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Abstract

Background

Mesenchymal stromal cells (MSC) hold promise for both cell replacement and immune mod-

ulation strategies owing to their progenitor and non-progenitor functions, respectively. Char-

acterization of MSC from different sources is an important and necessary step before

clinical use of these cells is widely adopted. Little is known about the biology and function of

canine MSC compared to their mouse or human counterparts. This knowledge-gap impedes

development of canine evidence-based MSC technologies.

Hypothesis and Objectives

We hypothesized that canine adipose tissue (AT) and bone marrow (BM) MSC (derived

from the same dogs) will have similar differentiation and immune modulatory profiles. Our

objectives were to evaluate progenitor and non-progenitor functions as well as other charac-

teristics of AT- and BM-MSC including 1) proliferation rate, 2) cell surface marker expres-

sion, 3) DNA methylation levels, 4) potential for trilineage differentiation towards osteogenic,

adipogenic, and chondrogenic cell fates, and 5) immunomodulatory potency in vitro.

Results

1) AT-MSC proliferated at more than double the rate of BM-MSC (population doubling times

in days) for passage (P) 2, AT: 1.69, BM: 3.81; P3, AT: 1.80, BM: 4.06; P4, AT: 2.37, BM:

5.34; P5, AT: 3.20, BM: 7.21). 2) Canine MSC, regardless of source, strongly expressed cell

surface markers MHC I, CD29, CD44, and CD90, and were negative for MHC II and CD45.

They also showed moderate expression of CD8 and CD73 and mild expression of CD14.

Minor differences were found in expression of CD4 and CD34. 3) Global DNA methylation

levels were significantly lower in BM-MSC compared to AT-MSC. 4) Little difference was

found between AT- and BM-MSC in their potential for adipogenesis and osteogenesis.

Chondrogenesis was poor to absent for both sources in spite of adding varying levels of
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bone-morphogenic protein to our standard transforming growth factor (TGF-β3)-based

induction medium. 5) Immunomodulatory capacity was equal regardless of cell source when

tested in mitogen-stimulated lymphocyte reactions. Priming of MSC with pro-inflammatory

factors interferon-gamma and/or tumour necrosis factor did not increase the lymphocyte

suppressive properties of the MSC compared to untreated MSC.

Conclusions/Significance

No significant differences were found between AT- and BM-MSC with regard to their immu-

nophenotype, progenitor, and non-progenitor functions. Both MSC populations showed

strong adipogenic and osteogenic potential and poor chondrogenic potential. Both signifi-

cantly suppressed stimulated peripheral blood mononuclear cells. The most significant dif-

ferences found were the higher isolation success and proliferation rate of AT-MSC, which

could be realized as notable benefits of their use over BM-MSC.

Introduction

Mesenchymal stromal cells (MSC) have progenitor and non-progenitor categories of function

that show promise for their clinical use in a wide variety of conditions. Progenitor function

refers to the cells’ multipotency or their ability to be directed into several cell types including

those that make up fat, bone, and cartilage. Non-progenitor function refers to the cells’ more

recently discovered ability to influence resident cells and tissue functions through their secre-

tome and direct cell-cell contact, including regenerative and immune modulatory effects [1].

These two types of function along with MSC’ readiness for in vitro expansion have led to much

interest from scientists and clinicians alike. Recently, the dog has emerged as an increasingly

useful preclinical animal model to study the development and safety of stem cell–based thera-

pies. Comprehensive validation of the utility of canine MSC will provide far-reaching benefit

in both the veterinarian field as well as in translational medicine.

The heterogeneity of MSC populations makes definitive characterization inherently chal-

lenging. The International Society for Cellular Therapy attempted to simplify this by establish-

ing three criteria to define the MSC: 1) plastic-adherence, 2) specific positive and negative

expression of a panel of specific cell surface markers, and 3) trilineage differentiation potential

into bone, cartilage, and fat [2]. Unfortunately, while the first criterion is universal enough for

cross-species application, the second criterion’s surface marker panel is based on human MSC.

A corresponding panel for canine MSC is yet to be established, but progress is being made

with markers such as CD44 and CD90 showing consistent positive and CD34 and CD45 con-

sistent negative expression [3].

