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Abstract

Changes in land cover during urbanization profoundly affect the diversity of bird communi-

ties, but the demographic mechanisms affecting diversity are poorly known. We advance

such understanding by documenting how urbanization influences breeding dispersal—the

annual movement of territorial adults—of six songbird species in the Seattle, WA, USA met-

ropolitan area. We color-banded adults and mapped the centers of their annual breeding

activities from 2000–2010 to obtain 504 consecutive movements by 337 adults. By compar-

ing movements, annual reproduction, and mate fidelity among 10 developed, 5 reserved,

and 11 changing (areas cleared and developed during our study) landscapes, we deter-

mined that adaptive breeding dispersal of sensitive forest species (Swainson’s Thrush and

Pacific wren), which involves shifting territory and mate after reproductive failure, was con-

strained by development. In changing lands, sensitive forest specialists dispersed from

active development to nearby forested areas, but in so doing suffered low annual reproduc-

tion. Species tolerant of suburban lands (song sparrow, spotted towhee, dark-eyed junco,

and Bewick’s wren) dispersed adaptively in changing landscapes. Site fidelity ranged from

0% (Pacific wren in changing landscape) to 83% (Bewick’s wren in forest reserve). Mate

fidelity ranged from 25% (dark-eyed junco) to 100% (Bewick’s wren). Variation in fidelity to

mate and territory was consistent with theories positing an influence of territory quality,

asynchronous return from migration, prior productivity, and reproductive benefits of retaining

a familiar territory. Costly breeding dispersal, as well as reduced reproductive success and

lowered survival cause some birds to decline in the face of urbanization. In contrast, the abil-

ity of species that utilize edges and early successional habitats to breed successfully, dis-

perse to improve reproductive success after failure, and survive throughout the urban

ecosystem enables them to maintain or increase population size.

Introduction

In an increasingly urban world [1], scientists are only beginning to quantify basic ecological

processes that characterize the ecosystems humans call home [2, 3]. Unique biogeochemical

cycles [4], energy flows [5], and trophic relationships [6, 7] interact with altered disturbance
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regimes and human preferences to create a unique ecological stage in the city and its sur-

rounding suburbs and exurbs [8–11]. Here, general patterns of biological diversity are well

known [12–16], but the adjustments of population processes leading to these patterns are

understudied [17]. The species that come to dominate urban systems are behaviorally flexible

[18], which may enable them to reproduce [19–22], survive [22, 23], disperse from natal areas

[24–26], compete [27–29], avoid predation [7], and engage humans [30–32] more effectively

than less flexible species that are extirpated.

Breeding dispersal—the annual shift in an adults’ center of reproductive activity [33]—

remains one of the least understood yet fundamental processes by which animal populations

adapt to their environment [34]. Breeding dispersal reflects not only an individual’s decision

to remain faithful to a site, but also often its decision to remain faithful to a mate. Breeding dis-

persal in birds is generally of shorter distance than natal dispersal, often more extensive by

females than males, and motivated by differential costs of movement and benefits of retaining

one’s mate or territory [33, 35]. Costs and benefits are affected by a rich mix of individual and

environmental characteristics, including population density, territory quality, pair compatibil-

ity, success and quality of neighbors, actions of predators and parasites, and an individual’s

sex, social status, age, and previous experience [34, 36–38]. In urban environments breeding

dispersal is rarely studied [39] and may be influenced by the above factors as well as the actions

of humans that benefit or challenge birds [40].

Our objective is to describe breeding dispersal and mate fidelity in a variety of songbirds

that inhabit the rapidly urbanizing forests surrounding the city of Seattle, WA, USA. We orga-

nize our exploration around three research questions: 1) Does a species’ life history influence

site fidelity and mate fidelity? 2) Does annual productivity, mate fidelity, or landscape conver-

sion influence annual movement of breeders and likelihood of divorce? 3) Does movement

improve reproduction or enable dispersers to settle in appropriate habitat? In so doing, we test

several predictions (Table 1) across multiple species and within a unique setting that includes

forest reserves and existing developments where human actions were relatively constant dur-

ing our study, as well as within forests that were actively developed into suburbs during this

time [22]. Investigating the first question enables us to test the hypothesis that asynchronous

return to territory in species that migrate may reduce site fidelity (Table 1 1A) and mate fidel-

ity (Table 1 1B) because early arriving males hedge their bets [41] or late arriving females select

mates based on territory quality rather than prior breeding experience [42]. Exploring the sec-

ond question allows us to assess two more hypotheses. First, we expect reproductive failures to

stimulate breeding dispersal (Table 1, 2A) and reduce mate fidelity (Table 1, 2E) [43, 44].

Additionally, we expect breeding dispersal distance to increase (Table 1, 2B, 2C and 2F) and

mate fidelity to decrease where habitats of varying quality exist near one-another because birds

with poor quality territories will move to attain high quality territories (Table 1, 2D and 2E)

[34, 45, 46]. Finally, the third question motivates a test of the hypothesis that following failure,

increased number or quality of young are produced by individuals that disperse farthest or

abandon mates to pursue better options, however this presumed benefit is inconsistently real-

ized (Table 1, 3A–3F) [38, 47]. We expect the decisions of all species to be mediated by the

costs and benefits of fidelity, as hypothesized above, however where subdivisions are being

built the adaptive decisions of sensitive species may be constrained by the rapid loss of their

preferred habitats. In environments of fluctuating resource availability, such as this, breeding

dispersal may be exaggerated and not confined to individuals of low quality [48].

