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Abstract

DNA-binding proteins are fundamentally important in cellular processes. Several computa-

tional-based methods have been developed to improve the prediction of DNA-binding pro-

teins in previous years. However, insufficient work has been done on the prediction of DNA-

binding proteins from protein sequence information. In this paper, a novel predictor, DNABP

(DNA-binding proteins), was designed to predict DNA-binding proteins using the random

forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel

sequence features, which reflect information about the conservation of physicochemical

properties of the amino acids, and the binding propensity of DNA-binding residues and non-

binding propensities of non-binding residues. The comparisons with each feature demon-

strated that these two novel features contributed most to the improvement in predictive abil-

ity. Furthermore, to improve the prediction performance of the DNABP model, feature

selection using the minimum redundancy maximum relevance (mRMR) method combined

with incremental feature selection (IFS) was carried out during the model construction. The

results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity,

90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy

and performance comparisons with previous research suggested that DNABP could be a

useful approach to identify DNA-binding proteins from sequence information. The DNABP

web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

Introduction

DNA-protein interactions play significant roles in various biological processes, such as gene

regulation, DNA replication and repair, transcription and other biological activities associated

with DNA [1–3]. Identification of DNA-binding proteins is fundamentally important to

understand how proteins interact with DNA. DNA-binding proteins can be identified by

many experimental techniques such as chromatin immunoprecipitation on microarrays, X-

ray crystallography and nuclear magnetic resonance (NMR). However, the experimental
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techniques to recognize DNA-binding proteins are labor-intensive and time-consuming. Con-

sidering the weakness of determination of DNA-binding proteins using wet experiments,

computational methods to identify putative DNA-binding proteins have become increasingly

important in recent years. In recent years, rapid advances in genomic and proteomic tech-

niques have generated numerous DNA-binding protein sequences. In 2014, the number of

DNA-binding proteins in the UniProt database was more than 10 times greater than that in

2000. These large amounts of data provide the foundation for research on the identification of

DNA-binding proteins using computational approaches.

Currently, there are two major tasks for the computational prediction of DNA-binding pro-

teins. One is to identify DNA-binding proteins using structure information and the other is to

predict them using sequence information. Obtaining structural information is difficult; there-

fore, it is necessary to develop prediction methods for DNA-binding proteins based on amino

acid sequences.

During the past few decades, a series of studies on the identification of DNA-binding pro-

teins using sequence information have been published [4–14]. Machine learning algorithms

were employed to construct models to predict DNA-binding proteins and produced effective

performances [4–9,11–19]. Interestingly, the support vector machine (SVM) algorithm has

been used frequently to predict DNA-binding proteins [4–6,8,12–16]. Cai and Lin first applied

the SVM algorithm for DNA-binding protein prediction using a protein’s amino acid compo-

sition and a limited range of correlations of hydrophobicity and solvent-accessible surface

areas as input features [4]. More recently, Zou et al. developed an entirely sequence-based pro-

tocol that transforms and integrates informative features from different scales used by SVM to

predict DNA-binding proteins [14]. Zhang et al. proposed newDNA-Prot, a DNA-binding

protein predictor that employs an SVM classifier and a comprehensive feature that categorized

features into six groups: primary sequence-based, evolutionary profile-based, predicted sec-

ondary structure-based, predicted relative solvent accessibility-based, physicochemical prop-

erty-based and biological function-based features [13]. DNA-Pro based on SVM algorithm to

distinguish DNA-binding proteins from non-binding proteins [17]. They incorporated fea-

tures of overall amino acid composition, pseudo amino acid composition (PseAAC) proposed

by Chou and physicochemical distance transformation. Liu et al. proposed a predictor called

iDNAPro-PseAAC [18] which used PseAAC feature Combined with SVM algorithm. The

most recent prediction method for DNA-binding proteins was aslo proposed Liu et al.which

called iDNA-KACC[19]. The iDNA-KACC was developed by combing SVM classifier as well

as by incorporating the auto-cross covariance transformation. The protein sequences are first

converted into profile-based protein representation, and then converted into a series of fixed-

length vectors by the auto-cross covariance transformation with Kmer composition. Random

forest (RF) alorgithm, which is a useful machine learning classifier, was aslo used to prdict

DNA-binding proteins. Lou et al. applied the RF algorithm to predict DNA-binding proteins

using predicted secondary structure, predicted relative solvent accessibility and position-spe-

cific scoring matrix as the primary sequence features[8].

