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Abstract

Lately, Ensemble Empirical Mode Decomposition (EEMD) techniques receive growing inter-

est in biomedical data analysis. Event-Related Modes (ERMs) represent features extracted

by an EEMD from electroencephalographic (EEG) recordings. We present a new approach

for source localization of EEG data based on combining ERMs with inverse models. As the

first step, 64 channel EEG recordings are pooled according to six brain areas and decom-

posed, by applying an EEMD, into their underlying ERMs. Then, based upon the problem at

hand, the most closely related ERM, in terms of frequency and amplitude, is combined with

inverse modeling techniques for source localization. More specifically, the standardized low

resolution brain electromagnetic tomography (sLORETA) procedure is employed in this

work. Accuracy and robustness of the results indicate that this approach deems highly

promising in source localization techniques for EEG data.

1 Introduction

During the last decades, functional imaging techniques like functional magnetic resonance

imaging (fMRI) and positron emission tomography (PET) dominated in neuroscientific

research. Concomitantly, the importance of the technically much simpler, but less straightfor-

ward to analyze, electroencephalography (EEG) declined to some degree. Still, EEG plays an

important role thanks to its high temporal resolution in the millisecond range and its direct

access to neuronal activation rather than measuring it indirectly via the BOLD effect as in

fMRI. Brain source imaging and reconstruction from continuous and single-trial EEG/MEG

data thus have received increased attention to improve our understanding of rapidly changing

brain dynamics, and using this information for improved real-time brain monitoring, brain

computer interfaceing (BCI), and neurofeedback [1]. Recently, several new beamformers have

been introduced for reconstruction and localization of neural sources from EEG and MEG.
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Beamformers provide a versatile form of spatial filtering suitable for processing data from an

array of sensors [2].

Thus EEG provides dynamic information on submillisecond time scales which can be com-

bined favorably with fMRI measurements which provide complementary high resolution infor-

mation on small spatial scales in the millimeter range [3–7]. EEG reflects voltages generated

mostly by excitatory postsynaptic potentials (EPSPs) from apical dendrites of massively syn-

chronized neocortical pyramidal cells. Ionic current inflow at dendritic synapses and ionic out-

flow at the soma induce current dipoles at the pyramidal cells which finally cause the event-

related membrane potentials (ERPs) seen in EEG recordings. Unfortunately, these source imag-

ing techniques [8, 9] face the problem of ambiguity of the underlying static electromagnetic

inverse problem. That is to say, the signals measured on the scalp surface do not directly indi-

cate the location of the active neurons in the brain. Many different source configurations can

generate the same distribution of potentials and magnetic fields on the scalp [10, 11]. Thus, the

analysis of such EEG data is quite involved, encompassing machine learning and signal process-

ing techniques like feature extraction [4, 12] and inverse modeling [13]. For timely accounts of

recent advancements and actual challenges in dynamic functional neuroimaging techniques,

including electrophysiological source imaging, multimodal neuroimaging integrating fMRI

with EEG/MEG, and functional connectivity imaging see the reviews of Bin He [14] and Jatoi

et al. [15]. Additionally, a systems level approach to understanding information processing in

the human brain is offered by Edelman et al. [16] who advocate substantial efforts to shape the

future of systems neuroengineering. Furthermore, for a recent open source toolbox, named

Brainstorm, which offers tools to analyze MEG/EEG data, combine it with anatomical MRI data

and locate underlying neuronal sources of activation, see Tadel et al. [17].

Source localization affords solving an inverse problem in EEG source analysis which is

highly ill-posed due to a large p, small n problem setting [18]. Unique solutions can, however,

be achieved by imposing additional constraints to the resulting optimization problem. Such

constraints are often of a purely mathematical nature, but biophysically realistic constraints

have been formulated as well (see for example LAURA [19]), [20, 21]. Source localization

methods use measured scalp potentials in the microvolt range, and apply signal processing

techniques to estimate current sources inside the brain which best explain the observations.

The analysis first predicts scalp potentials resulting from a hypothetical current distribution

inside the head—this is called the forward problem[22–25]. In a second step, these simulations

are used in conjunction with the electrode potentials measured at a finite number of locations

on the scalp to estimate the current dipole sources that fit these measurements—this is called

the inverse problem[8, 13]. Over the years, researchers have developed non-parametric (also

referred to as distributed source models or source imaging) as well as parametric (also called

equivalent current dipole methods or spatio-temporal dipole fit models) approaches to tackle

the source localization problem [13, 26]. Source localization accuracy depends on several fac-

tors like head-modeling errors [27, 28], source-modeling errors and measurement noise con-

tributions [29]. Also it has been pointed out that the scalp potential needs to be sampled with

electrodes evenly and densely distributed along the scalp surface [30]. Localization accuracy

increases in a non-linear fashion with the number of electrodes, and estimates indicate that

probably no less than 500 electrodes would be needed for an accurate sampling of the surface

potential distribution [31, 32]. But it has also been pointed out recently that the absolute

improvement in accuracy decreases with the number of electrodes [33]. Bayesian approaches,

have been reviewed recently [34], allow to compare several models and indicate that spatial

localization precision in the milimeter range can be achieved reliably. Localization accuracy

increases in a non-linear fashion with the number of electrodes, and the latter need to spread

over all the scalp surface homogeneously. If electrodes are concentrated in certain scalp
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segments, source localization can turn awfully wrong [35]. For practical purposes, Baillet et al.