We studied six species of socially monogamous, ground- and shrub-nesting birds (Bewick’s

wren, Thryomanes bewickii; dark-eyed junco, Junco hyemalis; Pacific wren, Troglodytes pacifi-
cus; song sparrow, Melospiza melodia; spotted towhee, Pipilo maculatus; and Swainson’s

thrush, Catharus ustulatus) that differ in response to urbanization and migratory behavior.

Urbanization Affects Bird Dispersal
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The Swainson’s thrush is a neotropical migrant and the dark-eyed junco is a local migrant, but

the other species are resident on our study sites throughout the year [49–54]. We categorize

two species (Pacific wren and Swainson’s thrush) as ‘avoiders’ of urban lands (sensu [12, 55])

because they decline in abundance as urbanization proceeds and are generally rare in subur-

ban and urban landscapes [22, 29]. We consider the other four species ‘adapters’ and ‘exploit-

ers’ (as defined by [12] or as considered to be ‘dependents, exploiters, and tolerants’ by [55])

because their abundance remains stable (song sparrow, spotted towhee) or increases (dark-

Table 1. Research questions, predictions from hypotheses, and statistical approaches to testing each.

Research Question and

Prediction from Hypothesis

Response Variable Explanatory Variables (bold) Statistical Procedure

1) Does a species’ life history influence mate and site fidelity?

A. Less site fidelity in migrants than

non-migrants

Number of pairs Migrant status (long- and short-distance

versus resident) and Site Fidelity

Fisher’s Exact Test

B. Less mate fidelity in migrants than

non-migrants

Number of pairs Migrant status of 3 well-sampled exploiter/

adapters (1 short-distance migrant versus 2

resident species) and Mate Fidelity

Fisher’s Exact Test

2) Does annual productivity, mate fidelity, or landscape conversion influence annual movement of breeders and likelihood of divorce?

A. Greater annual movement by

failed breeders than successful

breeders

Annual distance moved

between territory centers

Fledging success in previous year (yes

or no), Landscape, Guild, interaction of

Landscape and Fledging success

Generalized Linear Mixed Model—

with site included as a random effect

(see S3 Table for full results)

B. Greater annual movement in

changing lands than stable lands

Annual distance moved

between territory centers

Landscape, Guild, interaction of

Landscape and Guild

Generalized Linear Mixed Model—

with site included as a random effect

(see S6 Table for full results)

C. Greater annual movement by

avoiders than adapters/exploiters

Annual distance moved

between territory centers

Landscape, Guild, interaction of

Landscape and Guild

Generalized Linear Mixed Model—

with site included as a random effect

(see S6 Table for full results)

D. Greater annual movement by

divorcees than those retaining mate

Annual distance moved

between territory centers

Landscape, Status of pair bond of 3 well-

sampled exploiter/adapters (intact, broken

due to divorce, broken due to death)

Generalized Linear Mixed Model—

with site included as a random effect

(see S4 Table for full results)

E. Greater frequency of divorce by

failed breeders than successful

breeders

Number of pairs of 3 well-

sampled exploiter/adapters

Fledging success in previous year (yes

or no) and Divorce versus retain mate

Fisher’s Exact Test

F. Greater annual movement from

territories experiencing local habit

modification greater than those not

modified

In Changing Landscapes only:

Annual distance moved

between territory centers

Pixels of territory converted from forest,

to built land, or to other land cover

Correlation

3) Does movement improve reproduction or enable dispersers to settle in appropriate habitat?

A. Greater fledging success after

moving in response to failure in

reserves than in changing lands

Number of pairs of avoiders Landscape (changing or reserve) and

Fledging success in year after

movement (yes or no)

Fisher’s Exact Test

B. Improved fledging success after

movement by failed breeders in

reserves but not changing lands

Number of pairs of avoiders Change in fledging success (worse

versus same or better) and Landscape

(changing or reserve)

Binomial Regression

C. Reduced fledging success after

failure if site faithful, but increased

success following dispersal

Number of pairs of exploiters/

adapters

Change in fledging success (success

after failure or failure after success) and

Site fidelity (yes or no)

Fisher’s Exact Test

D. Increased forest cover in territory

of avoiders

Amount of forest within 100m

of territory center

Territory location (abandoned versus

obtained), Guild

ANOVA

E. Distance moved increases

territory quality for avoiders

Annual distance moved

between territory centers

Pixels of forest cover gained, Prior

success at fledging young (Yes or No)

Generalized Linear Mixed Model—

with site included as a random effect

(see S7 Table for full results)

F. Distance moved increases

territory quality for exploiters/

adapters

Annual distance moved

between territory centers

Pixels of non-forested cover gained,

Prior success at fledging young (Yes or

No), Mate retention (Yes or No)

Generalized Linear Mixed Model—

with site included as a random effect

(see S8 Table for full results)

doi:10.1371/journal.pone.0167829.t001
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eyed junco, Bewick’s wren) as lands are developed and they are abundant in suburban and

urban landscapes [22, 29]. We did not explicitly account for phylogenetic relationships in our

study, but note that closely related species occur across our sampling design, for example we

include migratory (dark-eyed junco) and resident (song sparrow, spotted towhee) species

from the same family (Emberizidae), as well as avoiders (Pacific wren) and adapters (Bewick’s

wren) from the same family (Troglodytidae). Territory fidelity is unreported in spotted

towhees [54], but known to be high in the other species in non-urban areas [50–53]. Much less

is known about mate fidelity, though it is relatively high in both song sparrows [49] and dark-

eyed juncos [51] inhabiting undisturbed islands and forests, respectively.

