S1 File for the details).
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o ®
@ : PLOS | SINE Parameter Scaling for Epidemic Size in a Model with Mobile Individuals

1_I_I'I'I'I1TI1 T T T I

0.8 |

0.6

0 1 ||l“"| I L L Llll L L LLILI I L L L

0.0001 0.01 1 100 10000

¢

Fig 6. A scaling property for the final size. The average of the final size r., over 100 trials with the error bar indicating
the standard deviation is plotted against the index ¢ which is a function of the characteristic length /*, the transmission
probability p, and the population density po. The data points correspond to 12600 parameter sets, L =100 and n =103,
10,105, 10°, and L = 500 and n =105, 10, 105, for all the combination of ¢ = 0,2,4,8,16,32, 7, = 2,4,8,16,32, p =0.1, 0.5,
09,1,4=11 1 and a=0,0.1,0.5,0.9,1.

11 1
89’18

doi:10.1371/journal.pone.0168127.g006

Correlation between the index and the incidence

Here we analyse a correlation between the index ¢ and the incidence of infectious diseases
using real data. We focus on influenza B as one of the infectious diseases which cause out-
breaks all over the world and are not responsible for recent pandemics. We suppose that an
outbreak in the spatial SEIR model as found in Fig 2(E) is repeated every year for influenza B
in the real world. For estimating ¢ from real data, we employ human mobility data through
international airline networks.

We extracted the data of the number of specimens positive for influenza B from 2000 to
2014 in 44 countries from WHO statistics (FluNet) [46], after eliminating the countries for
which the data in some years within the 15 years are unavailable or missing. The number of pos-
itive cases is deeply related to the incidence rate of influenza B. We denote the total number of
positive cases in year Y by Nc(Y) for Y= 2000, . . ., 2014. Since in some countries the outbreak
of influenza B shows biennial patterns caused by outbreak periods including the year end, we
smoothed the total number of positive cases by averaging those in the previous, current, and
next years as follows: N .(Y) = (N.(Y — 1) + N.(Y) + N.(Y + 1)) /3 for Y=2001, ..., 2013.
The time series of the smoothed data shows that the number of positive cases of influenza B has
an upward trend, particularly in recent several years.

To examine the trend of influenza B incidence from the proposed index ¢, we extracted the
data of the number of international airline passengers [47] and the total population in 214
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countries [48] from the World Bank, after eliminating the airlines for which the data in some
years are missing. We denote the number of the international airline passengers and the total
population in year Y by Np(Y) and N(Y), respectively, for Y = 2001, .. ., 2013. The population
density is approximated as py~ N(Y)/R where R is the size of the habitation area. The hopping
rate, approximately corresponding to the probability that the individuals move to other places
by flights, is given by L ~ Np(Y)/N(Y). Therefore, it follows that poh o< Np(Y). From Eq 3, we
obtain the proposed index for year Y as follows:

P(Y) o< ¢ (Y) = Np(Y) (7 + (1 + 2)7y). (4)

Assuming that the number of positive cases is proportional to the final size multiplied by
the total population and the final size tends to increase with the index ¢, we roughly assume
that the number of positive cases is represented as follows:

Ne(Y) = AN(Y)N, (Y)(tg + (1 + 0)1y), (5)

where A is a scaling parameter. We assume that the latent and infectious periods are set at 75 =
2 (days) and 17 = 4 (days) [49]. Then, we numerically fitted the unknown parameters A and o
using the gradient-based method so that the total error

ZQY(EE;OUJNC(Y) _NC(Y)|2 (6)

is minimized. Using the estimated parameter values of A and @, we can obtain the value of ¢,
defined in Eq 4. Fig 7 shows the positive correlation between the estimated value of ¢, and the
incidence. The incidence rate of positive cases was calculated from the smoothed number N .
of cases of influenza B by normalizing with the total population in the world. By this operation,
we can eliminate the influence of the population growth. The result suggests that the recent
increase in the incidence of influenza B attributes to the increased frequency of human travels.
The index ¢ including both the disease-dependent property and the human mobility effect is
useful for estimating the trend of the incidence of infectious diseases in modern societies with
globalized human mobility.

Discussion

We have investigated the spatial SEIR model with stochastic mobility of individuals on the
square lattice to reveal how heterogeneous spatial mobility influences the final epidemic size.
Our model is characterized by six parameters: the initial density of susceptible individuals, the
length of latent period, the length of infectious period, the transmission probability, the hop-
ping rate, and the mobility reduction rate. The main contribution of this study is the proposal
of the index ¢ as an explicit function of these six parameters, which is largely associated with
the final epidemic size. Through this index, it is obvious how parameter scaling changes the
final epidemic size. This index can be regarded as a control parameter governing the final epi-
demic size in the presence of spatial mobility of individuals.

