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Abstract

Drug addiction is a costly and recurring healthcare problem, necessitating a need to under-

stand risk factors and mechanisms of addiction, and to identify new biomarkers. To date,

genome-wide association studies (GWAS) for heroin addiction have been limited; moreover

they have been restricted to examining samples of European and African-American origin

due to difficulty of recruiting samples from other populations. This is the first study to test a

Han Chinese population; we performed a GWAS on a homogeneous sample of 370 Han

Chinese subjects diagnosed with heroin dependence using the DSM-IV criteria and 134 eth-

nically matched controls. Analysis using the diagnostic criteria of heroin dependence yielded

suggestive evidence for association between variants in the genes CCDC42 (coiled coil

domain 42; p = 2.8x10-7) and BRSK2 (BR serine/threonine 2; p = 4.110−6). In addition, we

found evidence for risk variants within the ARHGEF10 (Rho guanine nucleotide exchange

factor 10) gene on chromosome 8 and variants in a region on chromosome 20q13, which is

gene-poor but has a concentration of mRNAs and predicted miRNAs. Gene-based associa-

tion analysis identified genome-wide significant association between variants in CCDC42

and heroin addiction. Additionally, when we investigated shared risk variants between her-

oin addiction and risk of other addiction-related and psychiatric phenotypes using polygenic

risk scores, we found a suggestive relationship with variants predicting tobacco addiction,

and a significant relationship with variants predicting schizophrenia. Our genome wide asso-

ciation study of heroin dependence provides data in a novel sample, with functionally plausi-

ble results and evidence of genetic data of value to the field.
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Introduction

Substance dependence, such as heroin addiction, can have a devastating impact on the lives of

the affected individuals, their families and the wider society. According to the World Health

Organization (UNODC, World Drug Report 2012; www.who.int), heroin use has increased

two to three fold since the 1980s and the ensuing health concerns are severe; the risk of death

in drug users is 20 to 30 times greater than in non-drug users, mostly from overdose or

acquired infections. Heroin produces strong euphoric effects and addiction can develop rap-

idly in vulnerable individuals. Dependence on the drug represents a chronic and relapsing

condition, characterized by compulsive consumption, craving, tolerance, withdrawal symp-

toms and negative behavioral effects. Although dependency is frequently a culmination of

complex interactions between behavioral, cognitive, and physiological factors, genetic factors

can contribute 30–80% of the liability to risk [1,2]. The combination of findings from genetic

studies, model organisms and molecular studies in humans has led to the hypothesis of a bio-

logical underpinning to heroin dependence, with particular emphasis on the role of the central

nervous system [3]. This has inevitably led to an interest in genes encoding molecules in neural

systems; these represent biologically plausible candidate genes and those involved in reward-

processing, cognition, stress and anxiety have been studied most intensively [4]. As opioid

receptors are critical for modulating the euphoric effects of the drug, variants in the genes

encoding the opioid receptors have been tested extensively and there is good evidence in sup-

port of the A118G polymorphism in the mu opioid receptor gene (OPRM1) [5,6], albeit with

mixed results. A recent meta-analysis has conducted a thorough analysis of this polymor-

phism, by defining uniform phenotypes across a range of addictive substances, including her-

oin, and reported a modest protective effect of the G allele in European populations [7]. Other

neural systems have also been tested, including the dopaminergic, glutamatergic, GABAergic,

and serotonergic [8–10] systems. The candidate gene approach relies on a prior hypothesis of

functionally plausible genes, yet has yielded few robust or replicated findings, being limited by

a number of flaws including a neglect of the false positive rate inherent in genetic studies. One

can posit that other biological systems, hitherto untested, may be relevant and indeed provide

information related to mechanisms underlying heroin addiction; the genome-wide approach

which is agnostic to prior hypotheses offers the opportunity of finding such novel genetic

variants.

Genome wide association studies (GWAS) testing heroin addiction [11,12] and opioid

dependence [13,14] have produced evidence of the role of novel loci and even replicated evi-

dence from candidate gene studies. In the very first GWAS on heroin addiction, [11], testing

104 methadone-maintained former heroin addicts of Caucasian ethnicity and 101 matched

controls, the authors reported suggestive association with GABRA3 (gamma-aminobutyric

acid, receptor subunit alpha 3), a candidate gene for heroin addiction. Despite the small sample

size, one marker (rs965972; chr1q31.2) survived correction for multiple testing, however it was

not located near any gene. Building on these early findings, the authors expanded the study by

increasing the sample size as well as the number of markers tested [12]; 325 ethnically mixed,

methadone-stabilized former heroin addicts were compared to 250 control individuals using a

100K Affymetrix array. Some overlap was observed between the two studies, whereby the top

markers were located on chromosome 1q23, albeit about 30kb apart. In the African-American

sub-sample (125 cases; 100 controls), the most significant SNP (rs950302) was located in the

gene DUSP27 (cytosolic dual specificity phosphatase 27), with point-wise significance

(p = 0.0079) for association with heroin addiction vulnerability.