Materials and Methods

Permits and Ethics

All research reported was approved by the IACUC committee at the University of Washington

(protocol 3077–01) and permitted by Washington Dept. of Fish and Wildlife (research permit

MARZLUFF 15–164) and the US Federal Bird Banding Lab (banding permit 22489).

Study Sites

In 1998 and 1999 we selected 26 long-term study sites arranged in a quasi-experimental design

across the rapidly developing forests east of Seattle, WA, USA (for map see [22]). The sites are

characterized by second-growth, 70-100-year-old coniferous forest below 500 m in elevation

and include five ‘Reserves’ (75–500 ha recreation, natural area, and watershed conservation

forests), 10 single-family-home neighborhoods developed 20–50 years ago (‘Developed’), and

11 ‘Changing’ sites (the study area is detailed in [56–58]. ‘Changing’ sites provide insights into

the bird community before, during, and after creation of single-family-home neighborhoods

[22, 59]. We monitored birds in these changing landscapes from the onset of development,

typically having 1–2 years of research completed before extensive clearing, roading, and build-

ing occurred. This design enables insights into how development affects the movement of

adult birds by allowing us to make comparisons through time at these sites with reference to a

separate set of nearby reserved forests and developments that experience the same climatic

conditions and draw from the same pool of birds, but do not experience changes in forest or

built land cover. Reserves and developments were selected from a larger random sample

(described in [56, 60]) to be spatially interspersed with changing sites. Changing sites were not

randomly selected, but rather we learned opportunistically about pending developments and

selected those that were accessible and planned for imminent construction.

Field Efforts

We spent 120–240 h per site per year from 2000–2010. We spent the majority of this time

between dawn and 15:00 (PST) in the forested remnants in each site mist-netting and color

banding birds (4–10, 6-hr sessions per site) and recording the locations of breeding and terri-

torial activities, as well as the occurrence of previously marked birds (16–32, 5-hr sessions per

site) using GPS and field maps of each study area. We netted 2396 adult (after hatch year)

birds using both passive capture and attraction to playback of territorial songs. We uniquely

color-banded and noted plumage, condition of brood patch and cloacal protuberance of each

captured bird to determine age and gender [61]. During weekly visits to each site, we searched

for nests and ‘spot mapped’ the activity of adults within each territory [62]. From 2002–2010,

we mapped 6363 territories (noting at least weekly for a minimum of 8 weeks the location of

breeding pairs) and while mapping found 418 nests. As an index of territory size, we estimated

Urbanization Affects Bird Dispersal
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the maximum radius across the minimum convex polygon surrounding all locations of

marked pairs [29]. We determined annual productivity within these territories by monitoring

parental behavior from the onset of breeding activity throughout the spring and summer until

the end of the final nesting attempt, mapping the locations of these behaviors, and assessing

pairing status, the number of successful breeding attempts, fledglings per attempt, and total

annual production of fledglings [63–65]. Here we categorize pairs as ‘successful’ if they fledged

one or more broods within a year and ‘unsuccessful’ if they failed to fledge young. We assessed

different total areas among sites (mean = 6.1±0.9 ha) because of differences in forested area,

bird density, and accessibility, but our efforts resulted in similar assessments across sites (i.e.,

delineation of all territories in forest areas).

Determination of Dispersal Distance

The basic observation that we analyzed in this paper is the location of a color-banded, territo-

rial adult in two consecutive years. From 2002–2010 we obtained 504 consecutive locations on

337 adults (hereafter ‘movements,’192 in changing, 67 in reserve, and 78 in developed sites).

We measured the distance between successive year’s territory centroids (the nest site, when

known, or the central point with greatest activity observed during spot mapping, when nest

was not located; as in [34] in m, using a portable GPS in the field or after assessing locations of

activity on high resolution satellite imagery and field maps generated by geographic informa-

tion systems at the end of the field season. We define breeding site fidelity for each species as

movements less than the species-specific average maximum radius of territories we measured

in each study landscape. We were unable to ascertain the productivity of all pairs every year;

therefore, our sample of movements with known history is a subset of these 504 moves. We

determined the annual productivity in the first year of 371 consecutive pairs of locations (prior

to movement) made by 285 birds and the annual productivity in the second year of 327 pairs

of locations (after movement) made by 226 birds. In 157 cases we determined if the individual

remained paired with its prior mate after the movement.

