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Abstract

K-shuff is a new algorithm for comparing the similarity of gene sequence libraries, providing

measures of the structural and compositional diversity as well as the significance of the dif-

ferences between these measures. Inspired by Ripley’s K-function for spatial point pattern

analysis, the Intra K-function or IKF measures the structural diversity, including both the

richness and overall similarity of the sequences, within a library. The Cross K-function or

CKF measures the compositional diversity between gene libraries, reflecting both the num-

ber of OTUs shared as well as the overall similarity in OTUs. A Monte Carlo testing proce-

dure then enables statistical evaluation of both the structural and compositional diversity

between gene libraries. For 16S rRNA gene libraries from complex bacterial communities

such as those found in seawater, salt marsh sediments, and soils, K-shuff yields reproduc-

ible estimates of structural and compositional diversity with libraries greater than 50

sequences. Similarly, for pyrosequencing libraries generated from a glacial retreat chrono-

sequence and Illumina® libraries generated from US homes, K-shuff required >300 and 100

sequences per sample, respectively. Power analyses demonstrated that K-shuff is sensitive

to small differences in Sanger or Illumina® libraries. This extra sensitivity of K-shuff enabled

examination of compositional differences at much deeper taxonomic levels, such as within

abundant OTUs. This is especially useful when comparing communities that are composi-

tionally very similar but functionally different. K-shuff will therefore prove beneficial for con-

ventional microbiome analysis as well as specific hypothesis testing.

PLOS ONE | DOI:10.1371/journal.pone.0167634 December 2, 2016 1 / 22

a11111

OPENACCESS

Citation: Jangid K, Kao M-H, Lahamge A, Williams

MA, Rathbun SL, Whitman WB (2016) K-shuff: A

Novel Algorithm for Characterizing Structural and

Compositional Diversity in Gene Libraries. PLoS

ONE 11(12): e0167634. doi:10.1371/journal.

pone.0167634

Editor: Luis Angel Maldonado Manjarrez,

Universidad Autonoma Metropolitana, MEXICO

Received: June 28, 2016

Accepted: November 17, 2016

Published: December 2, 2016

Copyright: © 2016 Jangid et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the Franklin

College of the University of Georgia and grants

from the USDA and NSF. We thank Mohit

Navandar and Rajesh Jangid for helping with the

Perl script. KJ acknowledges the funding support

of the Department of Biotechnology, Government

of India, under the project entitled “Establishment

of Microbial Culture Collection” (Grant no. BT/PR/

0054/NDB/52/94/2007).

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0167634&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction

The quantitative comparison of gene sequence libraries has become an essential component

of hypothesis-driven ecological research. With the increased affordability of high-through-

put sequencing, the analyses of the microbiomes of humans, soils and other ecosystems has

focused less on descriptions of microbiomes and more on examining the underlying envi-

ronmental and biological factors affecting their structures. With the introduction of LIB-

SHUFF [1] and other software packages, such as the analysis of molecular variance or

AMOVA [2],
R

-LIBSHUFF [3], DOTUR [4], UniFrac [5], SONS [6], TreeClimber [7],

LibraryCompare [8] and Metastats [9], statistical comparisons of communities can now be

based on multiple approaches and algorithms. Generally, these comparisons are based on

operational taxonomic units (OTUs), which are derived from the sequence datasets using

two different approaches: alignment-dependent clustering based on distance cutoffs and an

alignment-independent reference based on prior phylotype assignments [10]. While the for-

mer is computationally expensive, the latter suffers from the incompleteness of the refer-

ence databases, which at times can lead to a major portion of the microbiome left

unassigned. Using mock sequence datasets represented in a two-dimensional space of cir-

cles and ellipses with known shapes and densities, a systematic evaluation of these tools

showed that the current statistical toolbox has the ability to address specific ecological ques-

tions concerning the differences among microbial communities [11]. However, these algo-

rithms posed some limitations for complex analyses. For instance, the methods that depend

upon assignment of sequences to operational taxonomic units or OTUs require large sam-

ples to estimate richness. Similarly, methods that depend upon Monte Carlo testing proce-

dures become computationally expensive when comparing large sequence libraries that are

typical of high-throughput technologies. Lastly, there are also limitations in the sensitivity

of the algorithms for detecting ecologically relevant differences.

To address these concerns, the utility of a new algorithm for comparison of gene libraries

called K-shuff was assessed. K-shuff was designed and implemented in a Fortran program and

is motivated by Ripley’s K-function [12], which is a powerful statistical tool for spatial point

pattern analysis. It uses measures of distances among all pairs of sequences to reflect any aggre-

gation of these sequences as would arise from samples comprised of closely related organisms.

So, more information is retained when compared to LIBSHUFF which only uses the distance

between each sequence and its nearest neighbor. In contrast to spatial point processes, the dis-

tances among gene sequences typically encompass hundreds of dimensions, where each

sequence position comprises a separate dimension. Thus, some ideal properties, such as statio-

narity and isotropy, which are typically assumed in developing K-function theories, are not rel-

evant. However, this limit does not hinder the usefulness of K-functions for this application.

As indicated by Diggle et al. [13] and the results of our case studies detailed below, empirical

K-functions still render meaningful scientific interpretations.

In this study, we perform a systematic evaluation of the reproducibility, sensitivity and

power of K-shuff, using previously reported 16S rRNA gene sequence datasets obtained

using the Sanger method and pyrosequencing and Illumina1 platforms. In addition, we

compare its performance with LIBSHUFF, the first statistical tool for this purpose, as well

as the most frequently used tool today, UniFrac. We show that when correctly employed,

K-shuff allows testing of multiple hypotheses in a single process and has the potential to sig-

nificantly improve our understanding of ecologically meaningful aspects of microbial

communities.
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Materials and Methods

The K-shuff Metric

K-shuff identifies spatial clustering based on the reduced second moment measure, or K-func-

tion [14, 15]. In general, the K-function is defined based on a distance measure, which in this

context is set to be the evolutionary distance between the gene sequences. Denoting the evolu-

tionary distance between sequences i and j by dij, the empirical K-function for a library of

sequences of size N is:

KðrÞ ¼
1

NðN � 1Þ

XN

i¼1

XN

j6¼i

Iðdij � rÞ;

where I(E) is an indicator function (= 1, when E is true; = 0, if otherwise), and r is any positive

number on the real line of evolutionary distances. In essence, this K-function is the empirical

cumulative distribution function of the evolutionary distances for a gene library. For every

value of evolutionary distance r in the distance matrix, K(r) is the fraction of dij values less than

or equal to r.