In this study, a systematic attempt was made to develop models to predict DNA-binding

proteins with high accuracy using only sequence information. DNA-binding proteins have

DNA-binding residues and non-binding proteins should not have DNA-binding residues.

Therefore, the presence of DNA-binding residues could be used to predict DNA-binding pro-

teins. We established an effective model, DNABR [20], to predict DNA-binding residues. The

information of DNA-binding residues and non-binding residues predicted by DNABR was

constructed as a feature vector to classify DNA-binding proteins and non-binding proteins. In

addition, we proposed a novel feature, PSSM-PP, based on a position-specific scoring matrix

(PSSM). The PSSM-PP feature not only represents the evolutionary information obtained by
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PSSM, but also contains information about physicochemical properties. Thus the novel

method DNABP uses a random forest (RF) algorithm [21] in conjunction with a hybrid fea-

ture. The hybrid feature comprises 64 features selected from the PSSM-PP, DNA-binding pro-

pensity measures obtained from the information of DNA-binding residues, non-binding

propensity measures obtained from the information of non-binding residues and physico-

chemical property features using the minimum redundancy maximum relevance (mRMR)

method combined with incremental feature selection (IFS). Since user-friendly and publicly

accessible web-servers represent the future direction for developing practically more useful

models, simulated methods, or predictors as pointed out in [22–24] and emphasized in

[25,26], we have established a web-server presented in this paper.

Materials and Methods

Dataset

All DNA-binding protein sequences and non-binding protein sequences were collected from

the UniProt database (http://www.uniprot.org/) [27] and only manually annotated and

reviewed proteins were selected for this study.

To obtain the DNA-binding proteins as the positive dataset, “DNA binding” was used as

keyword to search the UniProt database. More than 30000 DNA-binding proteins were

obtained. As in previous works [4,6,9,12,28], we removed proteins with lengths less than 50

amino acids because they might be fragments and proteins of more than 6000 amino acids

because they might be protein complexes. Protein sequences including irregular amino acid

characters such as “x” and “z” were also removed. To avoid any effects on our experimental

data from the similarity of the dataset, we removed any redundant data using the BLAST pack-

age [29] available from NCBI, with a threshold of 40%. Finally, our positive dataset had 7131

DNA-binding protein sequences.

To obtain the non-binding proteins as the negative dataset, we first selected all of the

proteins from the UniProt database that did not have an implied RNA/DNA-binding func-

tionality using a similar procedure to that proposed by Cai and Lin [4]. In total, 528,086 non-

binding proteins were processed according to the similarity criteria as the negative dataset.

Consequently, we selected 67029 non-binding protein sequences as the negative dataset. An

equal number of positive data and negative data is important to develop the prediction system

for DNA-binding proteins. However, the number of DNA-binding proteins in the positive

dataset was much less than the number of non-binding proteins in the negative dataset. The

imbalance between the positive and negative data would affect the prediction performance;

therefore, we randomly selected 7131 non-binding proteins from the negative dataset to bal-

ance with the positive dataset. The main dataset (Mainset) then comprised the 7131 DNA-

binding proteins in the positive dataset and the selected 7131 non-binding proteins in the neg-

ative dataset (See Additional file S1 Table).

We further divided the 14262 proteins in the main dataset into two datasets: 1) the training

dataset (Trainset), which comprised 6928 DNA-binding proteins and 6928 non-binding pro-

teins (total 13856); 2) an independent test dataset (Testset), which consisted of 203 DNA-bind-

ing proteins and 203 non-binding proteins (total 406). The independent test dataset was used

to evaluate the performance of our method against previous works [7,9,11]. Therefore, the pro-

teins in Testset did not include any proteins that were used in previous works [7,9,11].