[36, 37] suggested a spatial accuracy of 5 [mm] and a temporal accuracy of 5 [ms], respectively.

Among the many source localization methods available, low resolution electrical tomography

(LORETA) [38] and its extensions standardized LORETA (sLORETA) [39] and exact LOR-

ETA (eLORETA) [40, 41] are the most commonly employed techniques. Especially sLORETA

seems to outperform other techniques in most practical situations. Hence it is considered the

method of choice in this study.

Source localization is usually applied to the original signals (scalp potentials) collected at

the various electrodes. These original signals consist of Ne non-stationary time series of poten-

tial fluctuations at specified scalp locations, with Ne < 100 in most practical applications.

These time series can be collected in a data matrix Y of dimension Ne × NT with Ne� NT and

the NT the number of time samples. But besides source localization, feature extraction and

classification represents another major data analysis objective for unravelling the information

buried in such brain signals. Powerful supervised as well as unsupervised machine learning

techniques are available for characterizing the recorded potential fluctuations subject to prede-

fined constraints imposed during the analysis process. Recently, an informed decomposition

approach, which built upon constrained optimization approaches [42] for independent com-

ponents analysis, has been proposed to better model and separate distinct subspaces within

EEG data [43]. While supervised techniques require expert knowledge, unsupervised methods

such as exploratory matrix factorization (EMF) methods, variously known as blind source or

signal separation (BSS) techniques [44] or empirical mode decomposition (EMD) methods

[12, 45, 46] offer versatile tools for transforming the registered signals into more elusive and

informative representations. It is one of the objectives of this study to investigate the specific

advantages of applying such methods as preprocessing techniques, and applying source locali-

zation to the modes extracted from such methods instead of to the raw signals themselves.

Although ICA has been applied successfully to EEG data sets (see for example [47]), because

of the inherently non-stationary nature of recorded EEG signals, EMD and its extension called

ensemble EMD (EEMD) [46], is favored in this investigation over EMF methods like principal

(PCA) or independent (ICA) component analysis which require at least wide-sense stationary

signals. EMD utilizes an empirical knowledge of intrinsic oscillations of a time series in order

to represent the latter as a superposition of oscillatory components with instantaneous fre-

quencies derived from their time-dependent phases. EMD thus adaptively and locally decom-

poses any non-stationary signal into a sum of intrinsic mode functions (IMFs) which

represent zero-mean, amplitude- and (spatial-) frequency-modulated components, henceforth

called modes. IMFs are referred to as event-related modes (ERMs) in case of a decomposition

of event-related potentials (ERPs), i. e. averages over many trials, of EEG data [4]. In a recent

comparative study we analyzed combined EEG/fMRI data sets with with a combination of

EEMD and ICA techniques. The raw data have first been decomposed into intrinsic modes by

EEMD, yielding stationary components which then have been further analyzed by an ICA [6].

Another recent investigation combined ICA with EEMD by using an interesting ERM as refer-

ence for a constrained ICA (cICA or ICA-R) [48]. There it was shown that ICA with reference

indeed extracts an independent mode which is very similar to the corresponding intrinsic

mode which was taken as reference signal. The latter corroborates that ICA some of the inde-

pendent components are indeed very similar to intrinsic modes extracted by EMD.

The experimental paradigm used in our previous study [3, 4] was a contour integration

task, applied to a group of 19 probands and 300 trials each. A large set of Gabor stimuli was

presented repeatedly which occasionally contained a contour made up by a subset of colli-

nearly oriented Gabor patches. The participants had to signal the preception of contour or

non-contour stimuli with a manual response.
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In our recent study [4], brain electrodes have been distinguished according to the timing of

their stimulus response. Early responses were recorded at electrodes localized in the occipital

and parietal areas of the brain, while late responses were located in frontal and medio-temporal

areas of the brain. Early and late responses, manifested in ERP components P100 and N200,

turned out most discriminative in detecting significant response differences to contour and

non-contour stimuli. These components represent the first and second prominent ERP peaks

with latencies of roughly 100 [ms] and N200 [ms] after stimulus onset. It has been shown in [4]

that the event-related modes ERM5 most closely reflected the dominant oscillation of the

grand average EEGs of the various subjects.

In this study, we propose, for the first time, to combine an EEMD analysis with a source

localization scheme, more specifically an sLORETA source estimation. We investigate whether

an EEMD analysis can provide underlying characteristic modes which, when fed into an

sLORETA analysis, can help to localize sources of neuronal activity reflecting cognitive pro-

cessing during the contour integration task performed in our recent study [4], employing CT

(contour true) and NCT (non-contour true) stimuli. Hence, measured EEG responses are sub-

jected to mode decomposition techniques, more specifically to an EEMD, and sLORETA is

applied to the event—related modes (ERMs) extracted to solve the source imaging problem.