Adipogenesis and osteogenesis are frequently shown in canine MSC studies most often vali-

dated with histological staining and sometimes with mRNA expression data of induced versus

non-induced MSC populations [3]. Chondrogenic induction of canine MSC has proven chal-

lenging using standard protocols and robust chondrogenic differentiation remains to be

shown [4–17]. Even in our own previous attempts, we were unable to successfully induce

chondrogenesis in our canine cells [18]. However, all of this may be less damaging to the clini-

cal utility of MSC as a paradigm shift directs focus to their non-progenitor functions [19,20].

Early in this century, reports began to emerge of the ability of MSC derived from bone mar-

row aspirate (BM-MSC) to suppress proliferation of T-lymphocytes after stimulation with
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allogeneic cells or mitogens [21,22]. Soon after, adipose tissue-derived (AT-)MSC were shown

to have similar immunomodulatory properties as their bone marrow-derived counterparts

[23]. It has been suggested that MSC effect this immunosuppression through cell-cell contact

and secreted soluble factors [24–27]. While some factors are constitutively expressed, others

like indoleamine 2,3-dioxygenase (IDO) are induced by pro-inflammatory cytokines such as

interferon-gamma (IFN-γ) and tumour necrosis factor-alpha (TNF-α) [28,29]. While activated

T-lymphocytes produce IFN-γ and TNF-α, pre-licensing or priming MSC with these inducers

in culture promote their immunosuppressive properties [28–32]. Only a few articles on canine

MSC immune modulation have been published [33–36], and no comparison of canine AT-

and BM-MSC with regards to their immunomodulatory function has been reported, nor have

the effects of proinflammatory cytokine-primed canine MSC been studied to date.

In this study, we examined both the progenitor and non-progenitor functions of canine

AT- and BM-MSC. Surface marker expression, population doubling times, and DNA methyla-

tion quantification were also compared for the purpose of explaining any differences between

the cell sources with regards to their differentiation or immunomodulatory capacities.

Hypothesis

Donor paired canine adipose tissue (AT)- and bone marrow (BM)-derived MSC will have sim-

ilar differentiation capacity and immune modulatory properties.

Objectives

To characterize AT- and BM-derived MSC with regards to their:

1. Population doubling time

2. Cell surface marker expression

3. Global DNA methylation quantification

4. Trilineage differentiation potential

5. Immunomodulatory potency

Materials and Methods

Ethics statement

Guidelines by the University of Guelph Animal Care Committee were closely followed with

regard to the collection of canine blood, adipose tissue, and bone marrow samples. Since col-

lection of these tissue samples occurred post-mortem and dogs were sacrificed for reasons

unrelated to the studies, subsequent research conducted using these samples did not require

review by the Animal Care Committee (falls under CCAC Category of Invasiveness A). There-

fore, these studies were conducted in accordance with the institutional ethics guidelines. Blood

and tissues were collected immediately after the dogs were euthanized by intravenous injection

of pentobarbital (Euthanyl Forte, 540mg/5 Kg, Biomeda-MTC Animal Health, Cambridge,

Ontario) at Hillside Kennels Animal Control, Innerkip, ON. Euthanasia was deemed necessary

by the kennel as the dogs were aggressive/dangerous and not suitable for adoption.

MSC isolation

Cryopreserved AT- and BM-MSC were thawed from previously isolated and cryopreserved cul-

tures from 8 dogs [18]. The dogs used were of unknown age each weighing a minimum 30 kg.
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MSC culture and proliferation

MSC were cultured in expansion medium (EM) composed of low glucose Dulbecco’s modified

Eagle’s medium (DMEM, Lonza, Walkersville, Maryland), 10% pooled FBS (Life Technologies,

Grand Island, New York), 1% penicillin/streptomycin, and 1% L-glutamine (Lonza, Walkers-

ville, Maryland) and incubated at 38˚C in a 5% CO2 humidified environment. Cells were har-

vested at 60–80% confluency using a cell detachment solution (Accumax, Innovative Cell

Technologies, San Diego, California) and counted with an automated cell counter (Nucleo-

counter NC100, Mandel Scientific, Guelph, Ontario). Population doubling times were calcu-

lated from passage 2 through passage 5 (AT-MSC, n = 8; BM-MSC, n = 6). For all the

following experiments, MSC from passages 3–6 were used for this study.