Feature vector

Position-specific scoring matrix combined with physicochemical properties (PSSM-PP).

The PSSM, which represents evolutionary information of amino acid sequences, has been used
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widely in research on the prediction of DNA-binding residues [30–35] and DNA-binding pro-

teins [6,14,28] based on sequence information. Compared with other features, PSSM contrib-

utes most to improving the prediction performance of DNA-binding residues and DNA-

binding proteins.

The PSSM scores used in this work were generated by PSI-BLAST [29]. PSI-BLAST

searches for each amino acid sequences were carried out against the non-redundant dataset of

proteins in NCBI with an E value of 0.001. The 20 values of PSSM, obtained for each sequence

position, were then scaled to the range of 0–1 using the following formula:

f ðxÞ ¼ ½1þ expð� xÞ�� 1
ð1Þ

where x is the element value of the PSSM profile.

The PSSM feature for different proteins has a different vector dimension. Taking a query

protein with N amino acids as an example, the vector dimension of the PSSM feature is 20�N.

Considering the fact that the machine learning model construction requires a fixed vector

dimension, the variable vector dimension of PSSM feature should be converted into a fixed

dimension.

Furthermore, to improve the PSSM feature, we considered a physicochemical property fea-

ture combined with the PSSM feature. In our previous work, we combined the PSSM with the

physicochemical property feature to predict DNA-binding residues [20] and achieved excel-

lent prediction performance. Therefore, the novel PSSM-PP feature considered six physico-

chemical properties for each amino acid: the pKa values of the amino group, the pKa values of

the carboxyl group [36], the electron-ion interaction potential (EIIP) [37], the number of lone

electron pairs, the Wiener index [38] and the molecular mass [39]. Those six physicochemical

properties are relevant to DNA-protein interactions and contributed most to improving the

prediction performance of DNA-binding residues in proteins compared with other physico-

chemical properties in the AAindex database [40] when combined with the PSSM feature [20].

Those six physicochemical properties were normalized to the range of 0–1 using the following

formula (2):

NPaðiÞ ¼
PaðiÞ � minfPað1Þ; Pað2Þ; � � � ; Pað20Þg

maxfPað1Þ; Pað2Þ; � � � ; Pað20Þg � minfPað1Þ; Pað2Þ; � � � ; Pað20Þg
ð2Þ

where NPa(i) represents the normalized quantitative property values that range from 0 to 1, i

indicates the i-th amino acid and a is the index of the physicochemical property. Then NPa(i)
is the value of the physicochemical property a of the i-th amino acid.

The PSSM-PP feature was constructed by combining PSSM with six physicochemical prop-

erties and took into account the fact that different proteins should have the same vector

dimension. The PSSM-PP feature was constructed using the following procedure. 1) Similar to

several previous studies [6,14,28,41], all rows in the PSSM were selected that belong to the

same amino acid and form a new matrix. Then, 20 new matrices were obtained with the size

Ak�20, where Ak is the number of amino acids of type k. 2) All values in each column were

added into each new matrix. Each new matrix was converted to a vector. Therefore, we pro-

duced a 20-dimensional vector for each new matrix; a 20×20 = 400 dimension vector was

obtained by the PSSM feature. 3) PSSM-PP was generated by merging the 20 amino acid col-

umns of the PSSM into a single column containing the information of a certain physicochemi-

cal property. The value in row a and column k in PSSM-PP matrix, named Sak, was calculated

DNABP
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with Eq (3):

Sak ¼
X20

i¼1

NPaðiÞfkðiÞ ð3Þ

where a is the index of a certain physicochemical property, k is the index of the type of amino

acids in the query protein sequence, i is the index of the type of naïve amino acids, fk(i) is the

scaled value of the i-th type of naïve amino acid for the k-th type of amino acid in the protein

sequence of the PSSM calculated by formula (1), and NPa(i) is the normalized physicochemical

property values of a for the i-th type amino acids calculated by formula (2). Sak represents the

index of the type of amino acids k in the query protein sequence for a certain physicochemical

property a and it not only contains the evolutionary information captured by PSSM, but also

the conservation information about the amino acid k at the level of its physicochemical prop-

erty a. Finally, the dimension size of the PSSM-PP feature was 6×20 (120).