The Intra K-function or IKF may be defined as above to describe the genetic diversity

among the members of a single library, hereafter referred to its structure, and can be repre-

sented as a plot of K(r) as r increases from zero to its maximum value (Fig 1). For some appli-

cations, it is also convenient to describe the IKF as a single summary value, Ikf, which

represents the area above K(r) in the distribution plot (Fig 1). When a library has limited diver-

sity, the IKF will rise rapidly and Ikf will be small, as shown in the comparison of Fig 1A and

1E. However, reducing the IKF to a single number necessarily causes loss of information, and

multiple IKFs can yield the same Ikf value even when the libraries are significantly different, as

seen in the comparison of Fig 1A and 1B. Moreover, in contrast to many conventional diver-

sity estimates, the IKF is sensitive to both the number of OTUs and the relatedness between

them. This explicit recognition of relatedness, not captured in binning methods, is an impor-

tant advantage of the method’s ability to represent the community diversity, and a community

comprised of many closely related sequences would have a lower Ikf than a community with

same number of OTUs but comprised of distantly related sequences.

While the IKF describes the genetic diversity or structure within each library, the Cross-

K-function of CKF provides a natural measure of the dissimilarity in the membership or

Fig 1. Intra K-functions or IKFs for hypothetical libraries of varying structural complexity. Each four member

library is represented by its phylogenetic tree. Libraries A and B have the same overall diversity and the same Ikf value but

different structures. For C, D, and E, increases in diversity correlate with increases in Ikf.

doi:10.1371/journal.pone.0167634.g001
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composition between paired libraries. In the CKF, the K-function is the computed distribution

function of the evolutionary distances between pairs of sequences, one from each of the two

libraries (Fig 2). When the compositions of the libraries are the same, it is possible to demon-

strate that the expected value of the CKF is equal to the IKFs of the two libraries under random

allocation or shuffling of members among the two libraries, i.e., the CKF is identical to the

IKFs for each library. As the compositions of the libraries become more different, however, the

CKF becomes more different from the IKFs. The magnitude of this difference can also be sum-

marized by a single value Ckf, which is the sum of the areas between each of the IKFs and the

CKF (Fig 2).

Theory behind K-shuff

Suppose that we have a collection of gene sequences and that the evolutionary distances dij

have been computed for all pairs of sequences i and j in the collection. Separate empirical K-

functions were designed to provide nonparametric summary measures of the richness or even-

ness of genetic diversity within a library and the dissimilarity of the composition between

libraries. The first empirical K-function, the Intra K-function or IKF describes the genetic

diversity of a library, Sl. It may be regarded as the cumulative distribution function of evolu-

tionary distances among members of the library Sl. It is:

KðlÞðrÞ ¼
1

nlðnl � 1Þ

XN

i¼1

XN

j6¼i

Iðdij � rÞIði 2 SlÞIðj 2 SlÞ

Here, nl is the number of sequences in the library Sl and N is the total number of sequences in

all libraries being studied. I(E) is an indicator function that takes the value of 1 if E is true and

0 if otherwise. The quantity dij is the evolutionary distance between sequences i and j.
Plotting K(l)(r) against evolutionary distance r yields a unique description that more deeply

summarizes the composition or diversity of the library relative to other diversity indices. For

comparing large numbers of libraries, however, the summary diversity index

Ikf ¼ 1 �

Z 1

0

KðrÞdr;

Fig 2. Cross K-functions or CKFs for hypothetical libraries of varying similarity. Each four member library is represented

by its phylogenetic tree. All libraries have the same IKF, but the CKF can vary greatly. The Ckf is the sum of the area between

each of the IKFs and the CKF or twice the shaded areas. A. Comparison of two identical libraries. B. Comparison of two libraries

where half the members are the same. C. Comparison of two libraries where none of the members are the same. In this latter

case, even though there is no overlap in the compositions of the two libraries, the members of the libraries possess limited

diversity of 0.4.

doi:10.1371/journal.pone.0167634.g002
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may be computed, representing the area above K(l)(r) in the distribution plot. In libraries with

low diversity, K(l)(r) will increase rapidly with increasing r, and Ikf will take a small value. In

high-diversity libraries, K(l)(r) will increase slowly, and Ikf will take a large value.

For describing the dissimilarity in the membership between a pair of libraries Sl1
and Sl2

, we

consider the following bivariate empirical K-function, the Cross K-function or CKF. It is:

Kðl1 ;l2ÞðrÞ ¼
1

nl1
nl2

XN

i¼1

XN

j¼1

Iðdij � rÞIði 2 Sl1
ÞIðj 2 Sl2

Þ;

see also Diggle [16]. Here, nl1
and nl2

are the number of sequences in libraries Sl1
and Sl2

,

respectively. The quantity dij is now the distance between a sequence i of library Sl1
and a

sequence j of library Sl2
.

Plotting Kðl1 ;l2ÞðrÞ against evolutionary distance r yields a description of the compositional

similarity of the two libraries. For pairs of libraries that are compositionally similar, Kðl1 ;l2ÞðrÞ
will increase rapidly with increasing r. For dissimilar libraries, Kðl1 ;l2ÞðrÞ will increase slowly.

This may be reduced to the index

Ckf ¼

Z 1

0

Kðl1 ;l2ÞðrÞ � Kðl1ÞðrÞ
�
�

�
�dr þ

Z 1

0

Kðl1 ;l2ÞðrÞ � Kðl2ÞðrÞ
�
�

�
�dr;

which is the sum of the areas between each of the IKFs and the CKF.

To determine the homogeneity of the genetic diversity or structure among libraries S1,

S2,� � �,SL, the following test statistic was used in analogy with an analysis of variance (ANOVA)

test proposed by Cuevas et al. [17] for functional data:

Tl ¼
XL

l¼1

nl

Z 1

0

½KðlÞðrÞ � �KðrÞ�2dr

where �K ðrÞ ¼

XL

l¼1
nlK

ðlÞðrÞ
N is the weighted average of the IKFs. When all libraries are sam-

pled from the same population, the statistical expectations of all IKFs are the same as their

average, resulting in a small Tl. Otherwise, when the structures are very different, the Tl-value

will be large.

As for comparing the composition between libraries Sl1
and Sl2

, we propose the following

test statistic:

Tðl1 ;l2Þc ¼

Z 1

0

Kðl1 ;l2ÞðrÞ �
nl1

Kðl1Þ þ nl2
Kðl2Þ

nl1
þ nl2

" #2

dr:

This test statistic compares the CKF with the weighted average of the IKFs. We note that when

the two libraries are sampled from the same community and thus possess similar composi-

tions, their IKFs, Kðl1ÞðrÞ and Kðl2ÞðrÞ, and the CKF, Kðl1;l2ÞðrÞ have identical expectations.