Note that, contrary to our recent study, no channel pooling is applied in this study to avoid

any adverse effect on localization accuracy. Although a wealth of source localization proce-

dures meanwhile exist [9, 13–15, 34], citeEdelman15, we considered sLORETA because of its

straightforward implementation and its good performance in real applications [41].

2 Materials and Methods

2.1 EEG Data

The data used in this study are EEG recordings collected during a contour integration task

[4, 12]. The data was collected from 64 electrodes (BrainAmp MR plus, Brain Products, Gilch-

ing, Germany) placed according to the 10 − 10 system. 62 electrodes were used to record scalp

EEG potentials, and were referenced against the FCz electrode during recording. EEG signals

were sampled at 5 [kHz] (later reduced to 500 [Hz]). Eye movement artifacts have been moni-

tored by an electrode located below the left eye (electrooculogram, or EOG). To simplify the

off-line removal of cardioballistic artifacts, an electrocardiogram (ECG) electrode was placed

below the left scapula.

The study encompassed 18 subjects who participated in the study, 5 male and 13 female

with an age varying between 20 and 29, and an average of (22.79 ± 2.7) [years]. Note that one

subject is omitted due to an error when saving data. During the experiment, subjects were

seated in a sound-attenuated chamber in front of a monitor while applying two visual Gabor

stimulus conditions, i. e. contour true (CT) and non-contour true (NCT). Each of a these visual

stimuli was presented for 194 [ms], followed by a blank screen after a random interval from 1

− 3 [s] (see Fig 1). Then the next trial started after having received the response of the proband

or after a time-out of 3 [s] in case the subject did not respond. This EEG data [4, 49] was

recorded jointly with fMRI data as described in [3, 49].

The study was approved by the ethics committee of the University of Regensburg (reference

number 10 − 101 − 0035). All participants provided their written informed consent about their

participation in the study. All subjects were subjected to a procedure in accord with the princi-

ples laid down in the Helsinki declaration. This procedure was approved by the ethics commit-

tee of the University of Regensburg.
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2.2 Ensemble Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) represents an adaptive data analysis tool for non-lin-

ear and non-stationary time series. It has been proposed by [45]. EMD is a method of breaking

down a signal into components known as Intrinsic Mode Functions (IMFs). The latter locally

represent pure oscillations which reflect characteristic time scales of the data and shall satisfy

only the following requirements [45]:

• The number of extrema and zero crossings must be equal or differ by a maximum of one.

• The mean value of the envelope defined by the local maxima and the envelope defined by

the local minima must equal zero at any point.

The process of extracting IMFs is called sifting. The EMD algorithm for decomposing the

original signal x(t) into intrinsic modes can be summarized as follows:

1. Identify the extrema (both maxima and minima) of the signal ϕk(t) registered at the k-th

electrode.

2. Construct the upper and lower envelopes envmax(t) and envmin(t) using a cubic spline inter-

polation scheme.

3. Calculate the mean of the two envelopes as mðtÞ ¼ ½envmaxðtÞþenvminðtÞ�
2

4. Subtract the mean value from the signal h(t) = ϕk(t) − m(t)

5. Determine whether h(t) is an IMF or not by checking the two conditions as described

above.

6. If h(t) is IMF, set cj(t) = h(t) and find the j+1—st IMF after updating

rðtÞ ¼ �kðtÞ �
P

j<ðjþ1Þ

cjðtÞ. Otherwise, update ϕk(t) = h(t) and repeat steps 1 to 5.

Fig 1. Stimulus protocol including Gabor patches either forming a contour (CT) or none (NCT).

doi:10.1371/journal.pone.0167957.g001
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The above sifting procedure will be repeated until all IMFs have been extracted. At the end

of the decomposition, the original signal can be represented by an expansion into its underly-

ing modes plus a non-oscillating residuum:

�kðtÞ ¼
XJ

j¼1

cjðtÞ þ rðtÞ ð1Þ

where J denotes the number of IMFs, the cj(t) represent the IMFs and r(t) represents the

remaining non-oscillating trend.

EMD provides a useful method for analyzing natural signals, which are most often non-lin-

ear and non-stationary. Consequently, its application deems appropriate for an EEG analysis.

The EMD is a data-driven method which is completely unsupervised and does not need to

obey additional constraints like competing exploratory data decomposition techniques. In

addition, EMD assures the perfect reconstruction property, i. e. the sum of all the extracted

IMFs with the residual trend yields the original signal without information loss or distortion.

This also implies that component amplitudes do not suffer from any scaling indeterminacy.

However, one of the major shortcomings of plain EMD, when applied to real signals, is the fre-

quent appearance of mode mixing. It is a consequence of signal intermittency. To alleviate this

problem, Wu et al. [46] proposed a noise-assisted variant called Ensemble Empirical Mode

Decomposition (EEMD). It is based on studies of the statistical properties of fractional Gauss-

ian noise [50, 51]. These studies showed that EMD can be considered an adaptive dyadic filter

bank when applied to fractional Gaussian noise. EEMD is based on repeatedly adding white

noise to the target signal while applying EMD

�kðtÞ ¼ ~�kðtÞ þ �nðtÞ ¼
X

j

cðjÞn ðtÞ þ rnðtÞ; ð2Þ

where ~�kðtÞ is the true, noiseless signal, �n(t) is the white noise and cðjÞn ¼ cðjÞ þ �nðtÞ represents

the IMF obtained for the n-th noise observation. These IMFs are estimated as an ensemble

average which suppresses noise contributions due to self-averaging of the latter.