Immunophenotyping

Canine MSC (n�3 for each cell source) were analyzed for surface marker expression using the

Accuri C6 flow cytometer and software (BD, Mississauga, ON). Canine peripheral blood

mononuclear cells (PBMC, n�1) were used as controls. The antibodies used are listed in

Table 1. All antibodies utilized were canine-specific except for MHC I (bovine) and CD73

(human), which were stated to cross-react with canine cells by the manufacturers and were val-

idated with bovine and human PBMC respectively. Unstained samples of each MSC and

PBMC were gated to determine surface marker expression of their stained counterparts.

Global DNA methylation quantification

Genomic DNA was isolated from AT- and BM-MSC samples (AT-MSC, n = 6; BM-MSC,

n = 6) using a column purification system (Quick-gDNA MiniPrep, Zymo Research, Irvine,

California). Global DNA methylation levels were quantified with a 5-methylcytosine ELISA kit

according to the manufacturer’s instructions (Zymo Research, Irvine, California).

Trilineage differentiation

Trilineage differentiation (AT-MSC, n = 6; BM-MSC, n = 4) was performed as previously

described except where indicated [18]. Briefly, for adipogenesis and osteogenesis, cells were

cultured for 14 days with either EM as described above or induction medium. Adipogenesis

induction medium consisted of low-glucose DMEM with 1 μM dexamethasone (Sigma-

Aldrich, St. Louis,Missouri), 0.5 mM 3-isobutyl-1-methyl-xanthine (Sigma-Aldrich, St. Louis,

Table 1. Cell surface marker list.

Antibody Clone Target Host Source

MHC I H58A Bovine Mouse Kingfisher Biotech

MHC II YKIX334.2 Dog Rat AbD Serotec

CD4 YKIX302.9 Dog Rat eBioscence

CD8 YCATE55.9 Dog Rat AbD Serotec

CD14 TüK4 Dog Mouse ThermoFisher

CD29 MEM-101A Dog Mouse ThermoFisher

CD34 1H6 Dog Mouse AbD Serotec

CD44 YKIX337.8.7 Dog Rat AbD Serotec

CD45 YKIX716.13 Dog Rat AbD Serotec

CD73 7G2 Human Mouse ThermoFisher

CD90 YKIX337.217 Dog Rat eBioscence

doi:10.1371/journal.pone.0167442.t001
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Missouri), 10 μg/mL recombinant human (rh) insulin (Sigma-Aldrich, St. Louis, Missouri),

0.2 mM indomethacin (Sigma-Aldrich, St. Louis, Missouri), 15% rabbit serum (Sigma-Aldrich,

St. Louis, Missouri), 1% L-glutamine, and 1% antibiotic antimycotic solution (ABAM, Sigma-

Aldrich, St. Louis, Missouri). Osteogenesis induction medium consisted of low-glucose

DMEM with 0.1 μM dexamethasone, 10 mM glycerol 2-phosphate, 0.05 mM ascorbic acid,

10% FBS, 1% L-glutamine, and 1% ABAM. For chondrogenesis, 250,000 cells were pelleted in

a 96-well plate and cultured for 21 days in high-glucose DMEM (Lonza, Walkersville, Mary-

land), 0.1 μM dexamethasone, 0.1 mg/mL ascorbic acid (Sigma-Aldrich, St. Louis, Missouri),

10 ng/mL TGF-β3 (R&D Systems, Minneapolis, Minnesota), 200 mM Glutamax (Life Tech-

nologies, Grand Island, New York), 10 mg proline (Sigma-Aldrich, St. Louis, Missouri), 40 μg/

mL ascorbic acid, 100 mM sodium pyruvate (Life Technologies, Grand Island, New York), 1%

Insulin-Transferrin-Selenium (Life Technologies, Grand Island, New York), 1% L-glutamine,

and 1% ABAM. To promote better chondrogenesis, 0, 50, 100, or 200 ng/mL bone morpho-

genic protein 2 (BMP-2) was added to the media.

Adipogenesis and osteogenesis samples were stained with Oil Red O and Alizarin Red S

stains (Sigma-Aldrich, St. Louis, Missouri) respectively. Chondrogenesis samples were histo-

logically evaluated with toluidine blue staining for glycosaminoglycan content and hematoxy-

lin and eosin staining for general pellet structure as previously reported [36]. Adipogenic,

osteogenic, and chondrogenic mRNA transcript abundance was analyzed by RT-qPCR using

the primers listed in Table 2. cDNA was synthesized from 500 ng RNA using the High Capac-

ity cDNA Reverse Transcription Kit (Life Technologies, Grand Island, New York) using man-

ufacturers’ instructions. PCR reactions were performed using the PerfeCta SYBR Green

FastMix, ROX (Quanta BioScience, Gaithersburg, Maryland) with the Applied Biosystems

7300 Real Time PCR system. Data were analyzed using the 2-ΔΔCT method. Gene expression

data is presented as the induction medium-treated cultures relative to the expansion medium-

treated control cultures with GAPDH used as reference gene.