Hence, the test statistic Tðl1 ;l2Þc is small. On the other hand, when the two libraries are sampled

from very different communities, the difference between them as indicated by the CFK is

much larger than the diversity within each library, represented by the IKF. The test statistic

then becomes large.

Following Singleton et al. [1], a Monte Carlo procedure was used to approximate the distri-

butions of Tl and Tc and obtain their corresponding p-values. Specifically, sequences are ran-

domly shuffled across libraries for a large number of times, say 999 times. After each shuffling,

Tl as well as Tc-values are generated. The distribution of each test statistic is approximated

K-shuff Analysis of Gene Libraries
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from the frequency distribution of the (e.g., 999) generated Tj-values. In addition, p-value can

be approximated by the frequency of the generated Tj-values that are greater than the observed

one.

Validation of K-shuff

Using K-shuff. K-shuff is available for download as Linux source code and Windows exe-

cutable (current version 1.1) from https://research.franklin.uga.edu/whitman/content/k-shuff

along with test datasets and the user manual. All analyses were performed on a personal com-

puter with 2.8 GHz processor and 4 GB RAM. To run K-shuff, a PHYLIP-formatted distance

matrix and a control file are required. Because K-shuff is capable of performing multiple com-

parisons in a single run, one should include all libraries in a single distance matrix. The control

file is a simple text file containing parameter settings for the run, such as the path to the dis-

tance matrix file, number of libraries in the matrix, number of sequences in each library, etc.

16S rRNA gene datasets. To demonstrate its general applicability and sensitivity, K-shuff

was used to examine 16S rRNA gene libraries constructed using the Sanger method and pyro-

sequencing and Illumina1 platforms. These data sets were chosen to be representative of inter-

esting bacterial communities that varied in composition as well as structural diversity.

Libraries of 16S rRNA gene clone sequences for sea water and salt marsh sediments were from

Lasher et al. [18]. These libraries comprised Sanger sequences of about 400 bp. Libraries for

cropland, forest and grassland soils from Georgia, Kansas and Michigan were from Jangid

et al. [19, 20, 21], respectively. Prepared by Sanger sequencing, the sequences were typically

about 800 bp. Because all of these clone libraries were essentially prepared under an identical

protocol, the influence of experimental variations on the observed results were expected to be

minimal. For the high-throughput methods, microbial communities from soils formed by the

retreating Franz Josef glacier on the South Island of New Zealand were sampled by pyrose-

quencing as described by Jangid et al. [22]. rRNA gene pyrosequences from this chronose-

quence had an average read length of 260 bp and are deposited in SRP006445.2. For the

Illumina1 platform, sequences from the home life study by Dunn et al. [23] were used. First,

from a total of 1,719,177 quality-filtered reads a random subset of 1000 reads per sample were

extracted as used by the authors in their analysis, which resulted in 174,000 reads from 174

samples representing nine standardized locations within 18–20 different homes. For subse-

quent analyses of the effect of sample size, sequence subsets were then selected from the 1000

sequence data per sample. For the PCoA of Ckf, 100 sequences were randomly subsampled

from each library. Randomization from each of the 174 samples yielded between 95–100

sequences for a total of 17366 sequences, which were then used for the final analysis.

All sequences were aligned against the SILVA reference alignment within MOTHUR [24],

and a PHYLIP-formatted squared distance matrix was prepared. Conventional diversity esti-

mates were calculated using OTUs clustered at D = 0.03 using the average neighbor algorithm

in MOTHUR.

General application of K-shuff. To test a common potential application of K-shuff, the

composition of four relatively small libraries of bacterial 16S rRNA genes were compared.

These 80 member libraries comprised sequences randomly selected from larger libraries con-

structed from estuarine seawater (SW) and salt marsh sediment (MS) from the Sapelo Island

Microbial Observatory [18] and forest (FS) and cropland soil (CS) from the J. Phil Campbell

Sr. Natural Resource Conservation Center in Georgia [20].

The differences between the communities were determined using non-metric multi-dimen-

sional scaling (MDS) analysis in Statistica v10 (www.statsoft.org). For this, the values of the Ckf

were used as an input matrix for the plots. In addition, PCoA of the compositional parameter

K-shuff Analysis of Gene Libraries
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(Ckf) matrix using Sorenson distance was used to identify clustering of groups along ordina-

tion axes for the household microbiome (see below). A test that household bacterial communi-

ties were significantly different (α<0.01) from one another was determined using the multi-

response permutation procedure (MRPP) in PC-ORD Version 6 [25]. A measure of the effect

size, based on a chance corrected within group-agreement (A-value) was used to assess hetero-

geneity within and between groups.

Power analysis and simulations of K-shuff performance. To evaluate the utility of K-

shuff more systematically, larger 16S rRNA gene libraries were compiled from both Sanger

and high-throughput datasets. Clone library simulations were carried out by combining 1000

sequences from each of SW, MS and soils (FS+CS) that were representative of communities

that varied in composition as well as structural diversity (Fig A in S1 File). Pyrosequences were

obtained from a soil chronosequence dating from 60 y to 120 ky at the Franz Josef glacier on

New Zealand [22]. For each of the nine ages in the chronosequence, libraries of 2000 sequences

were prepared from each of five replicate samples or 10000 for each age. To evaluate the num-

ber of sequences required for K-shuff, 100, 200 or 300 sequences were randomly selected from

each replicate, and the sequences from replicates were pooled for K-shuff analyses of 500,

1000, and 1500 sequences for each age.

Similar simulations were also carried out on the Illumina1 datasets. Thus, the least number

of sequences required for a reproducible measure of IKF and CKF was determined from ran-

dom samples of 100, 200, 300, 400 and 500 sequences per sample for Cutting board (19 sam-

ples), Pillowcase (20 samples), and Door Exterior (18 samples) communities for a total of 57

samples. These sites were chosen because they varied in diversity and showed low, intermedi-

ate, and high OTU richness, respectively (see Fig 1 in Dunn et al. [23]).

Power analysis was then performed to test the statistical power of K-shuff by randomly

selecting sequences from the libraries in different proportions (ω) to create pairs of libraries,

where the total number of sequences in each library is N. For instance, for comparison of the

SW and MS libraries, one library in each pair consisted of ωN SW and (1-ω)N MS sequences,

while the other library in the pair contained (1-ω)N SW sequences and ωN MS sequences.