2.3 Source Localization

Our recent EEMD analysis [4] of the EEG data mentioned above revealed underlying event-

related modes (ERMs) which showed clear differences between stimulus modalities and exhib-

ited a time delay (� 70[ms]) when the modes’ contributions to frontal versus occipital elec-

trodes were considered. This suggests that a study of the related source localization problem

might reveal spatio-temporal features not obtainable from a corresponding source localization

study of the raw EEG signals.

Electrophysiological source imaging (ESI) [14, 52] is the scientific field allocated to model-

ing and evaluating the spatiotemporal dynamics of neuronal currents throughout the brain

that generate the electric potentials and magnetic fields measured with electromagnetic (EM)

recording technologies [53]. Thus, over the past few decades, localizing electrical sources in

the brain from surface recordings has attracted the attention of many EEG/MEG researchers.

The EEG neuroimaging problem actually consists of a forward and an inverse modeling

problem. With forward modeling [54, 55], one is interested in predicting the expected poten-

tial distribution on the scalp from given intracranial activities which is frequently modeled as

electric current dipole sources di/r � j(ri), i = 1, . . ., Nv with j(ri)[A/m2] the current density

andr the nabla operator calculating the divergence of the ionic currents. By invoking Ohm’s

law, the Poisson equation can be derived which relates the scalp potentials to the current

Combined EMD-sLORETA Analysis
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density distribution inside the brain. Thus, in practice, forward modeling amounts to predict-

ing the set of electric potentials {F(rk,di)|k = 1, . . ., Ne, i = 1, . . ., Nv} which would be measured

at any scalp electrode k if some current dipole sources di were active inside the brain at discrete

locations ri. The inverse problem can be defined as the problem of estimating the current den-

sity j(ri), more precisely its equivalent current dipole moments di, that generated the measured

electrical potential. Whereas the general forward solution is well-defined, the inverse solution

is ill-posed because of the large number Nv of parameters, i. e. current dipole moments di esti-

mated at locations ri compared with the small number Ne� Nv of observations, i. e. measured

scalp potentials ϕ(rk). Thus some regularization is needed which introduces additional con-

straints to assure a unique solution to the related optimization problem. Over the years, a

number of non-parametric as well as parametric techniques [13] have been developed. One of

the most robust methods for source localization is referred to as standardized low resolution

brain electromagnetic tomography (sLORETA) which was introduced by [39]. For single

point sources and noiseless data, sLORETA has been shown to provide an exact source locali-

zation even for blurred images. However it was shown also that the precision with which

sources can be localized strongly depends on the number, and even more so on an even distri-

bution over the scalp surface, of electrodes from which electrical potentials are collected [35].

2.3.1 sLORETA. The forward problem amounts to solving Poisson’s equation

r2�ðrk; tÞ ¼ � �� 1rqðr; tÞ ð3Þ

for the electrical potential F(rk, t), registered at scalp location rk at sampling time t, as function

of the charge density ρq(r, t) inside the brain. Biophysically, scalp potentials can be described

as stemming from ionic currents in apical dendritic trees of pyramidal neurons resembling

dipolar charge distributions at locations ri and having dipole polarization di. According to the

superposition approximation, the total potential at any scalp electrode location rk amounts to

�ðrk; tÞ ¼
X

i

�ðrk; diðri; tÞÞ ð4Þ

⋍
X

i

gðrk; riÞ � diðtÞ ð5Þ

where g(. . .) is called the gain or lead field which depends on dynamic electric susceptibilities

inside the brain. Given Ne electrodes, Nv dipoles and T discrete time samples, the measured

scalp potentials at all Ne electrode locations at times t1, . . ., tT can be collected into an Ne × T—

dimensional data matrix F(t) which is estimated via

OcFðtÞ ¼ OcGðrj; riÞDðri; tÞ þ EnðtÞ ð6Þ

Note that all EEG signal-related quantities, i. e. F, G, are conveniently re-referenced to an

average EEG signal by applying the Ne × Ne—dimensional centering operator Oc = I − 1 1T(1T

1)−1 which obeys the relation Oc 1 = 0. Note that source localization does not depend on the

choice of the reference electrode, as long as the reference is correctly integrated into the model

[35]. Further, G represents the Ne × Nv—dimensional gain or lead field matrix, D(ri, t) the Nv

× T—dimensional matrix of current dipole moments di(tn)� d(ri, tn) = (dx, i(tn), dy, i(tn), dz,

i(tn))T at a finite set I ¼ fij1; . . . ;Nvg of grid points ri and a finite set of discrete time points t
= t1, . . ., tT, and En denotes additive noise. The Nv grid points are located in cortical gray mat-

ter and the hippocampus. While the gain matrix G is estimated via solving the forward prob-

lem [23, 54, 56], the inverse problem tries to deduce the dipole matrix D from electrical

potentials F measured at electrode locations rk at any discrete time tn.