Binding propensity measures (BP) and non-binding propensity measures (NBP).

DNA-binding proteins contain DNA-binding residues and the binding residues tend to gather

together on the surface of the protein. Therefore, DNA-binding residues could play an impor-

tant role in identifying DNA-binding proteins. Previously, we constructed a useful classifier

named DNABR [20] (http://www.cbi.seu.edu.cn/DNABR/) to predict DNA-binding residues

based on sequence information. DNABR outperformed other prediction methods for identify-

ing DNA-binding residues. Therefore, DNABR was used to predict DNA-binding residues to

construct binding and non-binding propensity measures in this study. Considering the char-

acters of DNA-binding residues, we constructed two binding propensities measures named BP

(1) and BP(2).

The DNA-binding residues, which we used in the binding propensities, were also obtained

by DNABR. Therefore the reliability of the prediction needs to be considered. The two binding

propensity measures (BP(1),BP(2)) were defined as follows:

BPð1Þ ¼

Xn

i¼1

RIðiÞ

10N
ð4Þ

where N and n are the number of amino acids and the number of DNA-binding residues in

this protein, respectively; RI(i), a positive integer in the range 0 to 10, is the predicting reliabil-

ity index of DNA-binding residue i generated from DNABR. More reliable predictions will

have higher RI(i) values.

BPð2Þ ¼
XN� 1

i¼1

XnðiÞ

k¼1

RIðkÞ

10ðN � iÞ
log

2

XnðiÞ

k¼1

RIðkÞ=10ðN � iÞ

ð
Xn

k¼1

RIðkÞ=10NÞ2

0

B
B
B
B
@

1

C
C
C
C
A

ð5Þ

Where N, n, and n(i) are the number of amino acids, the number of DNA-binding residues

and the number of two DNA-binding residues with the distance i in the query protein,

respectively.

RI(k) is the predicting reliability index of DNA-binding residue k generated from DNABR.

For a query protein, BP(1) describes the information of the appearance of DNA-binding

residues in the amino acid sequence and BP(2) describes the correlation of DNA-binding resi-

dues in the amino acid sequence and represents the relevance of two DNA-binding residues
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with different gaps from 1 to N-1 amino acids. Furthermore, when
XnðiÞ

k¼1

RIðkÞ equals zero in Eq

(5), the problem 0log2 0 appeared in the Eq (5). To solve the problem, Eq (5) was transformed

to Eq (6) using a Taylor series.

BPð2Þ ¼
XN� 1

i¼1

XnðiÞ

k¼1

RIðkÞ

10ðN � iÞ
log

2

XnðiÞ

k¼1

RIðkÞ=10ðN � iÞ
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 !2
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Physicochemical property feature (PHY). The physicochemical property feature was

constructed based on the formula used in research on prediction of DNA-binding proteins

[11], prediction of RNA-binding proteins [42] and functional classification in proteins [43].

Eight physicochemical properties, including hydrophobicity, polarity, polarizability, charge,

surface tension, secondary structure, solvent accessibility and normalized Van der Waals vol-

ume, were used. Each physicochemical property divided the 20 types of amino acids into three

groups. Then, the three descriptors, composition index (C), transition index (T) and distribu-

tion index (D), were introduced by the work of Dubchak et al.[44] to represent each physico-

chemical property. The composition index was calculated by the number of a certain property

divided by the length of the query protein. The transition index was obtained by dividing the

number of amino acids with a certain property followed by amino acids of a different property

by the length of the query protein minus one. The distribution index measures the percent of

the length of a query protein within which the first 25%, 50%, 75% and 100% of the amino acid

of a particular property are located, respectively. Each physicochemical property generated a

feature vector with a dimension of 21, thus the physicochemical property feature has a vector

with dimension 168.