With ω = 0.5, the two generated libraries should be similar in both structure and composition

because both contained random selections of the same number of sequences from each envi-

ronment. Then ω was increased from 0.5 to 1.0 in steps of 0.05, resulting in pairs of libraries

with increasing levels of dissimilarity. When ω = 0.70, the SW library of N = 100 contained 70

sequences from SW and 30 sequences from MS. The paired MS library contained 70 sequences

from MS and 30 sequences from SW. Thus, both libraries contained 30 SW and 30 MS

sequences. When ω = 1.0, the libraries had their maximum difference because there was no

mixing. For each combination of N and ω, the TI and Tc test statistics for the Ikf and Ckf,

respectively, were calculated on 1000 pairs of mixed libraries, and the fraction of comparisons

that were significantly different or the power was calculated.

Results

General application of K-shuff

K-shuff was first evaluated using 80-member clone libraries of Sanger sequences generated

from seawater (SW), marsh sediment (MS), cropped soil (CS) and forest soil (FS) bacterial

communities. Because of their longer reads, Sanger libraries better represent the taxonomic

diversity of bacterial communities than many NexGen libraries [26]. These libraries were cho-

sen to represent both simple and complex communities and communities from different envi-

ronments. The SW community was composed of groups of closely related OTUs drawn from

just a few phyla and had a relatively low diversity (Fig 3A). This was reflected in the IKF by the

K-shuff Analysis of Gene Libraries
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Fig 3. Comparing 16S rRNA gene clone libraries using K-shuff. A. Measurement of structural and

compositional differences between the 80-member libraries from seawater and marsh sediment bacterial

communities using the intra K-functions or IKFs (labeled SW or MS) and the cross-K-function (or CKF). A CKF

which is ‘flat’ at low evolutionary distances indicates a large dissimilarity in the composition between the two

corresponding libraries. B. UPGMA trees of the Ckf and unweighted (UniFrac) and weighted UniFrac (W-UniFrac)

distances for the bacterial communities.

doi:10.1371/journal.pone.0167634.g003
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rapid increase in K(r) at low levels of evolutionary distance, followed by a plateau and then

increase at high levels of evolutionary distance of about 0.3. In contrast, the diversity of the MS

community was much greater, and the IKF remained low at low levels of evolutionary dis-

tance. The IKFs for the soil communities were very similar to those of the MS. These general

observations were also reflected in the Ikf values, which were 0.214, 0.302, 0.290, and 0.283 for

the SW, MS, CS, and FS communities, respectively. While the differences between the SW Ikf

and the other values were all significant at p<0.001, the Ikf of the two soil communities were

not significantly different from each other (p = 0.820) or that of the MS (p = 0.18 and 0.09,

respectively). These analyses confirm those of Lasher et al. [18], who had shown that the struc-

tural diversity of the bacterial communities of MS from Sapelo Island and soils were similar.

Although the structures of the MS and soil communities were not significantly different,

their compositions differed significantly from each other as well as the SW community with

p�0.003. For the comparison of the SW and MS communities, this difference was reflected in

the CKF, whose value remained low at low evolutionary distances or r values before rapidly

increasing at high levels of r (Fig 3A). Although the compositions of all the communities were

significantly different, the magnitude of the differences varied greatly. For instance, the Ckf

value between the soil communities was 0.020, compared to 0.06–0.09 and>0.16 for compari-

sons between the soil and MS and SW communities, respectively (Fig 3B). Consistent with the

low Ckf value, the soil communities possessed many OTUs in common and had a similar over-

all composition of their major phylogenetic groups [20]. UniFrac also indicated a similar hier-

archical clustering of these communities (Fig 3B). However, the p-values were only marginally

significant (p�0.06). Moreover, the magnitude of the difference between the soil communities

was nearly equal to their differences from the MS community for either the unweighted or

weighted UniFrac distances, which was not consistent with comparisons of either the major

phylogenetic groups or OTUs present [18, 20]. Thus, K-shuff appeared to provide a better

representation of the compositional diversity among these communities.

Power analysis and simulations of K-shuff performance with clone

libraries

To determine the sensitivity of K-shuff to differences in the composition of the libraries,

power analyses were performed by mixing the libraries from different communities. The

expectation was that a sensitive statistic would detect differences in the libraries at a low mix-

ing ratio. The power curves for both TI and Tc, the test statistics for the Ikf and Ckf respectively,

increased rapidly with the mixing proportion (or ω) for the MS and SW libraries, indicating

that K-shuff readily distinguished libraries whose structures and compositions differed (Fig 4).

For instance, at a mixing proportion of 0.70, the power of TI to distinguish structural differ-

ences between the libraries was already 0.782 for N = 50, 0.945 for N = 75, and 0.994 for

N = 100, where N is the size of the libraries (Fig 4 and Table A in S1 File). Similarly, the power

of Tc to distinguish compositional differences was above 0.90 even at N = 50. Compositional

differences between the MS and soil bacterial communities were also readily detected. At a

mixing proportion of 0.70, the power was 0.698 for N = 50, 0.901 for N = 75, and 0.998 for

N = 100 (Table B in S1 File). Previously, the sediment libraries had been found to possess a

structural diversity comparable to soil [18]. Consistent with this result, the power of TI

remained low under all the conditions tested (Table B in S1 File). In conclusion, the test statis-

tics had a high power to detect small differences in the libraries, and compositional differences

were detected in the absence of large structural differences.

K-shuff was also more sensitive to small changes in the library composition than widely

used alternative methods. Based upon 50 replicate libraries, the power of K-shuff to detect

K-shuff Analysis of Gene Libraries
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significant differences between SW and MS libraries with ω = 0.70 was 0.92, or essentially the

same as with 1000 replicates. In contrast, the powers of LIBSHUFF and UniFrac under the

Fig 4. Power of TI (IKF) and Tc (CKF) to distinguish libraries of bacterial 16S rRNA gene sequences from

seawater (SW) and salt marsh sediment (MS) communities. The fraction of 1000 K-shuff comparisons that were

significantly different (p� 0.05) or the power compared to the mixing proportion (ω) of the libraries. N = number of

sequences in each library.

doi:10.1371/journal.pone.0167634.g004
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same conditions were 0.32 and 0.16, respectively. Thus, K-shuff was much more sensitive that

either of these two commonly used methods.