It has been commonly recognized that the factors promoting the spreading of epidemics
include the transmission rate and the population density [4, 5] in many types of epidemic
models, but the role of human mobility is still not fully elucidated. In this study, we have illus-
trated that the mobility parameter interacts with the latent period and therefore the mobility
reduction of infectious individuals is effective only in the case with a short latent period. This
result implies the limitation of social distancing measures including travel restrictions and
quarantine. For infectious diseases with a long latent period, a countermeasure to reduce the
mobility of both exposed and infectious individuals would be beneficial.
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Fig 7. Correlation between the proposed index and the positive incidence of influenza B. The number of positive
cases of influenza B was obtained from the FluNet database [46] and was divided by the total population [48] to
eliminate the influence of the population increase. The proposed index was estimated by using the data of the number
of passengers in international airlines [47] and the total population. A strong positive correlation between the proposed
index and the incidence of influenza B implies that the increased human mobility is responsible for the growing number
of the incidence.

doi:10.1371/journal.pone.0168127.9007

The proposed index is based on the idea that the final size is largely governed by the effec-
tive transport distance that the pathogens can reach during the latent and infectious periods.
The transport distance is well correlated with the characteristic length of the human mobility,
which is theoretically derived using the analysis of diffusion equations. Therefore, the pro-
posed index is represented using the characteristic length and the other system parameters. In
the proposed index, the interplay between the mobility parameter and the other epidemiologi-
cal parameters is clear.

We have demonstrated that the index ¢ incorporating the mobility effects is strongly corre-
lated with the actual number of the incidence of past influenza epidemics using the mobility
data through airline travels. This result indicates a possibility that the increasing trend of the
influenza incidence in recent years is attributed mainly to the expansion of the human travels.

Our spatial epidemic model explicitly considers the spatial movement of individuals, and
therefore, belongs to the class of individual-based models. Instead of conducting a realistic
simulation with the individual-based model as in many previous studies, we have explored a
universal property with regard to the final epidemic size by assuming the simple hopping rule
from site to site. In this study, the key index ¢ has been introduced based on the numerical
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observations. One of the future issues is to derive a similar index based on analytical calcula-
tions and compare the index with those for other models.

The proposed model can be regarded as a generalization of some existing models, because
it is reduced to a well-mixed population model if the number of sites is set at one and also
equivalent to a spatial metapopulation model if each site contains a sufficiently large subpopu-
lation. So far spatial metapopulation models have been mainly employed for realistic simula-
tions with mobility data, but theoretical analyses of them have received less attention. Our
approach in this study, which has led to parameter scaling for the final epidemic size resulting
from an interaction between epidemiological and mobility parameters, could be a first step to
develop a more general and theoretical understanding of epidemic spreading in spatial meta-
population models with heterogeneous human mobility [50]. A possible direction is to con-
struct a spatial epidemic model to which the mathematical theory of spatial diffusion processes
is applicable, in order to analyse the effect of heterogeneous mobility which largely influences
the final epidemic size.

Appendix
We show that the characteristic length which a random walker with hopping rate A reaches in
time interval 7 in a two-dimensional lattice is approximately given by 2v/3A47 in the following
calculations.
Let C(x,y,t) be a probability density function (PDF) of random walkers in a two-dimen-
sional space with coordinate (x, ). The diffusion equation for the PDF is written as follows:
ocC ’C  0°C
= =Dls5+535 )
ot Ox*  0y?

where D denotes the diffusion constant. When the initial condition is given by C(x,y,0) = 8(x,
y) where & is the Dirac’s delta function, we can solve the diffusion equation for C(x,y,t) using
the Fourier transform and obtain the solution as follows:
1 Caara)

4Dt

= e 5
4nDt

C(x,y,t)

which is called a normalized Gaussian function [51]. This solution can be rewritten using the
polar representation with x = r cos 8 and y = r sin 0 as follows:

-
e 4Dt

C(r,0,t) = 1Dt

Therefore, the characteristic length for time interval 7in the PDF is given by 2+/Dr.

If we have a parameter which corresponds to D in our two-dimensional lattice model, its
characteristic length can be represented with the parameter. By discretizing the space and time
with t = nAt, x = iAx, and y = jAx, the time evolution of the PDF of random walkers, u; j(t), in
the two-dimensional lattice can be represented as follows:

u(t+ At) —u, (1)
= _8)‘ui,j(t) + A(”Hl,j(t) + ui—l,j(t) + ui.j+1(t) + ui,j—l(t) + ui+1j+1(t) + ui+1ﬁj—1(t)
+ ”1—1.j+1(t) + ui—lJ’—l(t))'

The first term in the righthand side represents the outflow from the site (4, j) and the other
terms represent the inflow from the eight neighbouring sites. By neglecting high-order terms
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after the Taylor expansion, the previous equation is approximated as follows:

du(x,y,t) 30(Ax)? [&u(x,y,t) N Pu(x, y,t)
o At x> y? '

Comparing this with the original diffusion equation, we obtain D = w. When the unit
time is set at Af = 1 and the unit length is at Ax = 1, it follows D = 31. Hence, the characteristic
length of the random walk for time interval 7 in the two-dimensional lattice is approximately

given by 2v/347.

Supporting Information

S1 File. The supporting information file includes Figs A-D, in addition to some additional
explanations.
(PDF)
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