Evaluation method

Cross-validation is a reliable method to test the performance of a new prediction model. We

used five-fold cross-validation to evaluate our model. In five-fold cross-validation, the dataset

was randomly divided into five parts. The evaluations were conducted five times using four

parts as the training dataset to construct a classifier and the remaining part as the test dataset

to evaluate the performance. The performance of each model was computed as the average of

the five runs.

In this work, four performance measures, namely accuracy (ACC), sensitivity (SE), specific-

ity (SP), and Matthew correlation coefficient (MCC) [45], were calculated to evaluate the pre-

diction performance.

The accuracy is defined as Accuracy ¼ TPþTN
TPþFPþTNþFN, which evaluates the overall percentage

of DNA-binding proteins and non-binding proteins that were correctly predicted. The sensi-

tivity is defined as Sensitivity ¼ TP
TPþFN, which evaluates the percentage of DNA-binding proteins

that were correctly predicted as DNA-binding ones.

The specificity is defined as Specificity ¼ TN
TNþFP, which evaluates the percentage of non-

binding proteins that were correctly predicted as non-binding ones.The MCC is a statistical

DNABP
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parameter that assesses the quality of the binary classification and is defined as MCC ¼
TP�TN� FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFPÞðTNþFNÞðTPþFNÞðTNþFPÞ
p . where TP, TN, FP, and FN represent the number of true positive,

true negative, false positive and false negative results, respectively. An MCC equal to 1 indicates

that the model has a perfect prediction performance and MCC close to 0 indicates that the

model has a random prediction performance.

Random forest classifier

A random forest (RF) is an ensemble of a large number of classification trees. Each tree in the

ensemble is trained on a subset of training instances that are randomly selected from the given

training set. At each node, the best split is chosen from a set of variables selected at random

from the set of input features. The prediction results of the RF classifier are based on the

ensemble of those decision trees and each tree gives a classification result. Finally, the RF clas-

sifier selects the prediction result that has the largest number of votes from the classification

results. The RF R package [46] was used to implement the RF algorithm.

Feature selection

The main purpose of feature selection is to remove the least used features from the original fea-

ture to improve the prediction performance. In this work, we used the mRMR method com-

bined with IFS to select the prominent features that identify the positive instances from

negative ones. The mRMR-IFS method has been used successfully to select important features

in several classification studies [47–54].

The mRMR algorithm is a sequential forward selection algorithm first proposed by Peng

et al to process microarray data [55]. Each feature selected by the mRMR algorithm has the

maximal relevance with target class and the minimal redundancy with other features. A

detailed description of the mRMR algorithm can be found in the literature [55], and the

mRMR program can be obtained from the website http://penglab.janelia.org/proj/mRMR/.

After the mRMR procedure, the mRMR feature set contained all features. The more promi-

nent features obtained by mRMR algorithm have smaller orders. The IFS step was then used to

determine the optimal set of features. Each feature in the mRMR feature set was added one by

one from the first to the last. Therefore, N feature subsets were obtained if the mRMR feature

set had N features. For each feature subset, an RF was constructed and evaluated by five-fold

cross-validation. The IFS scatter plot was drawn with the number of feature subsets as its x-

axis and corresponding MCC values as the y-axis. We chose the optimal feature subset when

the IFS scatter plot reached a peak.

The steps of the DNABP method

The following steps were performed and are described as follows:

1. The protein sequence data were collected form the UniProt database.

2. The collected protein sequence data were preprocessed and assigned class labels.

3. The protein sequences were converted to feature vectors.

4. The optimal feature subset was obtained using mRMR-IFS.

5. The RF prediction model was constructed based on the optimal features.

6. The RF prediction model was evaluated.

A detailed flowchart of our work is shown in Fig 1.