Quantifying Change in Landscape Composition

To relate movements to changes in the composition of the landscape we gathered all available

USGS, IKONOS, and GOOGLE EARTH orthoimagery of the study area into ArcGIS 10.0

[66]. We implemented a two-part landscape classification process using five categories. The

first four cover types were modified from [12]: Forest, Built (impervious surfaces such as build-

ings, roads, sidewalks), Bareground-grass (bare ground, grass/lawn), Shrub (woody shrub or

early seral/regenerating forest), with the addition of a fifth cover type open Water (sloughs and

naturally occurring or engineered-retention ponds). We first subjected orthoimages to Object

Based Image Analysis (OBIA; sensu [67]). OBIA is multi-step process using SPRING 5.2 soft-

ware [68], that first implements algorithms designed to discriminate among object boundaries

by aggregating pixels into like entities prior to reliance on spectral reflectance. Next, OBIA

classifies imagery by iteratively identifying relevant multi-pixel ‘objects’ through ‘training

data,’ for each class. Because orthoimagery available during this time period included black

and white (2-spectrum), 3-spectrum color, and 4-spectrum color (3 visible spectrums plus

infrared) we further enhanced image interpretation through visual inspection, including com-

parison of classified landscapes to historical imagery online (Google Earth, 2014), and editing

classified landscapes through extensive free-hand digitizing of mis-classified areas. Because

selecting and implementing a reliable methodology for assessing classification accuracy of

remotely sensed imagery from such varied sources is extremely challenging [69], we focused

on the elimination of inter-operator bias [70] by constraining the process to one individual.

Urbanization Affects Bird Dispersal
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We calculated the composition of the landscape (proportion of each category within a circle

of radius 100m emanating from the territory centroid) before and after 284 movements in

changing study sites (all with adequate imagery; 22 movements of avoiders and 262 move-

ments of adapters/exploiters). From these consecutive, annual assessments, we measured: a)

the difference in landscape composition at the territory that was abandoned, which equals the

amount of forested or developed land in year 1 minus those amounts at the same place in year

2 (Territory A: Year 1-Year 2, Fig 1); and b) the change in landscape composition that was

obtained by moving, which equals the difference in the amount of forested or developed land

in the territories in year 2 (Territory A Year 2 –Territory B Year 2, Fig 1b).

Statistical Approach

We conducted all statistical analyses using SPSS (v.19; [71]) and R (v 3.2.5; [72]). When com-

paring movements between guilds or landscapes we considered the average movements by an

individual bird as the experimental unit. Averaging enables each individual bird to be included

in these broad analyses regardless of our knowledge of individual histories. However, when

relating movement to annual productivity, fidelity to mate, and land cover in the territory, we

followed [34] and considered an individual’s annual movement to be the experimental unit

because each movement was associated with a unique history (preceded by a unique reproduc-

tive event that was often conducted with a different partner in a territory that was in a unique

location surrounded by different neighbors and where human action frequently changed the

Fig 1. Classification of satellite images (top row) into suburban vegetation classes (bottom row) at original

breeding site during year of occupancy (Territory A, Year 1), original breeding site during year it was

abandoned (Territory A, Year 2), and new breeding site during year of occupancy (Territory B, Year 2). In this

example of a Pacific wren, the breeding male moved 647m from Territory A to Territory B in association with clearing of a

portion of his former territory for construction of a new subdivision.

doi:10.1371/journal.pone.0167829.g001
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local vegetation). We used standard parametric or exact tests to investigate the relationship

between variables other than dispersal distance. We used generalized linear mixed models

(GLMMs) to understand how dispersal distance was influenced by four categorical factors: 1)

annual production of fledglings; 2) fidelity to mate (resulting movements where pair remained

intact or where new bonds formed after death or divorce of partner); 3) landscape (changing,

developed, and reserve sites); 4) guild (avoider versus adapter/exploiter), and two continuous

covariates: 1) change in local landscape within territory that was abandoned (number of pixels

of each land cover class gained or lost), and 2) change in local landscape within territory that

was obtained (pixels gained or lost by cover class). Because the distribution of dispersal dis-

tances has positive support and a long right tail, we used the gamma distribution with a log link

in all GLMMs. We standardized the continuous covariates and included site as a random effect

in the models to account for potential variation occurring at the site level. We also used gener-

alized linear models to test the influence of landscape on the likelihood of fledging young

before and after a movement. For our relatively small sample of avoiders, we quantified change

in fledging success before and after movement as the ‘same or better’ versus ‘worse’ using

binominal regression with a probit link. We report raw factor means and standard errors (and

medians for distance moved (S1 Table), and include test statistics to indicate significance based

on the corresponding model. While much of our approach is descriptive and exploratory, we

used the aforementioned tests to appraise predictions from our four hypotheses (Table 1).

We follow Fisher’s [73] (see also [74]) approach to statistical inference and use p-values to

screen for potentially real or useful associations that have merit for future investigation. We

report p-values and interpret those<0.05 as providing evidence of an effect that should be

confirmed with other studies. P-values between 0.05 and 0.20 provide evidence of an effect

that should be tested with additional studies of improved design (e.g., increased replication).

P-values >0.20 indicate that if there is an effect it is too small to detect with the current experi-

mental design. In our analysis, we do use partially overlapping datasets; however because we

test specific predictions from a priori hypotheses and offer a broad interpretation of the p-val-

ues, we did not employ any corrections for multiple comparisons [75].

Results

Does a Species’ Life History Influence Site Fidelity and Mate Fidelity?