Immunomodulatory properties

Whole blood was obtained from the jugular vein of dogs with an 18-gauge needle attached to a

450 mL blood collection bag (Fenwal, Baxter, Deerfield, Illinois). PBMC were isolated using a

density gradient media (Ficoll-Paque Plus, GE Healthcare, Mississauga, Ontario). In a 50 mL

Table 2. Oligonucleotide primer list.

Gene Forward primer (5’ to 3’) Reverse primer (5’ to 3’) Reference

CEBPA AGTCAAGAAGTCGGTGGACAAG GCGGTCATTGTCACTGGTGAG [11]

FABP4 ATCAGTGTAAACGGGGATGTG GACTTTTCTGTCATCCGCAGTA [11]

Leptin CTATCTGTCCTGTGTTGAAGCTG GTGTGTGAAATGTCATTGATCCTG [11]

LPL ACACATTCACAAGAGGGTCACC CTCTGCAATCACACGGATGGC [11]

PPARγ2 ACACGATGCTGGCGTCCTTGATG TGGCTCCATGAAGTCACCAAAGG [11]

Col1A1 GTAGACACCACCCTCAAGAGC TTCCAGTCGGAGTGGCACATC [11]

Runx2 AACCCACGAATGCACTATCCA GGGACATGCCTGAGGTGACT [37]

Osteopontin GCACCTCTGACAGGGACAGCC AGTGCTTGCGGCCCTTGGTT

ALP CCAACCTCCTGCCAACAAAAT CTCTCATCTTTCCGAGCTCACA

Sox9 TCCATCCCGCAGACGCACAG GGATCATCGCGGCCACCCTT

Col10A AGTAACAGGAATGCCGATGTC TCTTGGGTCATAATGCTGTTG [11]

Aggrecan GGGCTGGAAGCGTCATCAGT AGGCTGAGGTGCCACCACTC

Comp GTGGTGGACAAGATTGATGTG CACCCAGTTGGGATCTATCTG [11]

GAPDH TGTCCCCACCCCCAATGTATC CTCCGATGCCTGCTTCACTACCTT [38]

doi:10.1371/journal.pone.0167442.t002
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tube, 7.5 mL of Ficoll-Paque Plus was added to the bottom. A 10 mL 1:1 mix of whole blood

and PBS was then added on top and spun at 400 g for 20 min with acceleration set to 1 and

deceleration set to 0. The mononuclear layers were pooled and washed repeatedly with PBS

before resuspension in EM. PBMC were counted and frozen in EM with 10% DMSO (Sigma-

Aldrich, St. Louis, Missouri) until use in the lymphocyte proliferation assays.

AT- and BM-MSC (AT-MSC, n = 4; BM-MSC, n = 4) were thawed and seeded 7 days prior

to coculture with PBMC. On day 5, 4 treatments of each MSC were designated: 1) 200 ng/mL

recombinant canine interferon-gamma (IFN-γ, Kingfisher Biotech, Saint Paul, Minnesota,

Cat# RP0271D-025) added, 2) 50 ng/mL recombinant canine tumour necrosis factor-alpha

(TNF-α, R&D Systems, Minneapolis, Minnesota, Cat#1507-CT-025) added, 3) both IFN-γ and

TNF-α added, and 4) neither IFN-γ nor TNF-α added. Lymphocyte reaction plates (48 well)

were set up on day 7. PBMC were seeded at 500,000 cells per well and stimulated with 5 μg/mL

concanavalin A. MSC were irradiated with 20 Gγ and seeded at 50,000 cells per well. Corre-

sponding MSC treatments were continued accordingly in the reaction plates. After 72 hours,

5-ethynyl-2’-deoxyuridine (EdU, a modified thymidine analogue) was added at a concentra-

tion of 10 μM and left for 24 hours before cells were collected and processed according to man-

ufacturer’s directions (Click-iT Plus EdU Flow Cytometry Assay Kit, Fisher Scientific, Ottawa,

Ontario). EdU is incorporated during DNA synthesis and is used to quantify newly-synthe-

sized DNA. Staining was completed the following day with Alexa Fluor 647 picolyl azide and

analyzed using the Accuri C6 flow cytometer and software.