Combined EMD-sLORETA Analysis
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Non-parametric optimization methods solve the inverse problem by estimating the dipole

matrix D� which maximizes the posterior probability distribution p(D|F) of current dipole

sources di(tn) given the observations F(rk, tn). Assuming a Gaussian posterior density, the cor-

responding log-posterior density is related to an energy functional Fα(d) = R(d) − α L(d),

which consists of the data log-likelihood representing a reconstruction error R = kF − G Dk2

and a log-prior which constitutes a regularization term [57]. In case of sLORETA, the latter is,

in the spirit of Tikhonov regularization, taken as L(D) = kDk2 yielding a minimum norm least

squares estimate

DMNE ¼ GðGGT þ aOcÞ
y
F: ð7Þ

The latter becomes standardized by the square root of its Nv × Nv—dimensional co-variance

matrix SD = GT(G GT+αOc)
† G. Thus, at any given time point t, the (3 × 1)—dimensional vec-

tor of the estimated standardized dipole moment ~d at voxel location ri is obtained as [41, 58]

dMNE; iðtÞ � dMNEðri; tÞ ¼ ½SD�
� 1=2

ii dðri; tÞ ð8Þ

Finally the sLORETA brain maps result from computing estimates of the equivalent stan-

dardized current dipole energy at all grid points ri.i = 1, . . ., Nv

EdipðriÞ⋍ dT
MNE;ið½SD�iiÞ

� 1dMNE;i ð9Þ

where dMNE, i is the minimum norm current dipole moment estimate at the i-th voxel and

[SD]ii is the (3 × 3)—dimensional i-th diagonal block of the co-variance matrix SD[13, 39, 41].

Note that because pyramidal neurons span all cortical layers, the model is often simplified

by assuming that, at each grid point, the direction of the ionic currents inside the apical den-

dritic trees, and thus the equivalent dipole moment orientation, is orthogonal to the surface.

Then only its amplitude needs to be estimated. In that case, the matrix D has dimension Nv × 1

and each i—th element corresponds to the amplitude of the i—th voxel, and the dimension of

the gain matrix, as well as SD̂ , also changes to Ne × Nv.

2.4 Data analysis

The EEG data were processed using the EEGLAB toolbox [59] and the recently integrated

EMDLAB toolbox [12], before the data were analyzed by sLORETA. EEG artifacts (i. e. eye

blink and eye movements, heart beat and muscle noise) were removed by independent compo-

nent analysis (ICA) [60].

The ERPs were analyzed by the sLORETA software [39] available at (http://www.uzh.ch/

keyinst/loreta.htm) to estimate equivalent current source density dipole moments. Briefly,

sLORETA calculates the standardized source current dipole moments at each of the 6239 vox-

els located in the gray matter and the hippocampus of the MNI-reference brain. This calcula-

tion is based upon a linear weighted sum of the scalp electric potentials. sLORETA estimates

the underlying sources under the assumption that the neighboring voxels should have a maxi-

mally similar electrical activity. Source current dipole moments in each voxel were compared

between the two stimulus conditions a paired t-test. For this comparison, sLORETA software

performs a non-parametric randomization of the data [61].

3 Results

The following section will present results obtained from a combined EEMD-sLORETA analy-

sis of EEG recordings from 18 subjects during a contour integration task. This EEG data has

been recorded simultaneously with fMRI scans.
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Results concerning the EEMD analysis of this EEG data has been published recently by [4].

In this study, the results related to raw data are presented at the level of event-related potentials

(ERPs). Raw data is then decomposed with EEMD using single trial recordings. Based on the

analysis of the previous study [4], source localization results obtained with raw data are com-

pared with results obtained from the most informative event-related mode ERM5. As can be

seen in Fig 2, the intrinsic mode ERM5 most closely reflects the prominent ERPs of the raw

data set. The latter corresponds to a grand average over 18 subjects of the signals recorded at

channel O2 (see Fig 3). Within each average time series, the two most prominent potentials of

each ERM, denoted, according to their related ERPs and their latencies after stimulus onset, as

P100 (positive response roughly 100[ms] after stimulus onset) and N200 (negative response

roughly 200[ms] after stimulus onset), will be considered. These response amplitudes were

most clearly seen in ERM5 and showed statistically significant differences in response to con-

tour versus non-contour Gabor stimuli. The EEMD analysis further revealed a delay which

amounts to 70[ms] when comparing response latencies at occipital and frontal brain areas.

Early P100 and N200 responses occurred at electrodes located in the occipital, parietal and par-

ieto-temporal areas of the brain, while late P100 and N200 responses appeared at electrodes

located in frontal and fronto-temporal brain areas. The same potentials, when appearing at

electrodes in central brain areas, showed bimodal early/late response signatures. Note that

ERPs have been pooled as illustrated in Fig 3 (see [4]). Note further that the potentials P300

and N400 did not show any difference in latencies between early and late responses. A statisti-

cal paired T -test of differences in reconstructed response amplitudes to both stimulus condi-

tions resulted in a series of paired T-test values. The latter served to compare, between the two

stimulus conditions, CT and NCT, and for selected latencies, the response amplitudes which

were reconstructed, employing sLORETA, from both the ERP and the intrinsic mode ERM5.