Annual movements between the centers of a breeding songbird’s successive territories were

slight (median = 44.4m) and their distribution was positively skewed with a sharp peak and

long tail (Fig 2; skew = 3.26±0.11, kurtosis = 15.01±0.22, n = 504 moves by 337 adults). The

smallest species by mass, the Pacific wren, which is a resident and an avoider exhibited the

greatest annual movements while the medium-sized, resident Bewick’s wren moved least

(median values: Pacific wren = 101.8m, n = 24 birds; Bewick’s wren = 32.6m, n = 9 birds). Spe-

cies that migrate, including a locally migrant junco and long-distance migrant thrush dis-

persed greater distances (Swainson’s thrush = 68.4m, n = 17 birds; dark-eyed junco = 85.0m,

n = 27 birds) than all resident species other than the Pacific wren (song sparrow = 39.3m,

n = 162 birds; spotted towhee = 47.2m, n = 98 birds). The longest movement was of 653m by a

male spotted towhee in a reserve.

Site fidelity varied among species (Table 2; X2
(5) = 24.3, P<0.0001). Territory size varied

among species (F5,1561 = 14.5, P<0.001) and landscape (F2, 1561 = 4.7, P = 0.009), therefore we

appraised site fidelity separately by species within landscapes (S2 Table). Swainson’s thrushes

and Bewick’s wrens had the largest territories, while Pacific wrens and song sparrows had the

smallest (Table 2). Appraising the distance moved with respect to the size of each species’ terri-

tories (Table 2), dark-eyed juncos and Pacific wrens exhibited the least site fidelity. Swainson’s
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thrushes also had low site fidelity. Song sparrows and spotted towhees showed intermediate

levels of site fidelity at approximately 50%. Bewick’s wrens, which maintained the largest terri-

tories in our study, were most faithful to site. Bewick’s wrens only centered their activities

beyond the average maximum territory radius 35.7% of the time (Table 2). Overall, the two

Fig 2. Breeding dispersal by songbirds in an urbanizing environment. The frequency of movements by distance

category is separated by guild in this stacked bar figure (gray portion of bars is 47 distances moved by avoiders and

black portion is 457 distances moved by adapters and exploiters).

doi:10.1371/journal.pone.0167829.g002

Table 2. Territory size, site fidelity, apparent death of partner, and mate fidelity of songbirds spot-mapped in forested landscapes surrounding

Seattle, WA, USA, from 2003–2010. Assessment of site fidelity was done within each landscape and summed here for an overall proportion because territory

size varied among species and among landscapes (S1 Table). When a banded bird remated with a new partner and it’s mate from the prior year was not

detected in the study area, we concluded the prior mate was apparently dead. Species abbreviated as follows, Bewick’s wren: BEWR; dark-eyed junco:

DEJU; song sparrow: SOSP; spotted towhee: SPTO; Swainson’s thrush: SWTH; Pacific wren: PAWR.

SPECIES Average Maximum

Territory Radius

(xr) (n, SE)

Site Fidelity (% of

movements < xr) (n moves)

Percentage of new pair bonds resulting

from apparent death of one partner (n)

Mate Fidelity (% of resighted birds

that remated with prior partner) (n)

Guild: Adapter/Exploiter

BEWR 46.1m (151, 1.0) 64.3% (14) 50.0% (4) 100% (2)

DEJU 41.6m (205, 1.4) 16.1% (31) 46.7% (15) 25% (8)

SOSP 32.9m (369, 0.9) 49.8% (257) 50.6% (87) 74% (43)

SPTO 44.2m (360, 1.0) 49.0% (155) 56.5% (46) 70% (20)

Guild: Avoider

PAWR 36.6m (268, 0.8) 18.5% (27) 100% (1) NA

SWTH 49.6m (226, 1.1) 35.0% (20) 100% (4) NA

doi:10.1371/journal.pone.0167829.t002
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migrant species were less faithful to their sites than were the four resident species (Fisher’s

Exact test: P = 0.001).

Fidelity to mate was generally lower than fidelity to territory (Table 2). The majority of

birds were mated with a new partner on the new territory gained from a movement (68.1% of

157 birds), mostly because of the apparent death of one partner. We observed 23 instances

(21.5% of instances where both members of a pair were observed in subsequent years) of

divorce in exploiters/adapters. Divorce was more frequent in the short-distance migrant junco

(6/8 dark-eyed juncos) than in the resident species combined (10/42 song sparrows plus 6/20

spotted towhees; Fisher’s Exact Test P = 0.01). Divorce was not confirmed in any of the few

subsequent bonds we observed of avoiders, Table 2).

Does Annual Productivity, Mate Fidelity, or Landscape Conversion

Influence Annual Movement of Breeders?

Annual reproductive failure preceded long movements, especially in changing landscapes. We

documented 102 movements by birds after they failed to fledge young within a season and 269

movements after they succeeded to fledge at least one brood. Over all landscapes and guilds

the distance moved following failure (�x ¼ 74� 7:1m) was not significantly different than

movement following success (�x ¼ 62� 4:6m; P = 0.21). However, in changing landscapes

where territory quality may be impacted by construction activities that modify the juxtaposi-

tion of high and low quality territories, we discovered that breeders moved significantly less

after succeeding to fledge young (�x ¼ 58:4� 4:72m, n = 158 moves) than those failing to

fledge young (�x ¼ 78:9� 10:1m, n = 52 moves; marginal effect of fledging success in chang-

ing landscapes P = 0.04; median values in S1 Table; full results in S3 Table).