Two recent GWAS are of particular relevance, one because of the larger sample size and the

additional analyses for risk pathways [13], while the second one used exposed and non-
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exposed controls [14]. Gelernter et al [13] performed a well-designed study utilizing an initial

discovery sample of 5697 individuals, followed by two replication stages: stage 1, N = 4063 par-

ticipants; stage 2, N = 2549 participants, all satisfying the criteria for opioid dependence. The

increase in sample size was sufficient to produce results that were replicated across the differ-

ent phases and interestingly, that were functionally relevant to the phenotype. Association

analyses produced population-specific variants for the analyses using case-control status,

symptom count and meta-analyzed results of all three phases. The African-American sample

yielded the most significant results with variants in KCNG2 (potassium voltage-gate channel

modifier subfamily G member 2). Subsequent pathway analyses captured the role of sub-

threshold results to reveal two potentially functional pathways, calcium signaling and synaptic

long term potentiation. Neurotransmitter signaling plays a key role in drug dependence [3,15];

CAMK2B (calcium/calmodulin dependent protein kinase II beta) was shown to be a hub mole-

cule in pathways relevant to drug addiction [16], whereas long term potentiation could modu-

late heroin relapse through the glutamate receptor NR2B (NMDA2b-containing receptor)

[17]. The groundbreaking study by Nelson et al [14] utilized a novel and highly valid design,

the comparison of exposed and non-exposed controls with affected individuals. Most genetic

studies in addiction tend to use unexposed controls which are useful for assessing dependence

on drugs but tend to lead to reduced power when analyzing intermediate or later stages of

addiction. Comparison of opioid-dependent subjects with opioid misusers, namely those indi-

viduals who had not progressed to dependence, revealed a protective role of variants in the

gene CNIH3 (cormichon family AMPA receptor auxiliary protein 3). Identification of protec-

tive variants is useful as these could serve as biomarkers to prevent transition from opioid use

to dependence, and thus help translational work.

The current study is the first genome wide study to test Han Chinese individuals for associ-

ation with heroin dependence. The samples were hybridized to the Illumina HumanCoreEx-

ome-12v1_A microarray, developed to capture extensive genomic variation including rare

single nucleotide variants and insertions/ deletions (indels). We assessed the data for risk vari-

ants as well as pathways that might be functionally relevant in heroin dependence. It would

have been relevant to test exposed controls but these were not available hence the analysis was

limited to dependence. Nonetheless, the results are of value due to the novelty of population

tested as well as the results of the post hoc analyses, such as gene-based association tests, and

polygenic risk scores.

Materials and Methods

Ethics statement

Written, informed consent was obtained from all participants and peripheral blood samples

were collected for DNA extraction. The study was conducted in accordance with ethics

approval granted by Internal Review Committees of King’s College London, UK (No. 103/02)

and West China Hospital, for conducting genetic studies using the Chinese sample of cases

and controls. The UK National Health Service (NHS) Research Ethics Review Committee

approved the use of the sample for large scale genetic studies.

Subjects

Our initial sample of 567 individuals was comprised of 398 heroin addicts and 169 controls,

with a mean age of 26–31 years, as shown in Table 1. The participants were predominantly

northern Han Chinese from Sichuan Province; these are a more homogeneous population

than the southern Han. Chinese ethnic minorities were not included in the sample to reduce

the likelihood degree of population stratification. The cases were recruited from inpatient
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clinics attached to two psychiatric hospitals in Chengdu (Southwest China) and were diag-

nosed with DSM-IV criteria for heroin dependence using a semi-structured clinical interview.

This interview included questions on (i) age at first use of heroin and duration of use, (ii) the

quantity of drug consumed over this period, (iii) whether the patient had abused other addic-

tive substances such as alcohol, cocaine, cannabis, etc., (iv) co-morbidity of other psychiatric

conditions. Those subjects who were abusing other substances or suffered from a major psy-

chiatric illness such as recurrent major depression, schizophrenia or bipolar disorder were not

included in the study. To corroborate patient interview, case notes were examined and a family

member was also used as an informant. As the abuse of drugs other than heroin is uncommon

is Southwest China, it was possible to include most subjects interviewed. However, there were

some subjects who admitted to excessive alcohol use and these were excluded. The control

sample was recruited from college staff, medical students and acute medical inpatients in a

general hospital, none of whom had any neurological or psychiatric disorders or a family his-

tory of psychiatric or addictive disorders. The control participants did not undergo a formal

psychiatric interview but were asked if they had ever been told by a doctor that they suffered

from a mental or neurological illness, or had been prescribed drugs or admitted to hospital for

such an illness.