The current study is concerned with estimating the localization of the spatial sources related

to these ERPs in the raw data as well as in the ERMs. For simplicity we confine our discussion

to potentials appearing in mode ERM5. The inverse problem was solved by employing the

Fig 2. Comparison of the original EEG recording (grand average over 18 subjects of channel O2) with ERM 5.

doi:10.1371/journal.pone.0167957.g002
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sLORETA software package [39]. The related sLORETA values according to the Brodmann

area (BA) per brain map are given for the sources identified.

3.1 Early Response

3.1.1 ERP component P100 at 60-120 [ms]). Fig 4 illustrates results of an sLORETA

analysis of response differences in early stimulus responses for both stimulus conditions.

Mean response amplitudes have been estimated for the interval 60 − 120 [ms] around the ERP

P100 peak. Shown are significant paired t-test values for the differences, for both stimulus con-

ditions, of potential readings from all 62 electrodes, as shown in Fig 3, have been used as

entries to the data matrix F. The graphic illustrates significant differences for the raw ERP Fig

4-Top and the mode ERM5 Fig 4-Bottom. Blue and red colors thereby indicate negative or

positive paired t-test values, respectively.

As can be seen in Fig 4-Top, differences of the raw ERP appear in the occipital and parietal

brain areas of the left hemisphere at a significance level of P = 0.01. Also some weaker positive

activity differences are detected in the temporal regions of the both hemispheres at significance

level P = 0.05.

These results should be contrasted to those obtained from studying the mode ERM5 P100

of the EEMD analysis as it appears in the ERP potential. The most noticeable difference is that

ERM5 shows highly localized, significant differences mainly in the temporal, occipital and

parietal regions. There, the amplitude of the early P100 component of ERM5 is larger for the

stimulus condition NCT than for condition CT. The highest differences appears in the tempo-

ral lobe at significance level P = 0.001.

Table 1 illustrates the significant differences results of the early P100 response of raw ERP

and mode ERM5, respectively, in detail. The table summarize the Brodmann areas (BA), MNI

Fig 3. Electrode placement according to the 10—20 system, and pooling into early and late response

signals.

doi:10.1371/journal.pone.0167957.g003
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Fig 4. Early Response (60-120 ms) P100 ERP. Paired t-test values of significant potential amplitude differences at electrodes are illustrated at a significance

level as specified. Views are axial, saggital and coronal. The left column shows the distribution on the scalp. All 62 electrodes were used as entries to the data

matrixΦ. (Top): Raw ERP P100 with significance level P = 0.01. (Bottom): ERM5 extracted from the ERP P100 with significance level P = 0.001. Red color

(positive paired T-test values) indicates that the ERP amplitude for the stimulus condition CT is larger than for condition NCT while blue color (negative paired

T-test values) indicates that the ERP amplitude for the stimulus condition NCT is larger than for condition CT.

doi:10.1371/journal.pone.0167957.g004

Table 1. T-test statistics for early P100 ERP and ERM5 response. The table shows coordinates of the most significant voxel of clusters. The sign of T-test

values indicates the differences between stimuli (0−0NCT > CT, 0+0CT > NCT).

ERP

X Y Z T-value Voxels-No BA Brain Lobe

−25 −85 40 −3.39 14 19* Parietal

5 15 25 −3.17 8 24* Limbic

ERM5

X Y Z T-value Voxels-No BA Brain Lobe

55 −20 10 −3.97 21 (41**, 22*, 42*) Temporal

10 −90 25 −3.15 79 (18*, 19*) Occipital

−20 −80 35 −3.01 18 (19*, 40*) Parietal

* p = 0.01

** p = 0.001.

doi:10.1371/journal.pone.0167957.t001
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coordinates and the neuroanatomical lobe of the voxels for the P100 early response that

showed statistically the most significant differences of Brodmann area clusters.

3.1.2 ERP component N200 at 150-210 [ms]). Next, Fig 5 illustrates paired t-test values

for the ERPN200 as resulting from an analysis of the raw data Fig 5-Top and the mode ERM5

Fig 5-Bottom. Shown are significant differences in early stimulus responses. N200 early

response differences of ERPN200 are mainly located in limbic lobe and parietal regions of the

left hemisphere with significance level P = 0.001. There are also significant differences in the

frontal and occipital regions at confidence level P = 0.01.

Comparing these results with the outcome of an analysis of mode ERM5, a much more

focused significant difference in response activities to both stimulus conditions is located in

the parietal and occipital cortexes of both hemispheres at a confidence level of P = 0.001. Some

positive activity differences also show up in frontal areas of the right hemisphere where the

amplitude of the early N200 component of ERM5 is larger for the stimulus condition CT than

for condition NCT.

These results of early N200 response of raw ERP and mode ERM5 are summarized in

Table 2. As can be seen from the table, all the results show a negative significant differences

where the amplitude for the condition NCT is larger than for the condition CT. Early responses

of raw ERP have been mainly observed for channels located in the limbic, parietal and frontal

areas of the brain, while a highly significant early response of ERM5 has been observed for

channels in the occipital, parietal and frontal areas of the brain.