Considering only well-sampled species (song sparrows, spotted towhees and dark-eyed

juncos; Table 2) across all landscapes, the distance moved coincident with divorce

(�x ¼ 137:4� 28:4m, n = 22) was double that moved in association with a partner’s apparent

death (�x ¼ 59:9 � 7:2m, n = 78) or when the partner was retained (�x ¼ 60:7 � 13:4m,

n = 48; P<0.001; median values in S1 Table; full results in S4 Table). Regardless of gender,

dispersal distances of these species were largest following divorce (n = 12 females:

�x ¼ 139:3 � 34:2m; n = 11 males �x ¼ 127:4� 45:2m; S5 Table). Pairs that failed to fledge

young were no more likely to divorce than were pairs that successfully fledged young (Fish-

er’s Exact Test P(1-tailed) = 0.42).

Ongoing conversion of forests to housing developments within changing landscapes

affected the breeding dispersal of avoiders differently than that of exploiters/adapters. Each

species responded in one of three ways to different landscapes (S1 Fig). Exploiters/adapters,

such as song sparrows, spotted towhees, and Bewick’s wrens moved farthest in reserves or

developments, but avoiders, such as Swainson’s thrushes and Pacific wrens, moved farthest in

changing landscapes. As a result, there was a moderately significant difference in a guild’s aver-

age movement in changing landscapes (marginal effect of guild in changing landscapes

P = 0.06; Fig 3; median values provided in S1 Table, full results in S6 Table). The average move-

ment by an avoider in changing landscapes (�x ¼ 145:6� 25:62m) was over twice as long as

the average movement by an adapter/exploiter in these dynamic lands (�x ¼ 70:4� 4:0m). In

part, this reflects the fact that reproductive failure in changing landscapes, which appears to

stimulate movement (S3 Table), was most common among avoiders, (53.3% of 4132 adapter/

exploiter territories followed over the course of study fledged young each year, but only 30.6%

of 1943 avoider territories did so; X2
(1) = 274, P<0.0001). Across all landscapes, the average

move by an avoider (�x ¼ 112:96� 19:0m, n = 41 birds) was only slightly greater than that by

an adapter/exploiter (�x ¼ 70:16� 4:5m, n = 296 birds; P = 0.65; S6 Table).
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Despite extended movements by avoiders living in changing landscapes relative to reserves

or developments, actual land conversion within a bird’s territory was not closely associated

with the distance moved. In changing landscapes, 33 of 263 territories experienced habitat

transformation within 100m of their activity centers. On these territories, construction activi-

ties resulted in an average forest loss of 2968±638m2 (9.5% of the area) that was replaced by

1772±387m2 of built and 1196±533m2 of cleared, grass or shrub land. Birds that experienced

local change in habitat composition did not move farther (�x ¼ 64:4� 12:8m, n = 33) than

those birds that experienced no change (�x ¼ 70:3� 5:4m, n = 230; P = 0.30). Across all birds

the distance moved was not correlated with the amount of change in forest, built, or other

cover (all |r|<0.04, P > 0.55, n = 263). Forest loss within the year was not correlated with the

distance moved by avoiders (r = 0.07, P = 0.76, n = 21). However, there was a tendency for

Pacific wrens to move farthest from territories that had in prior years lost the most forest cover

(r = 0.46, P1-tailed = 0.07, n = 12). Distance moved by adapters/exploiters was not correlated

with loss of forest or gain in anthropogenic lands (all |r|< 0.06, P > 0.33, n = 242).

Does Movement Improve Reproduction or Enable Dispersers to Settle in

Appropriate Habitat?

Movement within stable landscapes was more likely to improve an avoider’s reproductive suc-

cess than was movement within changing landscapes. We had sufficient data to compare the

probability of fledging offspring by individual avoiders the year preceding and the year after a

Fig 3. Average (+1SE) breeding dispersal distance by guilds in each of three landscapes. Sample size above error bars.

doi:10.1371/journal.pone.0167829.g003

Urbanization Affects Bird Dispersal

PLOS ONE | DOI:10.1371/journal.pone.0167829 December 28, 2016 10 / 20



move within changing (n = 12) and reserve (n = 10) lands. In changing landscapes only 2

(16.7%) avoiders that failed to fledge offspring and then moved succeeded in fledging offspring

from their new territory. In contrast, 5 (50%) did so in reserved landscapes (Fisher’s exact test

P(1-tailed) = 0.11). In changing landscapes, 58% of avoiders were as or more likely to fledge

young after moving to a new territory, but in reserves 90% maintained or improved their likeli-

hood of fledging offspring (modeling the effect of landscape on maintaining the same or better

versus worse fledging success after the move using a binomial regression: P = 0.12).

Regardless of landscape, adapters/exploiters that were or were not faithful to their previous

breeding territory typically fledged young in consecutive years (94/152 pairs that remained

within the average radius of their species’ territory fledged young in back-to-back years as did

81/155 that dispersed beyond the average species-specific territory boundary). However, fol-

lowing failure those that dispersed improved the likelihood of fledging a brood more often

than did site faithful birds. Considering only birds that experienced different reproductive suc-

cess in consecutive years, a majority (58.9%, n = 33) of dispersers were successful after the

prior year’s failure. Only 41.1% (n = 23) of dispersers fledged offspring prior to the move and

subsequently failed to do so on their new territory. In contrast, a minority of site faithful birds

(37%, n = 17) were successful at fledging offspring the year following reproductive failure and

many that were previously successful subsequently failed to fledge offspring (n = 29, 63%). Dis-

persers were more likely to succeed after failure and less likely to fail after success than were

site faithful adapters/exploiters, regardless of landscape (Fisher’s Exact test: P = 0.03).