It can be demonstrated that the expected values of both Ckf and Ikf do not depend on sample

size. However, variation in the means is expected as a consequence of higher sampling vari-

ances in the smaller samples. Simulations were performed to determine the effect of the sample

size N on the sampling variation in Ikf and Ckf. Sampling variation in K-shuff decreased with

increasing N. For instance, the mean ± standard errors of Ckf for comparisons of soil and MS

were 0.065 ± 0.015, 0.064 ± 0.010, 0.063 ± 0.008, and 0.063 ± 0.007 for N of 25, 50, 75, and 100,

respectively (Fig B in S1 File). This effect was also observed for the Ikf, of the soil and marine

sediments libraries (Figs C and D in S1 File). For instance, the mean ± standard error of the Ikf

for soil libraries were 0.268 ± 0.019, 0.275 ± 0.012, 0.277 ± 0.009, and 0.277 ± 0.008 for N of 25,

50, 75, and 100, respectively. An important implication of this result is that the libraries do not

have to be the same size to compare these parameters.

If the Ckf measured the difference between libraries, it would be expected to increase as the

proportion of mixing or ω increased from 0.5 to 1.0 and the libraries became more different.

However, the relationship between Ckf and mixing should be complex, reflecting also how the

libraries’ structures affected the calculation of Ckf. At proportions of 0.5, the Ckf was close to

twice the standard error, reflecting the fact the Ckf is always a positive number or zero and the

means for measurements of random libraries must always be greater than zero (Fig E in S1

File). However, at high values of ω, a strong relationship was seen between ω and the Ckf, as

expected if Ckf were a reliable indicator of differences between libraries.

If the Ikf reflected the structures of libraries, it would also be expected to become more like

the highly represented library as the mixing proportion increased. Like the Ckf, the relationship

between Ikf and ω was expected to be complex. First, the relationship between Ikf and mixing

proportion of the libraries was examined in the seawater and sediment libraries, which were

very different. As the mixing proportion increased from 0.5 to 1.0, the Ikf of the “seawater”

library decreased from 0.227 to 0.181, and the Ikf of the “sediment” library increased from

0.227 to 0.305, and there was a clear trend between Ikf and ω (Fig F in S1 File). In contrast, as

dramatic a trend was not found for the soil and sediment libraries, whose structures were very

similar. When the proportion of mixing was 0.5, the Ikf was very close to that of the sediment,

and the “sediment” library remained close to this value as its proportion increased. The Ikf of

the “soil’ library decreased from 0.304 to 0.277 as its proportion increased to 1.0. Thus, while

the expected trends were observed, the changes in Ikf were not close to linear with the propor-

tion of each library.

K-shuff performance with Illumina® dataset

Similar to the Sanger sequences from clone libraries, only small numbers of sequences were

needed to calculate the K-shuff functions. For instance, the Ikf values calculated for random

samples of 100–500 sequences from the cutting board, door trim and pillowcase were very sim-

ilar (Fig G in S1 File). Additional simulations were then performed using the cutting board

(Cb) and pillowcase (Pc) libraries, which appeared to be typical of the diversity within the data-

sets and a good test of the sensitivity of K-shuff towards structural and composition differences

[23]. Similar to the clone libraries, simulations on the reproducibility and effect of sample size

on the Ikf and Ckf found that the mean values were relatively constant but the sampling varia-

tion decreased as N increased from 50 to 100. For instance, the mean ± standard deviation of

Ckf for comparisons between the cutting board (Cb) and pillow case (Pc) libraries were

0.024 ± 0.008, 0.024 ± 0.006 and 0.024 ± 0.005 for N of 50, 75 and 100, respectively (Fig H in

S1 File). The small Ckf values emphasized that the compositions of these libraries were very
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similar. Likewise, the mean Ikf, ± standard deviation of the Cb and Pc libraries were 0.198 ±
0.006, 0.198 ± 0.005 and 0.198 ± 0.004 and 0.220 ± 0.006, 0.220 ± 0.005 and 0.220 ± 0.005 for

N 50, 75, and 100, respectively (Figs I and J in S1 File).

Power analysis for the Illumina1 dataset was performed using the cutting board (Cb)

and pillowcase (Pc) libraries. While the fraction of significantly different Ikf and Ckf values

increased with the mixing proportions, the increases were gradual, consistent with the small

differences between the samples. For instance, structural differences between the libraries were

only consistently observed at high mixing proportions (Fig K and Table C in S1 File). Simi-

larly, compositional differences between the libraries were only consistently observed for the

largest libraries of N = 100 (Fig K in S1 File). These results suggested that it was still possible to

detect small differences in Ikf and Ckf at high mixing proportions even with small sample sizes.

Similar to the trends for clone library comparisons, the changes in Ckf and Ikf were correlated

with the mixing proportion of each library (Figs L and M in S1 File).

K-shuff performance with pyrosequencing dataset

For this data, much higher numbers of sequences were required to obtain consistent Ckf values.

While there was a good correlation, with a r2 of 0.92, between the Ckf values for the 1000 and

1500 sequence libraries, the correlations for the 500 sequence libraries were much lower, r2 =

0.44 and 0.50, with the 1000 and 1500 sequence libraries, respectively. This result suggested

that 500 sequences were not sufficient for reproducible estimates of Ckf values with the pyrose-

quencing libraries. Thus, the libraries composed of 1500 sequences were used for additional

analyses (see below). Because fewer sequences were required for reproducible estimates of Ckf

values for both Sanger libraries and Illumina sequencing, the requirement of large numbers of

sequences seems to inherent to either pyrosequencing per se or the associated methods of sam-

ple preparation.

Application of K-shuff to studies of soil bacterial communities

A total of 126 16S rRNA gene libraries prepared by Sanger sequencing from soils collected in

Georgia, Kansas and Michigan were analyzed by K-shuff [19, 20, 21]. Each of the three sites

was represented by seven treatments, which included different types of vegetation, land man-

agement, and soil. For each treatment, six libraries were constructed, three from replicate plots

sampled in the summer and three from the same plots sampled the following winter. Each

sample comprised five cores, which were pooled prior to DNA extraction and library construc-

tion. ANOVA of the Ckf confirmed previous observations that the treatments had significant

effects on the compositions of the bacterial communities [19, 20, 21]. However, the magnitude

of the treatment effects depended on the site, with sites with the largest differences in land use

having the largest effects (Table 1). Thus, treatment effects in Georgia, where the sites included

cropland, pasture and forest, were larger than those in Kansas, where the treatments corre-

sponded to just cropland and prairie. In contrast, the effect of season all three sites was modest.