Fig 5. Early Response (150-210 ms) N200 ERP. Paired t-test values of significant potential amplitude differences at electrodes are illustrated at a

significance level as specified. Views are axial, saggital and coronal. The left column shows the distribution on the scalp. All 62 electrodes were used as

entries to the data matrixΦ. (Top): Raw ERP N200 with significance level P = 0.001. (Bottom): ERM5 extracted from the ERP N200 with significance level

P = 0.001. Red color (positive paired T-test values) indicates that the ERP amplitude for the stimulus condition CT is larger than for condition NCT while blue

color (negative paired T-test values) indicates that the ERP amplitude for the stimulus condition NCT is larger than for condition CT.

doi:10.1371/journal.pone.0167957.g005
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3.2 Late Response

3.2.1 ERP component P100 at 120-180 [ms]. When it comes to consider late stimulus

responses as seen in raw data sets (see Fig 6-Top), a P100 response peak appears delayed by 70

[ms]. Corresponding source activity differences between both stimulus modalities mainly

show up in central areas. But if mode ERM5 is considered instead, highly focused activity dif-

ferences appear (see Fig 6-Bottom). The significant activity differences are only seen in visual

cortex of the right hemisphere. Again, mode ERM5 shows a much more focused activity distri-

bution than the raw data set.

Table 3 summarizes, for late response of the P100 ERP, coordinates, T-values of the test sta-

tistics at different confidence levels, the Brodmann area and the anatomical area where the sig-

nificant differences are. The highly significant differences are located at frontal and parietal

regions (P = 0.001) while sub-lobar and limbic regions shows a significant differences of

(P = 0.01).

When ERM5 is considered, significant results can be summarized in Table 3. As can be

noted in the table, the significant results are focused in the occipital and parietal regions at sig-

nificance level (P = 0.001).

3.2.2 ERP component N200 at 200-260 [ms]. Considering the ERP N200 at the late

response electrodes, significant activity differences show up in occipital and parietal regions of

the left hemisphere with negative paired t-test values, but activity differences with slightly posi-

tive paired t-test values also appear in pre-frontal regions of the right hemisphere (see Fig 7-

Top). Positive t-test values have been observed for channels located in the frontal areas of the

brain, while negative t-test values has been observed for channels in the occipital and parietal

area of the brain. Both positive and negative t-test values of the ERP are slightly differences at a

significance level P = 0.05.

Again, if it comes to compare these results with those obtained by using only amplitudes of

mode ERM5, highly focused significant activity differences are located in frontal and occipital

areas with strongly positive paired t-test values while a clear focus of weakly negative paired t-

test values also appears in parietal areas (see Fig 7-Bottom). These results are summarized in

Table 4. As can be shown in the Table 4, positive differences of the conditions responses are

Table 2. T-test statistics for early N200 ERP and ERM5 response. The table shows coordinates of the most significant voxel of clusters. The sign of T-test

values indicates the differences between stimuli (0−0NCT > CT, 0+0CT > NCT).

ERP

X Y Z T-value Voxels-No BA Brain Lobe

−5 −40 40 −4.40 99 (31**, 24*) Limbic

−15 −50 55 −4.35 127 (7**, 19*, 31*, 40*) Parietal

−20 −45 50 −3.90 40 (5*, 31*) Frontal

10 −60 30 −2.91 8 31* Occipital

ERM5

X Y Z T-value Voxels-No BA Brain Lobe

20 −85 35 −4.04 32 (7**, 19**) Parietal

20 −90 35 −3.76 22 (7 *, 19 *) Occipital

−40 10 40 −2.99 18 9 * Frontal

* p = 0.01

** p = 0.001.

doi:10.1371/journal.pone.0167957.t002
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Table 3. T-test statistics for late P100 ERP and ERM5 response. The table shows coordinates of the most significant voxel of clusters. The sign of T-test

values indicates the differences between stimuli (0−0NCT > CT, 0+0CT > NCT).

ERP

X Y Z T-value Voxels-No BA Brain Lobe

5 −45 50 −4.27 199 (5**, 31**, 4*, 6*) Frontal

5 −35 40 −4.21 146 (31**, 23*, 24*) Limbic

5 −35 45 − 4.14 80 (7**, 4*, 31*, 40*) Parietal

−45 −25 20 −2.97 9 13* Sub-lobar

ERM5

X Y Z T-value Voxels-No BA Brain Lobe

20 −80 35 −4.39 18 (7**, 19**) Parietal

20 −80 30 −3.32 13 (7*, 19*) Occipital

* p = 0.01

** p = 0.001.

doi:10.1371/journal.pone.0167957.t003

Fig 6. Late Response (120-180 ms) P100 ERP. Paired t-test values of significant potential amplitude differences at electrodes are illustrated at a

significance level as specified. Views are axial, saggital and coronal. The left column shows the distribution on the scalp. All 62 electrodes were used as

entries to the data matrixΦ. (Top): Raw ERP P100 with significance level P = 0.001. (Bottom): ERM5 extracted from the ERP P100 with significance level

P = 0.001. Red color (positive paired T-test values) indicates that the ERP amplitude for the stimulus condition CT is larger than for condition NCT while blue

color (negative paired T-test values) indicates that the ERP amplitude for the stimulus condition NCT is larger than for condition CT.

doi:10.1371/journal.pone.0167957.g006
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located in the parietal and occipital regions of the brain while negative differences are detected

in the frontal region.