Genotyping and quality control

Genomic DNA was extracted from blood samples using standard phenol-chloroform proce-

dures and was initially quantified using spectrophotometry. Prior to hybridization to the chip,

all samples were re-quantified using pico-green fluorimetry and DNA quality was assessed

using standard gel electrophoresis techniques; this ensured that only samples of high quality

DNA were used. Automated procedures were used to hybridize the cases and controls to the

HumanCoreExome-12v1_A Beadchip (Illumina Inc., San Diego CA, USA) and scanned on

the Illumina HiScan platform, using standard protocols. This particular chip comprises of

547644 markers, including all the tag markers (264,909 markers) on the HumanCore bead-

chip, over 240,000 markers of the HumanExome chip as well as several rare variants.

Quality control

Genotyped data was first assessed in GenomeStudio using the GenCall algorithm (Illumina),

however as the program is better at examining common variants, rare variants were then

assessed using zCall [18], a rare-variant caller specially designed for microarrays. In accor-

dance with the analytic pipeline developed in-house [19], the data from the initial genotype

calling was subjected to further stringent quality control in PLINK [20] and PLINK2 [21]. The

resulting dataset taken forward to imputation analysis consisted of 263084 autosomal SNPs,

with MAF >5%, call rate>99% and which did not deviate from Hardy-Weinberg with

p>1x10-5. A large number of SNPs were eliminated during this QC stage, as they were not

polymorphic in the Chinese sample or were too rare; setting the MAF cutoff at 5% enabled

us to include more of the common variants. Individuals with call rates of>99%, gender

consistent with the heterozygosity of X chromosome SNPs and with genome-wide SNP

Table 1. Demographic information on the Han Chinese sample used in the study.

Cases Controls

Males Females Males Females

Total number 302 96 72 97

Mean age 27.6±5.19 26±6.77 29.9±10.7 31±10.9

doi:10.1371/journal.pone.0167388.t001
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heterozygosity within 2SD of the sample mean were retained, leaving a total of 504 samples

(370 cases and 134 controls) available for genetic analyses.

Case-control association

Following QC, 370 cases were compared with 134 controls for association using logistic regres-

sion, adjusting for two ancestry-informative covariates, in PLINK [20]. Power analysis using

400 cases and 150 controls with the online calculator, the Center for Statistical Genetics

(CaTS) power calculator program (http://csg.sph.umich.edu//abecasis/cats/), indicates that at

a significance level of p = 0.0025, such a sample size has 60% power to detect common alleles

with frequency of 0.5. (Figure A(i) in S1 File), and expectedly has reduced power to detect

alleles of lower allele frequency (Figure A(ii) in S1 File). To account for multiple testing issues,

the standard GWAS significance threshold of α = 5x10-8 [22] was used. Annotation of gene

names for the SNPs was conducted using SeattleSeq http://snp.gs.washington.edu/

SeattleSeqAnnotation137/) [23]. For those markers not annotated by the software, gene names

were searched on the UCSC Genome Browser, build 37/hg19 (http://genome.ucsc.edu/). For

the 100 most significantly associated SNPs from logistic regression, flanking regions of 50kb

on either side were also searched. Finally, in order to identify independent association signals

in our data, we applied the clumping procedure in PLINK2 [21], taking all SNPs associated

with our phenotype with p�0.001, termed index SNPs, and identifying SNPs that are in LD

with the index SNP (r2 > 0.5) within a sliding window of 250kb.

Imputation

Genotypes were imputed to NCBI build 37 using Phase 1 of the 1000 Genomes reference data

and selecting for the Asian population for ethnicity, as implemented on the Minimac server

(http://imputationserver.sph.umich.edu/) [24]. Following imputation, duplicate IDs corre-

sponding to triallelic SNPs were removed. In accordance with our imputation pipeline, we

removed SNPs with MAF < 0.01, imputation quality R2 < 0.9 and average call rate of<0.95.

The imputation analysis produced a post-imputation analytic sample of 4,009,606 SNPs which

was subjected to further QC. The imputed data, after removal of the major histocompatibility

complex (26–33 Mb on chromosome 6), and pruning, was used to calculate two ancestry-

informative covariates, using Multidimensional Scaling. These ancestry-informative covariates

were used to adjust for any population structure.

Gene based association testing

We used VEGAS2 (Versatile Gene-based Association Study) [25], an updated version of

VEGAS [26], to calculate gene-based p-values from the association results. This online soft-

ware tool uses population-based estimates for linkage disequilibrium (LD) and SNP-based p-

values from GWAS, to identify significant deviations from expected p-value distributions

within genes, under the null. In VEGAS2, this information is derived using the 1000 Genomes

phase 1 data, enabling improvements in the LD estimates and allows analysis of X-chromo-

some. The analysis provides a statistic for gene-based results that is sensitive to gene length

and recombination hotspots, as well as identifying genes in which there are multiple indepen-

dent signals across cases, each of which individually may not reach genome-wide significance.