Data analysis

Results were modelled as multi-factor factorials in a randomized complete block design treat-

ing dog as a blocking factor. Least squares means were determined. Log transformation of data

was performed where necessary and back-transformed for readability. We tested residuals for

normality and plotted them against the predicted values and factors to assess ANOVA assump-

tions and to look for unequal variance. We found that data were normal except for outliers in

the adipogenesis data, but no outliers were removed. For the gene expression data, least

squares means were converted to fold-difference by using 2−ΔΔCT. Data are presented as

mean ± confidence interval with statistical difference assessed at P<0.05. All data analysis was

performed using R statistical software (version 3.2.3, The R Foundation for Statistical Comput-

ing, Vienna, Austria).

Results

MSC isolation

As reported [18], our criteria for isolation success was based not only on colony formation, but

also the ability to expand to a minimum 5 million cells. Accordingly, 8/8 AT-MSC and only 6/

8 BM-MSC met these isolation criteria.

MSC proliferation

AT-MSC proliferated faster than BM-MSC with significantly lower doubling times

(P< 0.001) at all passages (P) between 2 and 5 (Fig 1). Proliferation rate also decreased with

increasing passage for MSC from both cell sources as significant differences were found

between both P2 and P5 (P = 0.02) and P3 and P5 (P = 0.02). Mean (± 95% confidence inter-

val) doubling time in days were P2: (AT)1.72 ± 0.23, (BM)3.57 ± 0.23; P3: (AT)1.75 ± 0.23,

(BM)3.62 ± 0.23; P4: (AT)2.30 ± 0.23, (BM)4.75 ± 0.23; P5: (AT)3.28 ± 0.23, (BM)6.77 ± 0.23.
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Immunophenotyping

Very similar cell surface molecule expression profiles were detected between AT- and

BM-MSC (Table 3). MSC from both sources were highly positive for CD90, CD44, CD29, and

MHC I while negative for CD45 and MHC II. Moderate expression of CD73, CD8 and mild

expression of CD14 was also found in both cell types. The only differences seen were in the

expression of CD4 (AT: moderate, BM: mild) and CD34 (AT: mild, BM: negative).

Fig 1. Adipose tissue (AT) derived mesenchymal stromal cells (MSC) proliferate faster than those derived from bone marrow (BM). Population

doubling time of canine AT- and BM-derived MSC from passage 2 to 5. (*P<0.05, ***P<0.001; error bars = CI.)

doi:10.1371/journal.pone.0167442.g001

Table 3. Surface marker expression of canine adipose tissue (AT)-, bone marrow (BM)-derived mesenchymal stromal cells (MSC), and peripheral

blood mononuclear cells (PBMC).

Surface marker AT-MSC SD BM-MSC SD PBMC

MHC I 97.6 1.8 98.5 1.6 95.4

MHC II 4.7 1.7 1.5 0.3 99.0

CD4 48.0 3.5 19.9 9.7 84.9

CD8 55.3 11.5 58.6 18.6 83.5

CD14 7.1 2.9 7.6 1.0 94.8

CD29 81.8 12.2 83.6 18.4 38.0

CD34 18.6 3.4 3.6 1.5 92.7

CD44 100.0 0.0 99.8 0.2 100.0

CD45 1.5 0.3 1.5 0.4 99.2

CD73 63.2 5.7 59.9 12.5 97.7

CD90 99.6 0.3 89.0 7.5 89.4

doi:10.1371/journal.pone.0167442.t003
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Global DNA methylation quantification

AT-MSC showed significantly higher (P<0.001) genome-wide DNA methylation levels

(6.59 ± 0.52%) than BM-MSC (3.81 ± 0.30%) (Fig 2).