Movement within changing landscapes resulted in avoiders and adapters/exploiters acquir-

ing territories of distinctive (and typical) land cover. After moving, the areas within a 100m

radius of 22 avoider activity centers held on average 793±925m2 more forest land than did the

abandoned territory, whereas the same areas for 261 adapters/exploiters held less forest cover

and more built (231±172m2) and cleared (39±137m2) land. Both avoiders and adapters/

exploiters ended up with mostly forest surrounding their activity centers, but avoiders had sig-

nificantly more forest cover and by default less built and cleared land than did adapters

(avoider: 24014±1084m2 forest, 2459±476m2 built, 4907±706m2 cleared; adapter/exploiter:

16909±299m2 forest, 6613±242m2 built, 7859±188m2 cleared; because of unit sum constraint

we compare only forest: F1, 281 = 43.6, P< 0.0001).

Moving to acquire a new territory in species’ typical vegetation appears of primary impor-

tance to avoiders, but not adapters/exploiters, in changing landscapes. We determined the

annual movements in relation to productivity and resulting land cover for 19 avoiders. Those

Pacific wrens and Swainson’s thrushes that moved farthest gained significantly greater forest

cover but were equally likely to have fledged young the prior year as those that moved the least

(Fig 4a; resulting forest: P = 0.002; prior fledging success: P = 0.79; full results in S7 Table). In

contrast, the distance moved by 92 adapter/exploiters was more sensitive to whether a prior

mate was retained than it was to the habitat acquired or a pair’s prior success at fledging off-

spring (Fig 4b; mate fidelity: P = 0.004, prior productivity: P = 0.90; resulting clearing:

P = 0.33; note the results reported are for non-forested habitat which is appropriate for these

species; full results in S8 Table).

Discussion

Change in Bird Communities During Urbanization

As native lands are urbanized animal communities rapidly shift from being dominated by sensi-

tive, interior habitat specialists (‘avoiders;’ [12]) to those dominated by tolerant, flexible, edge

and early successional species (‘adapters’ and ‘exploiters;’ [12]). Overall diversity in suburbs and

exurbs may increase during this process [12, 14] and relative dominance attained by common
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Fig 4. Breeding dispersal distance of adapters / exploiters (A) and avoiders (B) in response to

vegetation changes associated with construction of new subdivisions. The most influential vegetation

variable for each guild is used as the x-axis. For adapters / exploiters this was the total amount of forest within

100m of the new territory center. For avoiders it was the difference in total forest within 100m of the new

territory center minus the old territory center (positive values indicate increases in forest cover at the territory
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species within the community may remain unchanged [22], but the composition of communi-

ties changes markedly [76–79]. By comparing reproduction, survivorship, and movements of

sensitive ‘avoiders’ to those of tolerant ‘adapters’ and ‘exploiters’ we were able to demonstrate

the demographic reasons why communities change in response to urbanization.

In the rapidly urbanizing Pacific Northwest of the USA, frequent reproductive failure of

forest specialists such as the Pacific wren and Swainson’s thrush followed by their inability to

obtain new breeding territories that enhance productivity cause population declines. The resi-

dent Pacific wren ultimately is excluded as a breeding species in most established subdivisions

because of this reduced annual productivity and low adult survival (39%; [22]). In contrast, the

migratory Swainson’s thrush may be sustained at low levels in established subdivisions despite

low annual productivity because of higher adult survival (57%; [22]). As avoiders decline,

adapters and exploiters increase to dominate suburban bird communities because of high

breeding success and high annual survival during and after development (in most cases >50%;

[22]). Moreover, when adapters and exploiters fail to reproduce in developments they disperse

to new territories where their chances of successful reproduction are improved. Avoiders also

practiced this adaptive strategy after less frequent reproductive failure in nearby forest reserves

of moderate size (>75ha). There, the ability to disperse to higher quality territories, reproduce

effectively, and survive enables Pacific wrens and Swainson’s thrushes to be two of the five

most abundant species in northwestern forests [22].

Hypotheses Concerning Variation in Breeding Dispersal and Mate

Fidelity

Fidelity to territory in most birds is strong and therefore breeding dispersal is generally of short

distance, frequently only a few territories away from the previous site [33]. This was true for all

species studied in each landscape (S2 Table). If we consider movements shorter than the aver-

age territory dimension to be slight realignments of activity within the same area that an indi-

vidual defended in the previous year, then site fidelity of species ranged from 16–64% (Table 2).

Variation within and among species in breeding dispersal allows us to appraise many of the

hypotheses used to explain site fidelity in other species [33, 36]. Within all species, we found

breeding dispersal to be closely mediated by prior reproductive success. As is often the case,

dispersal distance was greater following annual failure to reproduce than it was following suc-

cessful production of fledglings [44], and the dispersing individual did not consistently find

greater success in their new territory [80]. Our results suggest that in optimal habitats dispersal

following failure improves breeding productivity, but in suboptimal habitats this is not the

case. Avoiders improved their breeding success by dispersing after failure in reserves, their

optimal habitat (based on relative abundance and survival; [22]), but did not do so in subopti-

mal changing lands. In contrast, adapters and exploiters, which are abundant, productive and

survive well in developed and undeveloped lands [22], improved their breeding success by dis-

persing after failure in these locations.