For our analysis we used the Asian reference data, selecting the Chinese reference panel to esti-

mate LD within genes and calculate gene-based empirical tests of association. Margins of +/-

50kb were set for LD estimates and all chromosomes were included except chromosome Y and

mitochondrial genes.
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In silico replication

Possible replication of our association results was assessed using summary statistics for 1331

individuals of African-American ancestry and 1814 individuals of European-American ances-

try, tested for genome-wide association with opioid dependence by Gelernter and colleagues

[13]. The study samples had been ascertained at five different US sites and all subjects had sat-

isfied the DSM-IV criteria of opioid dependence with the Semi-structured Assessment for

Drug Dependence and Alcoholism [27] and provided written, informed consent as described

in Gelernter et al [13]. GWAS had been performed on the Illumina HumanOmni1-Quad v1.0

chip. For our replication assessment, we prioritized the top 100 SNPs from our imputed associ-

ation results and limited our replication to SNPs located within or close to the top genes,

CCDC42 and BRSK2. Prior to the assessment, we checked for concordance of marker locations

between the two datasets. A total of 49 SNPs were examined for replication, 24 markers in

CCDC42 and 25 markers in BRSK2. In addition to the SNP-based replication, we were inter-

ested in assessing the association status in our data of candidate genes that had been previously

tested in Chinese populations. A literature search of previously published studies provided us

with a list of candidate genes, noted in Table C(i) in S2 File.

Functional and pathway assessment

Pathways were extracted from MSigDB v5.2 canonical pathways (CP) and Gene Ontology

(GO) datasets; MSigDB [28] is distinguished for having the largest collection of gene sets,

derived from diverse gene set sources. Only pathways containing 10–1000 genes were

included, yielding a total of 7111 pathways (1309 CP, 5802 GO) for the analysis. We compiled

gene sets in our association data using a 35kb upstream and 10kb downstream window to

include gene regulatory regions and MAF� 0.05. The genes were encoded by ENSEMBL iden-

tifiers (release 75, genome assembly h19). Pathways were assigned competitive p-values using

MAGMA v1.05 [29] which assesses whether a pathway is more associated with a trait than

other pathways, and takes into account linkage disequilibrium (LD). The reference data used

for LD was the Southern Han Chinese subset (CHS) of 1000 genomes phase III data [30]. The

gene and pathway p-values were adjusted using Benjamini-Hochberg FDR procedure [31] to

obtain q-values. In silico tissue specific expression of the top genes from the association and

VEGAS2 analyses, was examined using the freely available online database, Genotype-Tissue

Expression (GTEx) Portal (http://www.gtexportal.org/).

Polygenic risk scores

Genome-wide association studies in neuropsychiatric disorders tend to produce small effect

sizes; even the most significantly associated markers tend to have small effects, with odds ratios

(OR) in the range of 0.8–1.2. These small effect sizes, and the resultant lack of power, mean

that the majority of disease associated SNPs fall below genome-wide significance; markers

rejected by GWAS can be combined into quantitative scores to examine the combined effects

of the variants [32,33]. We calculated polygenic risk scores (PRS) using PRSice [34]. PRSice

calculates the best-fit PRS across 10,000 thresholds (from PT = 0.0001 to PT = 0.5 by incre-

ments of 0.00005) by regressing phenotype on score and two ancestry informative covariates.

To calculate PRS in this study, we used publicly available GWAS results as base datasets; these

are the five most recent analyses by the Psychiatric Genomics Consortium (PGC)—schizo-

phrenia, depression, ADHD, autism and bipolar disorder [35–39]–and four phenotypes from

the Tobacco And Genetics Consortium—ever smoked, quantities of cigarettes smoked, former

smoker and age at starting smoking [40].
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Results

Association analysis

Following quality control and imputation, data was available on 4,009,606 markers genome-

wide, in 504 individuals. We performed association testing between 370 cases and 134 con-

trols, adjusting for population structure using two ancestry-informative dimensions generated

using multidimensional scaling. We found no evidence for residual population structure after

using these covariates, as shown in the QQ plot in Fig 1 (GWAS λ median = 1.026). In this

study, the most significant markers demonstrated p-values of 10−7 (Table 2). Association test-

ing identified suggestive association between heroin dependence and several markers located

within genes that may be of relevance to heroin dependence; the 25 most associated indepen-

dent markers are listed in Table 2. Among these were several markers located on chromosome

17p13.1; indeed the three most associated genotyped SNPS were all located either in or near

the gene CCDC42 (coiled coil domain containing 42) on chromosome 17 (see Table A in S2

File for details on the 100 most associated genotyped SNPs). Many of the top markers are

located within or close to the genes CCDC42,BRSK2 (BR serine/threonine kinase 2), ZNF546
(zinc finger protein 546), CHIT1 (chitinase 1) and PPP1R12B (protein phosphatase 1, regula-

tory subunit 12B) and NEK1 (NIMA-related kinase 1).