Trilineage differentiation

After an induction period of 14 days, both AT- and BM-MSC stained positive for adipogenesis

(Fig 3A) and osteogenesis (Fig 3B). Adipogenic mRNA transcript abundance (Fig 4) of leptin

was upregulated in AT-MSC (11.15-fold, P<0.001) and BM-MSC (12.40-fold, P<0.001) and

lipoprotein lipase (LPL) was upregulated in AT-MSC only (6.02-fold, P = 0.002). Osteogenic

mRNA levels (Fig 5) were upregulated for osteopontin (OPN) in AT-MSC (13.21-fold,

P<0.001) and BM-MSC (5.73-fold, P = 0.004) and for Runt-related transcription factor 2

(RUNX2) in AT-MSC (4.30-fold, P = 0.03) and BM-MSC (6.96-fold, P = 0.002). A significant

difference was discovered (P = 0.03) between AT- and BM-MSC for alkaline phosphatase

(ALP) mRNA with upregulation found only in AT-MSC (20.63-fold, P<0.001). Chondrogen-

esis was unsuccessful (Fig 6) after a 21 day induction period regardless of the concentration of

BMP-2 added. However, AT-MSC are BMP-sensitive as noted by increased Toluidine Blue

staining and more heterogeneous tissue formation compared to TGF-β3 alone as well as BMP

supplemented BM-MSC.

Immunomodulatory properties

Lymphocyte proliferation assays were used to assess the lymphocyte-suppressive capacity of

different canine MSC populations. AT- and BM-MSC equally suppressed stimulated PBMC

proliferation when compared with stimulated PBMC alone (Fig 7). Priming the MSC with

treatments of IFN-γ, TNF-α, or both had no effect on MSC immunomodulatory capacity.

Discussion

This is the first study to compare the immunomodulatory capacities of canine AT- and

BM-MSC in addition to evaluating their general characterization and differentiation poten-

tials. We found that both sources of MSC had proficient immunosuppressive properties. In

characterizing AT- and BM-MSC, we found no profound differences between the cell types

except for the significantly higher expansion rate of AT-MSC, which has been previously

reported [39]. Faster proliferation along with the potential for a less invasive method of their

procurement makes them the preferred source for canine MSC.

We cocultured PBMC stimulated with Con-A with irradiated AT- or BM-MSC in order to

determine whether they could suppress lymphocyte proliferation. We tested MSC cultured

with and without proinflammatory factors IFN-γ, TNF-α, or both for 3 days leading up to,

plus the 4 days of, coculture with PBMC. While all treatment groups successfully suppressed

PBMC proliferation, no treatment significantly outperformed any other within each source

group (Fig 7). It is possible that a larger sample size would discern greater differences trending

toward BM-MSC as PBMC proliferation is consistently lower in these wells across treatments.

If differences in immunomodulatory capacity were to emerge, the question of whether dif-

ferences in surface marker expression might correlate with a more potent immunosuppressive

phenotype becomes an interesting one. Our results are in agreement with the canine literature

for those surface markers that show consistent expression across several studies

[6,10,15,35,36,39–43], in particular, positive CD90 and CD44 and negative CD45 expression.

AT-MSC showed moderately higher expression of CD34 (18.6% ± 3.4) than BM-MSC (3.6% ±
1.5) and CD4 (48.0% ± 1.7 versus 19.9 ± 9.7). All other markers fell within the same ranges of
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Fig 2. Percent 5-mC detected in genomic DNA from canine adipose- and bone marrow-derived

mesenchymal stromal cells. (***P<0.001; error bars = CI.)

doi:10.1371/journal.pone.0167442.g002
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expression as seen in Table 3. It has been recently reported that fat and bone marrow harvest

sites do have some influence on surface marker expression [14], and likely played a role here as

well.

Our first attempt at chondrogenesis of canine MSC [18] was poorly demonstrated after 21

days in the induction medium we use routinely with equine MSC [37,44]. To enhance our

induction medium, we added BMP2 at different concentrations based on several reports show-

ing it was a potent driver of MSC chondrogenesis [45–49]. Unfortunately, in spite of these

Fig 3. Adipogenic and osteogenic induction of AT- and BM-derived canine MSC. (A) Adipogenic

potential of both canine adipose tissue (AT)- and bone marrow (BM)-derived mesenchymal stromal cells was

indicated with positive Oil Red O staining after 14 days in induction medium. Control samples were negative

for Oil Red O staining. Scale bars = 100 μm. (B) Osteogenic potential of both canine adipose tissue (AT)- and

bone marrow (BM)-derived mesenchymal stromal cells was indicated with positive Alizarin Red S staining after