Notably, the variation among the replicates was only somewhat lower than the variation

between treatments even though only 56 out of the 126 CKFs between replicates were signifi-

cantly different at p<0.05 (Table 1). This result suggested that ‘noise’ limited the ability to

observe small differences in these communities. Because technical replicates were not per-

formed, it was not possible to determine if the noise was due to variation in the PCR, cloning,

and other aspects of the library preparation and sequencing or the inherent variability of the

bacterial communities.

Although K-shuff indicated that, with one exception, the composition of the bacterial com-

munities from all the treatments at all three sites were significantly different, for many
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communities differences were small. Only the comparison between the Kansas BNP (burned

native prairie [300 m2 plot size]) to UNP150 (unburned native prairie [150 m2 plot size]) was

not significantly different (p = 0.054), while all other comparison had p-values below 0.01.

However, in the MDS plot of the Ckf values (Fig 5), a large cluster of communities of similar

composition were found in soils from Georgia (cropland and pastures amended with poultry

litter [CTPL, HPPL, and GPPL]), Michigan (conventionally and no-tilled cropland [CT and

NT], cropland allowed to become fallow or early successional [ES], native meadow [MG], suc-

cessional forest (SF), and deciduous forest [DF]), and Kansas (conventional cropland [CTC],

and prairie restored in 1978 [RG78], 1998 [RG98], and 2000 [RG00]). This cluster of similar

communities was well separated from those in the native prairie (BNP) in Kansas, cropland

and pastures amended with inorganic fertilizer (CTIF, HPIF, and GPIF) in Georgia, forest

which had not been disturbed other than for logging for over 135 years (GF) from Georgia,

Table 1. ANOVA analyses of Ckf values for 126 soil libraries prepared by Sanger sequencing.

Georgia (Mean ± SE) Kansas (Mean ± SE) Michigan (Mean ± SE) Alla (Mean ± SE)

Treatment 0.0199 ± 0.0019 0.0086 ± 0.0012 0.0128 ± 0.0019 0.0138 ± 0.0010

Season 0.0074 ± 0.0033 0.0070 ± 0.0021 0.0066 ± 0.0033 0.0070 ± 0.0018

Replicates 0.0157 ± 0.0013 0.0132 ± 0.0008 0.0172 ± 0.0013 0.0154 ± 0.0007

p-value 0.00600 0.00257 0.00904 0.00015

a For the ANOVA of the combined samples or ‘All’, the N for treatment, season and replicates were 21, 42 and 126, respectively.

doi:10.1371/journal.pone.0167634.t001

Fig 5. MDS plot of the compositional parameter Ckf for soil bacterial communities from Georgia (circles),

Kansas (triangles), and Michigan (squares). Open and closed symbols are for disturbed and undisturbed soils,

respectively. For treatment designations, see main text. For treatment details, see Jangid et al. [19, 20, 21].

doi:10.1371/journal.pone.0167634.g005
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and a coniferous forest plantation (CF) in Michigan. Surprisingly, little similarity was found in

many of the bacterial communities from soils with similar management or vegetation, such as

the forest communities in Michigan (DF) versus Georgia (GF) or the conventional croplands

in Michigan (CT) and Kansas (CTC) versus Georgia (CTIF).

A variety of diversity indices are commonly used for comparisons of the structural or

genetic diversity in gene libraries. While agreement of these indices is seldom perfect, they fre-

quently give similar estimates. The Ikf estimates also correlated with other diversity indices, as

shown for the J. Phil Campbell Sr. Natural Resource Conservation Center site in Georgia

(Table 2). For instance, all the indices tested agreed that the forest and one of the croplands

(CTIF) had the lowest diversity. However, only the Ikf consistently indicated that soils

amended with poultry litter had a higher diversity than soils amended with inorganic fertilizer.

This conclusion was supported by analysis of the compositional diversity, which found that a

number of bacterial groups were more abundant in the litter-amended soils [20]. Moreover,

the absence of complete agreement between the indices was not surprising. The Ikf was the

only index that also considered the relatedness of the OTUs in addition to their number.

To determine if K-shuff would provide more insight into pyrosequencing datasets, libraries

from a soil chronosequence dating from 60 y to 120 ky at the Franz Josef glacier on New Zea-

land were analyzed [22]. Previously, Bray-Curtis analysis of the 250 most abundant OTUs sug-

gested that the soil communities were largely described by a monotonic function of change

with age and failed to detect significant differences between the soil ages of 130 and 280 years;

530, 1k, and 12k years; and 5k, 12k, 60k, and 120k years [22]. In contrast, the CKF compari-

sons between the soil ages were all significantly different with p�0.001, and the Ckf values var-

ied within the range of 0.0028 and 0.0317. The MDS plot of the Ckf values demonstrated

complicated changes in the composition of the soil bacterial community with increasing age

across the chronosequence (Fig 6). Thus, K-shuff revealed much more detail about the

Table 2. Using the structural parameter Ikf with conventional diversity indices for soil bacterial communitiesa.

Diversity Index Cropland Hayed Pasture Grazed Pasture Forest

CTIF CTPL HPIF HPPL GPIF GPPL GF

Nb 259 263 272 275 274 260 277

Sc 107 195 195 197 184 200 142

Ikf
d 0.279x 0.295 y 0.281 x 0.297 y 0.277 x 0.301 y 0.260 z

He 4.37 5.04 5.11 5.13 4.98 5.14 4.56

1/Df 71 125 265 262 150 267 77

Chao1g 125 752 911 529 534 1040 382

95% lcih 115 517 585 397 389 662 269

95% hcii 145 1068 1351 708 733 1547 546

a Soils were from the J. Phil Campbell Sr. Natural Resource Conservation Center in Watkinsville, Georgia [20]. CTIF, HPIF and GPIF were inorganic

fertilizer-amended soils and CTPL, HPPL and GPPL were poultry litter-amended soils. GF was a nearby forest soil that had not been tilled since 1860. Only

libraries from triplicate soil cores collected in summer were combined for these analyses.
b N = number of clones in the library.
c S = number of OTUs formed at D = 0.03 using DOTUR [4].
d Values with different superscripts were significantly different, p = 0.05
e Shannon diversity index, H = Σ[(n/N)ln(n/N)].
f Simpson’s index, D = Σn(n-1)/N(N-1)
g Chao 1 = S + n1

2/2n2, where n2 is the number of clones that occur twice.
h 95% lower confidence interval for Chao 1 estimator.
i 95% higher confidence interval for Chao 1 estimator.

doi:10.1371/journal.pone.0167634.t002
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compositional differences between the bacterial communities. Previous analyses also noted a

progressive decline in the structural diversity during the first thousand years [22]. Similar

changes were also seen in the Ikf, which declined from 0.204 to 0.176 in the first thousand

years and remained relatively constant after that.