We identified three distinct clusters of associated SNPs, on chromosomes 17, 11 and 8 (Fig

2). The two smaller clusters of markers on chromosome 11p15.5 and chromosome 8q21.12

yielded suggestive association with p< 10−6 and 19 markers with p< 10−7 were located either

within or close to CCDC42on chromosomes 17 (Table A in S2 File). The regions on chromo-

somes 8 and 11 contained a density of markers with p�3.5 x 10−5 (Table A in S2 File). The

genes PXDNL (peroxidasin-like), PCMTD1 (protein-L-isoaspartate (D-aspartate) O-methyl-

transferase domain containing 1) and ARHGEF10 (Rho guanine nucleotide exchange factor

(GEF) 10) all localized to the region on chromosome 8. The markers on chromosome 11 pre-

dominantly localized to the gene BRSK2.

Gene based association testing

Applying VEGAS2 [25] to the results of our genome-wide association results identified two

genes CCDC42 and SPDYE4 meeting the significance threshold of α = 2.85x10-6 (Table 3), as

suggested by Liu et al [26]. This threshold is likely to be overly conservative, meaning that the

data provides good evidence for an association between these genes and heroin dependence; it

should be noted that the two genes are located close to each other and may represent a single

association signal. The VEGAS2 output represents non-significant regions from GWAS attain-

ing significance in gene-based analysis; this is consistent with multiple relatively independent

causal loci within the same gene. This is supported by multiple relatively independent signals

in CCDC42 after clumping.

In silico replication

Assessment of replication using summary statistics demonstrated no evidence of replication;

results are presented in the supplementary data, Table B(i) and (ii) in S2 File. We present com-

parison of the two genes CCDC42 and BRSK2with the data for the two different populations,

African-American and European-American. In general, the replication samples demonstrated

p-values > 0.1 compared to p-values <10−5 in our dataset, for the selected markers. When

examining the association status of candidate genes, we did not observe association with vari-

ants in the selected candidate genes. The results are presented in the supplementary data; in

Table C(i) in S2 File we present the candidate gene list compiled using previously published
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studies and Table C(ii) in S2 File shows results in our study, highlighting p-values of the most

associated SNPs in these genes.

Pathway analysis

Functional pathway analysis using MSigDB yielded top pathways related to regulation of vacu-

olar transport, regulation of skeletal muscle contraction and cellular processes relevant for cell

division, however none of the pathways demonstrated an empirically significant result.

Table D in S2 File in the supplementary data lists the top ten pathways, with the empirical P-

value for the pathway. We examined the expression patterns of some of the top genes, using

GTEx Portal (www.gtexportal.org). The gene CCDC42 is the top gene in the association analy-

sis as well as in the gene-based analysis; expression patterns show that it is primarily expressed

in the testes with no observable expression levels in any other tissue. The gene BRSK2 is

expressed in several parts of the brain, with expression levels being highest in cerebellum tis-

sues, followed by somewhat lower expression in the hippocampus and the hypothalamus.

According to the database, there is some expression in the pancreas and the pituitary. Finally,

ARHGEF10 shows expression mainly in tissues derived from the tibial nerve and the lung with

smaller amounts of expression in a range of other tissues, including the brain.

Fig 1. Quantile-quantile plot for test statistic inflation, lambda median = 1.026.

doi:10.1371/journal.pone.0167388.g001
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Polygenic risk scoring

We used PRSice to calculate polygenic risk scores for liability to a number of psychiatric traits,

and evaluated their ability to predict heroin addiction (Table 4). The base data included

GWAS for smoking and related behaviors and datasets for diseases known to be comorbid

with addiction, for example, schizophrenia and ADHD. We found significant evidence that

genetic risk of schizophrenia could predict heroin dependence, (p = 0.0007) at PT = 0.0085.

This is likely in part explained by the relatively higher power of the schizophrenia GWAS,

compared to the other psychiatric traits investigated, leading to improved identification of any

shared genetic factors between heroin dependence and any generalized liability to psychiatric

disorders [41]. We did not find evidence for a genetic overlap between heroin dependence and

any of the other GWAS traits investigated here. The data from the Tobacco Addiction Genetics

(TAG) Consortium may be the most relevant for the phenotype of heroin addiction; in a previ-

ous study [42], PRS for cigarettes per day had predicted the number of glasses of alcohol con-

sumed per day and age at onset of smoking predicted age at regular drinking. In the current

study, no smoking phenotypes studied (ever smoked, cigarettes per day, former smoker, age of

onset for smoking) predicted heroin addiction, when using the suggested significance thresh-

old of α = 0.001; instead, there was a suggestive relationship with ‘ever smoked’ and age at first

cigarette. The proportion of variance in heroin use explained by polygenic risk score was very

Table 2. Top 25 results from the pre-imputation analysis of case-control association with heroin dependence, after implementation of clumping in

PLINK to identify relatively independent signals. Genes are mapped based on chromosome and base pair position, using the program SeattleSeq.