14 days in induction medium. Control samples were negative for Alizarin Red S staining. Images were

adjusted for brightness and contrast. Scale bars = 200 μm.

doi:10.1371/journal.pone.0167442.g003

Fig 4. Upregulation of adipogenesis markers leptin and lipoprotein lipase (LPL). Difference in adipogenesis marker expression of canine adipose

tissue- and bone marrow-derived mesenchymal stromal cells after 14 days in induction medium. (*P<0.05, **P<0.01, ***P<0.001; error bars = 95% CI.)

doi:10.1371/journal.pone.0167442.g004
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efforts, chondrogenesis did not improve (Fig 6). Pellets generally appeared necrotic with no

evidence of lacunae formation across all samples. AT-MSC were BMP sensitive as evidence by

altered pellet morphology and Toluidine Blue staining pattern. BMPs therefore remain candi-

dates for aiding the chondrogenic differentiation, but more work is needed to determine their

temporal and co-induction molecular interplays. It should be noted that canine chondrogen-

esis has not been robustly demonstrated in the literature as has been noted by others [10].

Until an effective induction protocol is found, it appears that in vitro MSC chondrogenic dif-

ferentiation is limited in the dog compared to other species.

Adipogenic potential was demonstrated with induced cells rich with lipid droplets stained

with Oil Red O (Fig 3A). Histological data was supported by gene expression analysis showing

upregulation of adipogenesis markers leptin in both AT- and BM-MSC and LPL in the

AT-MSC samples (Fig 4). Likewise, osteogenic potential was also demonstrated with evident

mineralization stained with Alizarin Red S supported by upregulation of osteogenesis markers

OPN and RUNX2 in both AT- and BM-MSC and ALP in AT-MSC. It was thought that the

Fig 5. Upregulation of osteogenesis markers alkaline phosphatase (ALP), osteopontin (OPN), and Runt-related transcription factor 2 (RUNX2).

Difference in osteogenesis marker expression of canine adipose tissue- and bone marrow-derived mesenchymal stromal cells after 14 days in induction

medium. (*P<0.05, **P<0.01, ***P<0.001; error bars = 95% CI.)

doi:10.1371/journal.pone.0167442.g005
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reduced global DNA methylation levels of BM-MSC (Fig 2) might provide the cells stronger

differentiation potential [50,51]. However, at least with the three lineages induced, global

DNA methylation levels had little effect. It would be interesting to examine the ability of these

cells to differentiate outside the trilineage cell fates.

Fig 6. Poor chondrogenic potential of both canine adipose tissue (AT)- and bone marrow (BM)-

derived mesenchymal stromal cells. Induction time was 21 days in medium containing 10 ng/mL

transforming growth factor beta 3 (TGF-β) and between 0 and 200 ng/mL bone morphogenic protein 2 (BMP-

2). Samples stained with (A) hematoxylin and eosin and (B) toluidine blue. Images were adjusted for

brightness and contrast. Scale bars = 100 μm.

doi:10.1371/journal.pone.0167442.g006

Fig 7. Canine MSC inhibit T-cell proliferation. Concanavalin A-stimulated peripheral blood mononuclear cells (PBMC) were cocultured with

adipose tissue- or bone marrow-derived MSC treated with interferon-gamma, tumour necrosis factor-alpha, both, or neither. Stimulated and

unstimulated PBMC were used as controls.

doi:10.1371/journal.pone.0167442.g007
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Ultimately, there were few differences detected between AT- and BM-MSC with regard to

immunophenotyping, differentiation potential, or immunomodulatory capacity. Major differ-

ences between the sources of MSC were only found in DNA methylation levels and prolifera-

tion doubling time. This may seem counterintuitive, but this simple measure of global

methylation accounts neither for specific patterns of DNA methylation nor other factors

affecting gene expression like histone modification. While the difference in DNA methylation

appears to have no detectable effect on differentiation potential, a higher rate of proliferation

provides a key advantage to AT-MSC.

Regardless of cell source, the significant in vitro suppression of mononuclear cells warrants

in vivo investigation of canine AT- and BM-MSC efficacy in modulating the immune system

of inflammation-based conditions. As for their progenitor side, new protocols for chondro-

genesis will need to be developed if canine MSC are to serve as chondroprogenitor cells. Fail-

ing that, other canine cells with chondrogenic potential should also be considered.
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