Application of K-shuff to studies of the home microbiome

Reanalysis of the home microbiome dataset of Dunn et al. [23] was performed to determine if

K-shuff could recapture the major conclusions and provide new insights. Using 100 sequences

per sample for all 174 samples, the Ikf were calculated for comparison to the OTU richness esti-

mated by Dunn et al. [23]. Within each site, the OTU richness varied 3-10-fold, and the mean

OTU richness of different sites varied nearly four-fold. In contrast, the Ikf values within each

site varied less than 3-fold, and the mean Ikfs were relatively constant, varying only from 0.15–

0.21 (Fig N in S1 File). The differences in OTU richness and Ikfs would be expected if much of

the variation was due the presence or absence of rare OTUs, which have little effect on the Ikf.

Moreover, Ikfs of about 0.20 resembled those of seawater, which is consistent with the low

diversity expected of the microbiome of surfaces. Thus, the K-shuff analyses suggested that the

diversity of the various household surfaces were fairly similar, which was not readily apparent

from examination of only OTU richness.

Fig 6. MDS plot of the compositional parameter Ckf for pyrosequencing libraries of the soil bacterial

communities from the Franz Josef glacial chronosequence. The ages of the soils are: A, 60 y; B, 130 y; C, 280

y; D, 530 y; E, 1k y; F, 5k y; G, 12k y; H, 60k y; and I, 120k y. At each time point, five replicate soil samples were

extracted and five libraries were constructed [22]. For this analysis, 300 sequences were randomly selected from

each replicate and pooled, yielding 1500 sequences for each age in the chronosequence.

doi:10.1371/journal.pone.0167634.g006
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Similarly, PCoA plot of the variation among sites within the homes using the Ckf of K-shuff

was compared to the original analysis using the UniFrac distances by Dunn et al. [23] (Fig 7).

Fig 7. PCoA plots of the household bacterial communities with the compositional parameter Ckf for the

subsampled Illumina® libraries (top) and the unweighted UniFrac distances (bottom). For Ckf analysis, 100

sequences were randomly selected from each site per household and analyzed. For UniFrac, the complete data set

by Dunn et al. [23] was used.

doi:10.1371/journal.pone.0167634.g007
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The MRPP of the compositional parameter (Ckf) matrix from the household bacterial commu-

nities was significantly different (α<0.01), with clusters represented by PCoA. Each of the bac-

terial communities from different household habitats were patterned along two axes

explaining 75.9 (Axis 1) and 13.2% (Axis 2) of the variance. A measure of the effect size based

on a chance corrected within group-agreement test (A = 0.2) indicated that heterogeneity

between groups was greater than that within groups. These results are independent of sample

size and thus help to support the veracity of the p-values. Likewise, the MDS plot of the Ckf

showed similar clustering as the PCoA (Fig O in S1 File). Overall, these results indicated that

ordination using the Ckf matrix explained a much greater proportion of the variance than did

analysis using UniFrac.

To utilize the extra sensitivity afforded by K-shuff, analyses were performed on some of the

abundant OTUs to explore differences within the members of an OTU across the nine sites. At

D = 0.14, a total of 4664 OTUs were found for the entire subsampled dataset (N = 17366), with

the largest OTU (OTU10.14) comprising 4271 sequences affiliated with the Firmicutes. Based

on MDS analysis of the Ckfs, OTU10.14 showed a similar clustering pattern as the entire sub-

sampled dataset (Fig 8A and 8B). Communities from sites Dh, Di and Tv were tightly clustered

whereas Fr, Kc, Cb and Ts, Pc were spread across the plot in two loose clusters. It is worth not-

ing that even though only six Ckf s values were>0.01 (range 0.0033–0.0848), p-values for all

comparisons except those between Di and Tv (Ckf = 0.0033) were significant (p�0.005). This

result indicated that the composition of OTU10.14 varied between many of the sites. The impli-

cation is that differences between the sites included differences in both the abundance and

composition of this OTU.

Within OTU10.14 there were 126 OTUs at D = 0.03 with 897 sequences in the largest OTU,

namely OTU10.03. MDS analysis of OTU10.03 was very different from that of OTU10.14 (Fig

8C). As expected, most of the Ckfs calculated for comparisons across the sites were small

(range 0.0005–0.0085) except for eight comparisons involving the outer door trim (Do). How-

ever, only one OTU10.03 sequence was found at Do, and none of the Ckf values involving it

were significantly different (Table D in S1 File). For that reason, Do was not included in the

MDS plot. Nevertheless, these results indicated significant variation in the composition of

even this very small group between the samples. For instance, the composition of OTU10.03 on

Fig 8. MDS plots of the compositional parameter Ckf for the subsampled Illumina® libraries of the

household bacterial communities. (A) for the entire sampled dataset, N = 17366; (B) for OTU10.14 (the largest

OTU at D = 0.14), N = 4271; and (C) OTU10.03 (the largest OTU within OTU10.14 at D = 0.03), N = 896. Do was

removed from (C) because it had a single sequence. The nine sites are: Cb = Cutting Board; Kc = Kitchen Counter;

Fr = Refrigerator; Ts = Toilet Seat; Pc = Pillowcase; Dh = Door Handle; Tv = Television Screen; Di = Door Interior;

Do = Door Outer.

doi:10.1371/journal.pone.0167634.g008
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the interior door trim (Di) was significantly different from that of the kitchen counter (Kc),

refrigerator (Fr) and toilet seat (Ts).