Low site fidelity in both migrant species (dark-eyed junco and Swainson’s thrush; Table 2)

is consistent with hypotheses that earlier return to breeding sites by males than females

increases breeding dispersal by females because their previous years’ mates have already paired

with other females (bet-hedging hypothesis; [41] or because of active choice by females for the

best available partner or territory (musical chairs hypothesis; [42]. Either alternative seems

each bird dispersed to. Shading of points indicates mate fidelity (A) or annual productivity (B), which were

found to be important to each guild. Least-squares regression line ± 95% CI are fitted to data.

doi:10.1371/journal.pone.0167829.g004
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reasonable for Swainson’s thrushes because, although we resighted one third of previously

banded males faithful to the prior year’s territory, we did not confirm any site fidelity for

breeding females. The situation may be more complex for dark-eyed juncos because although

their low site fidelity was associated with a high frequency of divorce, as expected by hypothe-

ses linked to asynchronous returns, we did not observe greater dispersal by female juncos.

Land conversion due to urbanization results in juxtaposition of high and low quality terri-

tories and rapid changes in territory quality, which drive breeding dispersal in many species

[34, 46]. We suggest this is a major reason for breeding dispersal by avoiders in changing

lands. All Pacific wrens in changing lands lacked site fidelity, for example (S2 Table), in accor-

dance with Stamp’s suggestion [48] that in fluctuating environments even high quality individ-

uals may disperse. The influence of rapidly changing resource availability may also interact

with the synchrony of returning to territory to affect dispersal in migrants regardless of their

affinity for developed or reserved lands. Strong site fidelity by at least one sex of all species

likely reflects the advantages of remaining on, or returning to, familiar ground with known

nest sites, resources, and shelter [33].

Annual variation in density or availability of mates is known to cause variation in dispersal

from year to year or from site to site [81, 82]. We did not assess this hypothesis directly, but

dispersal distance within the three landscapes we studied was not related to a species’ abun-

dance. Avoider abundance increases from developments to changing sites and reserves, while

exploiter, and to a lesser extent adapter, abundance does the opposite [22]. We will assess the

influence of density surrounding an individual pair at a finer scale in the future, but the current

analysis suggests that immediate changes in landscape quality (avoiders) or pair compatibility

(adapters/exploiters; Fig 4) rather than density per se motivates dispersal in dynamic lands.

Increased Knowledge of Common Birds

Our long-term study of color-banded birds in a variety of landscapes increased our under-

standing of natural history in the urban ecosystem. Although established breeding pairs of

songbirds move little, some individuals are capable of extensive forays across what we might

consider inhospitable terrain; all species we studied moved several hundred meters across

lands fully occupied by people. We confirmed findings from wilder locales concerning high

site fidelity in Bewick’s wrens [53] and Pacific wrens [52]. However, in suburban settings rela-

tive to wildlands, we found divorce to be more common in song sparrows and dark-eyed jun-

cos [49, 51] and site fidelity to be lower in Swainson’s thrushes and Pacific wrens [50, 52].

These decreases in stability of site ownership and pair bonding may reflect the dynamic nature

of the suburban ecosystem. However, all developed settings may not be equal, as we found

mate fidelity in spotted towhees to be even higher than reported for an urban population in

nearby Portland, OR [54].

Conservation Lessons From the Suburban Experiment

Increased human settlement of Earth challenges many species, but it also offers the urban ecol-

ogist an experimental arena within which to document causal connections between human

action and ecological response. The changing landscapes we studied and compared to nearby

established neighborhoods and forest reserves allowed us to better understand why avoiders

decline and adapters and exploiters remain common in residential settings. Knowing that indi-

vidual avoiders seek distant forests when the landscape they inhabit, and not just their immedi-

ate territory, is developed (Fig 4) suggests that the spatial extent of a neighborhood’s effect is

greater than its immediate developed footprint. Moreover, the apparent inability of avoiders to

improve their reproductive fitness by leaving changing lands suggests that the ecological
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consequences of developments are far-reaching and long lasting. (It is likely that some avoiders

dispersed substantial distances and found success beyond the limited areas we searched.) Con-

servationists interested in sustaining sensitive species in urbanizing regions have a difficult

task ahead of them, but our results emphasize the importance of nearby reserves where dis-

placed avoiders might find a place to breed (and possibly adapt to a more urban life [15] and

existing sensitive species might be able to continue to reproduce at sustainable levels and make

adaptive changes in site and mate when reproduction fails. Conserving common species—the

adapters and exploiters that live among us—is certainly easier than maintaining sensitive spe-

cies. Our results suggest they are effective at breeding, surviving, and moving about in the

places we also call home. Importantly, in the patches of forest, shrub, and garden that we stud-

ied, populations appear able to sequester significant human subsidies [31], while overcoming

the fitness consequences of living near human structures [83, 84], predators [85], and invasive

plants [20] in part because surviving individuals exercise adaptive options in site fidelity. The

extent to which the Seattle area, which has only been settled by Europeans for 165 years and is

surrounded by extensive wild areas, is unique will only be determined by studies such as ours

in a greater variety of cities. Such comparative study is critically needed if we are to practice

effective conservation in our increasingly urban world.
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