These results generally comply, in terms of activated regions, with results from an analysis

of fMRI data which was taken jointly with our data [7, 62]. This means that these neurons are

more active than others which also responded to the contour integration task. In [7, 62], the

significant activation differences are highlighted in different regions like occipital, bilateral

parietal, temporal and frontal regions (the test has been done using the same p-value,

Fig 7. Late Response (200-260 ms) N200 ERP. Paired t-test values of significant potential amplitude differences at electrodes are illustrated at a

significance level as specified. Views are axial, saggital and coronal. The left column shows the distribution on the scalp. All 62 electrodes were used as

entries to the data matrixΦ. (Top): Raw ERP N200 with significance level P = 0.05. (Bottom): ERM5 extracted from the ERP N200 with significance level

P = 0.01. Red color (positive paired T-test values) indicates that the ERP amplitude for the stimulus condition CT is larger than for condition NCT while blue

color (negative paired T-test values) indicates that the ERP amplitude for the stimulus condition NCT is larger than for condition CT.

doi:10.1371/journal.pone.0167957.g007

Table 4. T-test statistics for late N200 ERM5 response. The table shows coordinates of the most significant voxel of clusters. The sign of T-test values indi-

cates the differences between stimuli (0−0NCT > CT, 0+0CT >NCT).

ERM5

X Y Z T-value Voxels-No BA Brain Lobe

60 −10 45 −3.18 69 (4*, 6*, 10*, 45*, 47*) Frontal

−5 −95 −10 3.46 59 (17*, 18*) Occipital

−20 −40 70 3.21 6 3* Parietal

−10 50 0 3.14 13 (10*, 32*) Limbic

* p = 0.01.

doi:10.1371/journal.pone.0167957.t004
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p = 0.001, for all). The fact that, comparing both modalities, occasionally different brain

regions are involved in contour and non-contour processing renders the comparison suitable

for further analysis. Here, for example, with ERM5, the late response N200 is pronounced in

occipital, temporal and frontal regions, precisely as was found with an fMRI analysis in case of

volume intrinsic mode functions (VIMF1, VIMF2, VIMF3 and VIMF4) [7]. Fig 8 presents an

illustrative comparison of a saggital view of VIMF1 and ERM5 extracted from the late ERP

N200. The VIMFS were extracted by using a new variant of a two dimensional empirical mode

decomposition called GiT-BEEMD [63]. Hence, the superior precision in spatial localization

of activity blobs corroborates the potential of EEMD/2DEEMD when analyzing functional

neuroimages.

4 Conclusion

This study investigated the utility of an sLORETA analysis for EEG data from 18 subjects par-

ticipating in a perceptual learning task. A contour and a non-contour stimulus were presented

within the same trial in fast succession, and subjects were asked to indicate their presence CT
(contour true) or absence NCT (non-contour true). The analysis has been performed in two

different ways: either using the raw data ERPs or EEMD intrinsic modes called event related

modes (ERMs). Note that EEMD has been applied before averaging over trials. Signals have

been pooled according to the same clustering scheme of our recent study [4] that divides brain

electrodes according to the latencies of the stimulus responses. Early responses are seen in

occipital and parietal areas of the brain, while late responses are located in primary visual,

medio-temporal and frontal areas. Statistically significant differences between the two stimulus

conditions have been seen mainly with ERP components P100 and N200. The previous study

[4] showed that ERM5 exhibits very pronounced differences between contour and non-con-

tour stimulus responses, hence only ERM5 has been used in the analysis.

Fig 8. Saggital view of left: the intrinsic mode VIMF1, as extracted with GiT-EEMD from fMRI data, and right: data reconstructed from ERM5. The latter was

obtained from EEG data. The comparison concentrates on the late ERP N200.

doi:10.1371/journal.pone.0167957.g008
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As obtained from ERM5, earlier differences (before 210ms) in source activity between con-

tour and non-contour occurred mainly in occipito-parietal areas, were lateralized to the right

hemisphere and showed higher power in the non-contour compared to the contour condition.

Later differences (200 − 260ms) occurred also in primary visual areas, in both hemispheres

and with higher power in the contour compared to the non-contour condition. The latter

result fits well with the view that contour integration relies on a top-down flow of information

from higher visual areas with large receptive fields into primary visual cortex. The feedback

would enhance activity of neurons coding Gabor stimuli at relevant locations and so favor

their integration [64, 65]. The former result is partly unexpected in that lower source activity

was for contours compared to non-contours. It is possible that the difference reflects the

reduced effort of maintaining grouped compared to ungrouped visual input in working mem-

ory [66, 67]. In any way, the fact that the difference showed up in right hemisphere complies

with the previous finding that contour grouping is a right-lateralized brain function [68].

The results of this study which focuses on identifying related sources of neuronal activation

clearly via inverse modeling of EEG data were extremely well matched with the ones in [4] that

discussed the forward problem on the same data. Results showed that EEMD method allows to

extract components, i.e ERM5 which present clearer spatio-temporal differences between the

two stimulus responses, CT and NCT compared to the ERPs of the original signals.
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