Discussion

Comparison of K-shuff to other methods

K-shuff is a sensitive method for detecting small but significant differences in the structural

and compositional diversity in gene libraries. Like LIBSHUFF, UniFrac, P-test, FST and Tree-

Climber, it tests the hypothesis that two communities are alike [1, 2, 3, 5, 7, 27]. All the meth-

ods begin with similarity matrices of sequences in gene libraries. However, UniFrac, P-test and

TreeClimber generate phylogenetic trees, whose properties are then tested [11]. We specifically

compared K-shuff with LIBSHUFF because both methods test the similarity matrices directly,

and with UniFrac because it is currently one of the most frequently used tool. The K-shuff IKF

and CKF are analogous to the homologous and heterologous coverages as defined in LIB-

SHUFF [1]. However, while LIBSHUFF only utilized the evolutionary distances between each

sequence and its closest neighbor, the K-functions use information on evolutionary distances

among all members of the libraries. Therefore, the K-function uses more of the information

contained in the libraries, which may account for its higher sensitivity. Moreover, unlike the

heterologous coverage used in LIBSHUFF, the Ckf is symmetric or independent of the direc-

tion of the comparison, i.e. Kðl1 ;l2ÞðrÞ ¼ Kðl2 ;l1ÞðrÞ. Symmetry is a sensible property since both

Ckfs provide the same information, i.e., the difference in the membership between the two

libraries, and should agree with each other. However, unlike UniFrac which detects any differ-

ences that tend to assign the total branch length of a tree to a particular community [Schloss

2008], the sensitivity of K-shuff allows for an in-depth analysis of taxa that contribute to differ-

ences between communities. In our studies, UniFrac proved even less sensitive than LIB-

SHUFF, presumably because the process of generating phylogenetic trees greatly reduces the

information content of the similarity matrices. Thus, K-shuff gives a more realistic assessment

of differences in the communities.

Because of its high sensitivity, K-shuff is especially informative with relatively small librar-

ies, such as those generated by Sanger sequencing. However, even for NexGen libraries, which

typically include thousands or millions of sequences, K-shuff may provide valuable insights. Its

high sensitivity makes it possible to analyze small subsets of large datasets that might be partic-

ularly interesting, such as moderately abundant OTUs. It would also be suitable for examining

large numbers of samples generated by multiplexing, which also yield small numbers of

sequences for each library [28, 29, 30]. Because sample size has only a small effect on either Ikf

or Ckf values, it is also practical to test subsamples of very large libraries, which is computation-

ally much less expensive.

Similar to the most frequently used phylogenetic metric UniFrac [5], K-shuff also produces

an estimate of distance between the communities that is suitable for ANOVA and clustering

analyses. However, Ckf, the distance estimate of K-shuff, gives equal weight to both closely

related as well as distantly related organisms, thereby allowing a unbiased estimation of the

community composition. In contrast, UniFrac gives higher weight to differences arising from

distantly related organisms [31]. Another concern with UniFrac is that the distance estimates

are dramatically nonlinear. For instance, in mixing simulations of seawater and salt marsh sed-

iment libraries, the UniFrac distances were 0.08, 0.81 and 0.86 at mixing proportions of 0.5,

0.7 and 1, respectively, and were not closely related to the differences in composition of the

libraries. In contrast, the Ckf values of K-shuff were 0.015, 0.049 and 0.121 at the same mixing

proportions. Thus, K-shuff is more reflective of the differences in community composition.
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Ikf as a novel estimate of structural diversity

K-shuff provides Ikf, which is a novel estimate of the structural diversity that reflects both the

relatedness among OTUs or phylogenetic diversity as well as their relative abundances. Thus, a

community comprised of many closely related sequences would have a smaller Ikf than a com-

munity with same numbers of OTUs but comprised of distantly related sequences. Essentially

this would not lead to change in memberships for an OTU thereby maintaining both the even-

ness and richness of the two communities. Further, because many commonly used indices,

such as Shannon, Simpson, and Chao 1 are not a measure of phylogenetic diversity, their val-

ues would only change with changing richness, evenness or a larger sample size [32]. In addi-

tion, these estimates are biased towards richness (Shannon), evenness or dominance

(Simpson), or lose information by reducing the data through clustering to obtain OTU abun-

dances for determining singletons and doubletons (Chao 1) [32]. Because abundant OTUs

dominate the IKF, the Ikf is not very sensitive to the presence of rare OTUs or the ‘long tails’

frequently observed in microbial communities. Thus, while it is intuitively satisfying to capture

multiple sources of diversity in a single value, the complex calculation of Ikf makes it difficult

to attribute differences to a single source, such as OTU richness or phylogenetic diversity.

As a result, the value of the Ikf is difficult to assess without examining more applications. In

the cases examined here, K-shuff analyses appeared to provide useful insights into the diversity

of the microbial communities of cropland, pasture and forest soils as well as household sur-

faces. Moreover, it allowed comparisons of very different communities from seawater, marsh

sediments and soils. In the long run, because of its high sensitivity and novel approach to

structural diversity, it may provide new insights into the nature and structure of microbial

communities. Although tested with 16S rRNA gene libraries, the methodology could be easily

extended to other genes of interest and should be useful for other ecological and microbiolog-

ical applications.

Applicability of K-shuff

Compared to some methods, K-shuff is computationally expensive. However, the run times

can be greatly reduced by subsampling large data sets. In our analysis of the subsampled data-

set comprising 17366 sequences from Dunn et al. [23], the Ikf and Ckf were calculated in less

than five minutes. However, calculating the p-values took about 4.5 h for the same dataset with

1000 permutations. With new programming languages and algorithms being developed, we

believe that this limitation will be overcome soon.

As a test of the applicability of K-shuff, bacterial communities collected from a variety of

soil types, land-use, vegetation, seasons and climates across the United States were analyzed.

Although K-shuff detected significant differences between most of these communities, many

of these differences were very small. Of particular interest was the similarity of many soil com-

munities regardless of the differences in soil type, land uses, and regional climate. The soils

with communities very different from this central tendency were of two types. The first

included soils without a history of disturbance, such as native prairie in Kansas and the forest

in Georgia. The second were soils with specific land management practices, such as the conifer

plantation in Michigan or tillage with inorganic fertilizers in Georgia. The ability of K-shuff to

clearly visualize distinctions between these communities will help describe the role of bacterial

communities in soil fertility, crop productivity, sustainability, and other properties of great

practical importance.

In conclusion, the power and sensitivity of K-shuff allows the comparison of both structure

and composition of microbial communities from gene sequence libraries derived either by

high-throughput methods (pyrosequencing and Illumina1) or Sanger methodology. K-shuff
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offers an ecologically meaningful ordination of structural and compositional differences

through the use of multidimensional scaling of its two functions, the intra K-function (IKF)

and cross K-function (CKF). Monte Carlo tests of the IKF and CKF can also be used to test for

statistically significant differences. K-shuff was also found to be more sensitive than LIB-

SHUFF and UniFrac in detecting compositional differences. At the same time, its sensitivity

allows an in-depth analysis of communities up to and within an OTU, which at times comprise

multiple species, and dissection of small differences that might otherwise remain undetected.

This is especially useful when comparing communities that are compositionally similar but

functionally different. K-shuff will therefore prove beneficial for conventional microbiome

analysis as well as specific hypothesis testing.
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26. Yarza P, Yilmaz P, Prüße E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R,
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