CHR SNP BP A1 MAF Gene OR P

17 rs4791746 8626357 T 0.3867 Unmapped 0.4642 2.229e-07

17 rs2288156 8644854 T 0.1729 CCDC42 0.3905 2.819e-07

17 17:8631468 8631468 C 0.3799 Unmapped 0.4694 3.788e-07

8 rs4739179 78785992 G 0.3477 Unmapped 0.5038 3.62e-06

11 rs1881509 1425605 G 0.4092 BRSK2 0.4947 4.148e-06

8 8:78718310:A_AC 78718310 I 0.3525 Unmapped 0.5099 4.925e-06

11 11:1421138:T_TGG 1421138 I 0.4102 Unmapped 0.4998 5.255e-06

7 rs78158938 36786796 A 0.09766 Unmapped 0.203 6.159e-06

20 rs6022774 52431105 A 0.4971 Unmapped 0.512 1.067e-05

1 rs1417150 203196757 T 0.08887 CHIT1 0.3534 1.269e-05

4 rs9917891 9614633 C 0.02344 Unmapped 0.133 1.299e-05

17 rs9894347 8646158 C 0.498 CCDC42 0.5309 1.352e-05

3 rs17422129 82969622 C 0.3145 Unmapped 0.5235 1.601e-05

20 rs6095949 49061728 G 0.498 Unmapped 1.889 2.082e-05

2 rs13426854 240845694 T 0.03418 Unmapped 0.2091 2.732e-05

18 rs8085967 52654114 A 0.09082 Unmapped 0.3811 2.972e-05

10 rs7916242 54048234 G 0.3809 PRKG1 0.5441 3.159e-05

11 rs11532013 98364555 G 0.08398 Unmapped 0.3793 3.342e-05

13 rs9587328 107911258 A 0.1064 FAM155A 0.3929 3.5e-05

3 rs3732377 39138840 G 0.1904 GORASP1 0.4711 3.71e-05

5 5:81799177 81799177 C 0.04492 Unmapped 0.2743 3.752e-05

7 7:83000350:GGTGC 83000350 D 0.09766 SEMA3E 0.4033 3.967e-05

7 rs12111869 82998022 T 0.03711 SEMA3E 0.4033 3.967e-05

7 rs4368921 131343761 G 0.4043 Unmapped 1.955 4.142e-05

3 3:38939207:TA_T 38939207 R 0.334 SCN11A 0.5295 4.254e-05

doi:10.1371/journal.pone.0167388.t002
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low or moderately low (Nagelkerke’s R2 = 0.001–0.06) for all the phenotypes tested (Figure B

(i)-(iv) in S1 File).

Discussion

Our study was aimed at conducting a genome-wide association study (GWAS) to identify

genetic variants that may play a role in heroin dependence and, with the aid of bioinformatics

tools, to assess their expression patterns as well as functional pathways involved. The GWAS

was performed using an ethnically homogeneous sample of Han Chinese origin; examination

for presence of possible population substructure confirmed homogeneity of our sample of

cases and controls. Case-control association analysis with 370 cases and 134 control individu-

als did not identify any genetic markers reaching genome-wide significance, as may be

expected considering the relatively small sample size. Nonetheless, our gene based association

analysis with VEGAS2, which involves fewer tests, also supported the putative role of CCDC42,

consistent with the SNP based genome-wide analysis. Following imputation, three distinct

regions were highlighted, on chromosomes 17, 11 and 8; the four most associated genes in

these regions were CCDC42,BRSK2, CHIT1 and ARHGEF10. The top ranked gene was

CCDC42but little is known about the functional role of CCDC42, other than that it interacts

Fig 2. Manhattan plot showing post-imputation genome-wide association results. Data for

chromosomes X and Y was removed prior to imputation. Analysis highlighted three main chromosomal

regions of association. The blue line denotes a p-value cutoff of 10−5 (suggestive significance) and the red line

is at p-value = 5x10-8 (genome-wide significance).

doi:10.1371/journal.pone.0167388.g002
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with the transcriptional repressor ZBTB1 (zinc finger and BTB domain containing 1), which

in turn is functionally important for chromatin remodeling [43] (www.ncbi.nlm.nih.gov); this

relationship suggests that CCDC42might be involved in epigenetic processes. A more intrigu-

ing functional relationship would be its involvement in immunological processes, as suggested

by the association of CCDC42with Behcet’s disease [44]. Characterized by recurrent inflam-

matory attacks, Behcet’s disease affects orogenital mucosa, eyes, joints as well as the nervous

system and the gastrointestinal tract [45]. A number of immunoregulatory pathways have

Table 3. The top 25 results from the gene-based analysis using VEGAS2. At the recommended significance threshold of P-value = 10−6, the genes

CCDC42 and SPDYE4 demonstrate significant results.