DNABP
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Fig 1. Workflow of DNABP

doi:10.1371/journal.pone.0167345.g001
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Results and Discussion

The performance of DNA-binding protein prediction

Based on the Mainset, the different DNA-binding protein prediction models were constructed

by RF and various features. The prediction performance of each model was evaluated using

five-fold cross-validation (see Table 1).

The classifier using RF with the PHY feature just received a 77.65% accuracy and a 0.555

MCC. When the RF classifier was combined with the PSSM-PP feature only, it obtained a

81.69% accuracy and a 0.635 MCC, which outperformed the prediction performance obtained

from the PHY feature. The classifier appending either PHY or BP and NBP features achieved

total accuracies of 82.67% and 83.68%. When we constructed classifier using RF with all of the

combination of all features, we achieved the best performance, with a 84.64% accuracy and a

0.706 MCC. The results represented that the combination of all features captured more infor-

mation to discriminate DNA-binding proteins from non-binding ones compared with a single

feature. Therefore, we implemented the mRMR-IFS algorithm to select an optimal feature sub-

set from all features, including PSSM-PP, PHY, BP and NBP.

In Table 1, it is worth noting the comparison results between prediction performances

obtained by the PSSM-PP feature with that of PSSM. Although the PSSM-PP used a signifi-

cantly lower size of 120 dimensions in the input vectors than the 400 for PSSM, the PSSM-PP

feature improved the prediction performance. This result indicated that PSSM-PP, which pro-

vides evolutionary information of the protein at the level of physicochemical properties, could

effectively distinguish DNA-binding proteins from non-binding ones. Therefore, PSSM-PP

was used as a significant feature rather than PSSM in this work.

The feature selection results obtained by the mRMR-IFS method

To identify the most prominent features and improve the prediction performance, the

mRMR-IFS method was used in this research. First, we used the mRMR method to rank a list

of 292 features for the Mainset. A small index value for a feature in this mRMR list represents a

more effective power to distinguish DNA-binding proteins from non-binding ones. Second,

we used IFS to select the optimal feature subset based on the mRMR list. The 292 different pre-

dictors were constructed by increasing the number recursively from rank one to rank 292, and

the performance of each predictor was evaluated on the Mainset. The IFS scatter plot was con-

structed by feature indices and MCC values obtained from the corresponding predictor (Fig

2). A maximum MCC value of 0.727 was obtained using the top 64 features. As seen from

Table 1, it is clear that the performance of the prediction model using those 64 features is better

Table 1. Comparison of the performances of various features using the RF algorithm based on Mainset with five-fold cross-validation

Feature ACC SE SP MCC

PSSM 0.7962 0.7602 0.8321 0.594

PSSM-PP 0.8169 0.7892 0.8445 0.635

PHY 0.7765 0.7354 0.8176 0.555

PSSM-PP+BP+NBP 0.8368 0.8101 0.8634 0.674

PSSM-PP+PHY 0.8267 0.7995 0.8539 0.654

BP+NBP+PHY 0.8040 0.7688 0.8392 0.609

ALL features 0.8464 0.8223 0.8706 0.706

64 Optimal features* 0.8690 0.8376 0.9003 0.727

*The RF-based method with the best parameter (ntree = 1000, mtry = 20)

doi:10.1371/journal.pone.0167345.t001
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than that of the prediction model using all 292 features. The 64 optimal features are shown in

Table 2. Finally, the DNABP model for predicting DNA-binding proteins was constructed by

the RF algorithm using the 64 optimal features.