Gene nSNPs Start Stop Gene Pvalue TopSNP TopSNP-pvalue

CCDC42 181 8583245 8698154 1.00E-06 rs4791746 2.23E-07

SPDYE4 182 8606423 8711877 1.00E-06 rs4791746 2.23E-07

SMAD1 192 146352950 146530325 8.60E-05 rs28480984 5.21E-05

SGPL1 264 72525703 72690932 0.00018 rs12782980 6.56E-05

MAP4K2 48 64506608 64620713 0.000227 rs490980 0.0001452

CD7 9 80222745 80325480 0.000244 rs8072762 0.0002111

SMAD1 129 146368200 146474132 0.000282 rs76068476 0.0001389

SF1 63 64482075 64596316 0.000296 rs490980 0.0001452

ADD3 30 111655316 111818139 0.000408 rs10466193 0.0007459

PCBD1 125 72593264 72698543 0.000411 rs10509327 0.0003889

MEN1 48 64520985 64628766 0.000413 rs490980 0.0001452

IFITM5 73 248200 349526 0.000433 rs11246088 0.0002424

TBATA 255 72480994 72595157 0.000484 rs12782980 6.56E-05

IFITM2 76 258106 359410 0.000485 rs11246088 0.0002424

PYGM 70 64463860 64578187 0.000509 rs490980 0.0001452

FAM21C 91 46172647 46338412 0.000559 rs138643555 0.000144

KDELC2 140 108292832 108419159 0.000611 rs10749917 0.001527

SECTM1 22 80228899 80341921 0.000700 rs8072762 0.0002111

MIR1976 125 26831032 26931084 0.000725 rs737465 0.0001625

KAAG1 116 24307130 24408512 0.000731 rs6940827 0.0006796

RASGRP2 72 64444382 64562928 0.000787 rs490980 0.0001452

SPATA31D1 21 84553686 84660171 0.000829 rs149183278 0.0006814

UTS2R 56 80282200 80383370 0.000960 rs8072762 0.0002111

ZFAND4 287 46060948 46218261 0.001080 rs138643555 0.000144

LGI3 43 21954342 22064344 0.001100 rs6557826 0.0005859

doi:10.1371/journal.pone.0167388.t003

Table 4. Results of Polygenic Risk Scoring.

Base Phenotype Best P-value Threshold P-value at best threshold Variance Explained (Nagelkerke’s Pseudo R2)

ADHD 0.0015 0.014874 0.01748

Autism 0.00735 0.028201 0.01417

Bipolar Disorder 0.00005 0.020131 0.01587

MDD 0.00025 0.087017 0.00852

Schizophrenia 0.0085 0.000695 0.03386

Cigarettes per Day 0.00005 0.150855 0.00597

Age at onset for smoking 0.215 0.037109 0.01261

Ever smoked 0.2271 0.020949 0.01557

Former smoker 0.0004 0.074126 0.00933

doi:10.1371/journal.pone.0167388.t004
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implicated in Behcet’s disease; if CCDC42belonged to any of these pathways, it might explain

its role in both Behcet’s disease and heroin addiction, as heroin use is often associated with

increased presence of infectious diseases. Our gene-based analysis also yielded significant

results with CCDC42 as well as the neighboring gene, SPDYE4 (Speedy/RINGO cell cycle regu-

lator family member E4) of which little is known in terms of function.

The second of the top genes, BRSK2 is one of a pair of kinases (BRSK1/2) highly expressed

in the mammalian brain [46], in particular the cerebellum, hippocampus and hypothalamus

tissues (www.gtexportal.org). The enzyme encoded by BRSK2 localizes to presynaptic sites and

modulates structural and functional maturation of synapses; indeed functional studies in mice

indicate that the serine/threonine kinases (also known as SAD kinases) are critical for specifi-

cation of axons and axonal development, and for playing a critical role in cell proliferation, dif-

ferentiation and cell death [47]. The absence of SAD kinases does not prevent axon formation

but does compromise maturation of axon terminals and mutations in SAD orthologs led to

presynaptic defects in C. elegans [48] and Drosophila [49]. Gene ontology processes associated

with BRSK2 include actin cytoskeleton reorganization, apoptotic signaling pathways and estab-

lishment of cell polarity (www.uniprot.org).

Another one of the top genes in our study, ARHGEF10, is similarly involved in several cellu-

lar and actin cytoskeleton processes. As a member of the large family of rho guanine-nucleo-

tide-exchange factors (GEFs), ARHGEF10 acts as a molecular switch in the regulation of signal

transduction pathways [50], binding to G-protein coupled receptors to stimulate downstream

binding with protein kinases to affect cell signaling and extracellular stimuli processed through

Rho proteins to modulate the intracellular actin cytoskeleton and subsequently intracellular

processing [51,52]. Genetic studies in dogs suggest its role in neuropathies; a mutation in the

gene resulted in a severe form of juvenile-onset polyneuropathy, which bears clinical similarity

to the group of neuropathies termed Charcot-Marie-Tooth disease in humans [53]. Though

expressed in multiple tissues, it has higher expression in the spinal cord and dorsal root gan-

glion [54]. Another gene showing nominal association (p�0.001), RASGRP2 (RAS guanyl

releasing protein 2), encodes a brain-enriched nucleotide that contains an N-terminal GEF

domain and may also play a role in cell signaling. The emerging functional themes related to

the top genes in our data appear to be cellular processing and actin cytoskeleton restructuring;

these are also identified in molecular studies investigating alcohol and cocaine addiction [55]

and are therefore consistent with molecular models of addiction. It is already known that

chronic and dependent drug consumption is correlated with structural plasticity in relevant

neural circuits [56] and that such experience-dependent plasticity is primarily driven by

changes in the shape and number of dendrites and dendritic spines [57–60]. Chronic adminis-

tration of opioids can lead to reduction in the spine density [61]. In addition to the drug-

induced plasticity, regulation of the cytoskeleton alterations may be influenced by mutations

in the genes encoding the cytoskeleton proteins [55].

When looking at the individual SNPs, it is likely that we did not find loci associated with

heroin dependence at genome-wide significance due to our relatively small sample size.

Whether the genes identified in our study can be considered to have any pathophysiological

role in heroin abuse depends on replication of these results and future functional studies. Our

limited replication assessment using summary data from a large GWAS in opioid dependence

showed no evidence of replication at the SNP level. Similarly, when we looked at some of the

common candidate genes [62–73], our results did not show significant association with any of

these genes (Table C(i) and (ii) in S2 File). Nonetheless, among the SNP-based and gene-based

results, there are individual genes implicated in addiction. ARHGEF10 has been discussed

above, and GRIN3B (glutamate receptor, ionotropic, N-methyl-D-aspartate 3B) has been

shown to be differentially expressed in heroin addicts compared to controls and methadone-
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maintained addicts [74], and was suggestively associated in gene-based analysis (p = 0.003; top

SNP p = 0.6.8−5).

Conclusion

The strength of this study lies in the homogeneous and novel population sample, and one that

is not confounded by addiction to other drugs of abuse. We have identified suggestive associa-

tion with a number of functionally plausible genes that might play a role in heroin dependence.

Although the genes did not reach genome-wide significance, their putative role in addiction

has been implicated through a range of post hoc analyses, such as our analysis of polygenic risk

scores which revealed suggestive evidence that smoking-related behaviours may be modestly

predictive of heroin addiction. Specifically, we find suggestive association with age at first ciga-

rette, and ‘ever smoked’, which may indicate an overlapping susceptibility to novelty-seeking

behavior; this may be confirmed in the future using higher-powered GWAS. Other genetic

studies using Han Chinese subjects have tested similar sample sizes, of about 300 individuals

[74]. Collecting large scale samples is difficult for substance use disorders such as heroin addic-

tion; nonetheless, in order to achieve robust results, whether at the SNP level, gene or pathway

level, a substantially larger sample size, in the range of tens of thousands of individuals, is

required. Acknowledging this need, the Psychiatric Genetics Consortium (PGC) for Substance

Use Disorders has been set up and data from the current study has been offered to the

PGC-SUD, which is collecting data from other GWAS studies on substance use. The large

number of samples will achieve the level of statistical power required and will provide much

needed information on the etiological basis of opioid dependence. In conclusion, we have pre-

sented the results of the first genome wide study of heroin dependence in a Chinese sample,

identifying novel associations between addiction and variation within genes that will be tested

for replication in a large collaborative effort.

Supporting Information

S1 File. Output from the power analysis calculator, CaTS (Center for Statistical Genetics),

estimating power for 370 cases and 170 controls at significance level of 0.0025 and selected

minor allele frequency of (i) 0.5 and (ii) at 0.1. The y-axis shows statistical power for a range

of sample s (x-axis) (Figure A). Polygenic risk scores, using data on smoking behaviors

obtained from the GWAS by the Tobacco and Genetics Consortium, show suggestive predic-

tion for heroin addiction (Figure B).

(DOCX)

S2 File. Results of the genome-wide association with heroin dependence showing the top

100 SNPs, following imputation with the 1000 genomes phase 1 dataset, selected for the

Asian population. The imputation produced 4M SNPs with top results on chromosomes 17,

11 and 8 (Table A). Results of in silico replication of results for markers in BRSK2 using sum-

mary data from a GWAS in opioid dependence in two different populations, African Ameri-

can and European American. (i). In silico replication of results for markers in and around the

top gene, CCDC42, using summary data from a GWAS in opioid dependence in African

American and European American populations (ii) (Table B). Table showing common candi-

date genes previously tested in Chinese samples. The table shows the top result in these pub-

lished studies and the type of polymorphism yielding the result. This list was used to assess

gene-level replication in our data (i). Gene-based replication using the list of genes compiled

from previous published reports, as shown in Table B(i) (above) and assessing their association

status in the results from the VEGAS2 analysis performed in the current study (ii) (Table C).
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Top ten results of the pathway analysis using the MSigDB database. The p-value calculated for

each pathway was adjusted using the Benjamini and Hochberg method to yield an empirical

value. The number of genes in each pathway is noted (Table D).
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