Comparison with other research on DNA-binding proteins

There are several studies on the prediction of DNA-binding proteins using sequence informa-

tion [4–14]. To the best of our knowledge three methods, namely enDNA-Port [11], iDNA--

Prot|dis [7] and nDNA-Prot [9], were proposed recently and provide web servers to predict

DNA-binding proteins. These three methods all showed better performances when compared

with previous methods such as DNA-Prot [28], DNAbinder or iDNA-Port [56]. The predictor

enDNA-Prot (http://bioinformatics.hitsz.edu.cn/Ensemble-DNA-Prot/) identifies DNA-

binding proteins using physicochemical properties as input features and employing the

ensemble learning technique. Liu et al. constructed a predictor, named iDNA-Prot|dis (http://

bioinformatics.hitsz.edu.cn/iDNA-Prot_dis/), by incorporating the amino acid distance-pair

coupling information and the amino acid reduced alphabet profile into the general pseudo

amino acid composition (PseAAC) vector. Song et al. described the predictor nDNA-Prot

(http://ndnaprot.aliapp.com/Prediction.jsp), which is an ensemble classifier named for classi-

fying DNA-binding and non-binding proteins using the frequencies of the appearance of

every kind of amino acid and physicochemical properties as input features. We used the Test-

set to evaluate our DNABP in comparison with the other three methods mentioned above.

enDNA-Port, iDNA-Prot|dis and nDNA-Prot could predict DNA-binding proteins on the

web server; therefore, the Testset was submitted to those three web servers for prediction. As

shown in Table 3, the enDNA-Port achieved an MCC of 0.183 with 59.11% ACC, 54.19% SE

and 64.04% SP. The iDNA-Prot|dis method achieved an MCC of 0.324 with 66.01% ACC,

73.4% SE and 58.62% SP. The nDNA-Prot predicted all of the proteins as non-binding pro-

teins, therefore the nDNA-Prot achieved an MCC of 0 with 50% ACC, 0% SE and 100% SP. To

obtain the performance of our DNABP, the process of constructing the prediction model was

repeated based on the Trainset, and then predicted the DNA-binding proteins in the Testset.

Fig 2. The IFS curve showing MCC values plotted against feature numbers. The maximum MCC value was

0.727 when the top 64 features were selected.

doi:10.1371/journal.pone.0167345.g002
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Table 2. The optimal 64 features for the prediction of DNA-binding proteins

Rank Feature p-value

1 PSSM-PP of ARG in the protein sequence for the pKa values of amino group 0.00001768

2 BP(2) 0.00002050

3 PSSM-PP of TYR in the protein sequence for the pKa values of carboxyl group 0.00003429

4 PHY of the solvent accessibility of the composition index for group 2 0.00003553

5 PSSM-PP of GLN in the protein sequence for the electron-ion interaction

potential

0.00006525

6 PSSM-PP of ARG in the protein sequence for the molecular mass 0.00006760

7 PSSM-PP of SER in the protein sequence for the pKa values of carboxyl group 0.00007535

8 PSSM-PP of MET in the protein sequence for the pKa values of amino group 0.00009378

9 BP(1) 0.00015372

10 PHY of the hydrophobicity of the composition index for group 2 0.00019227

11 PSSM-PP of ASN in the protein sequence for the pKa values of amino group 0.00020420

12 PHY of the secondary structure of the distribution index of 75% for group 3 0.00022754

13 PHY of the secondary structure of the composition index for group 2 0.00023748

14 PSSM-PP of THR in the protein sequence for the Wiener index 0.00026525

15 PSSM-PP of SER in the protein sequence for the molecular mass 0.00026799

16 PSSM-PP of HIS in the protein sequence for the electron-ion interaction

potential

0.00028914

17 PSSM-PP of GLN in the protein sequence for the molecular mass 0.00032150

18 PHY of the solvent accessibility of the distribution index of 50% for group 1 0.00032208

19 PSSM-PP of ARG in the protein sequence for the pKa values of carboxyl group 0.00033437

20 PHY of the hydrophobicity of the distribution index of 75% for group 2 0.00035738

21 PHY of the hydrophobicity of the distribution index of 50% for group 2 0.00036935

22 PHY of the secondary structure of the transition index for group 1 0.00038636

23 PSSM-PP of TRP in the protein sequence for the molecular mass 0.00041504

24 PSSM-PP of HIS in the protein sequence for the molecular mass 0.00043729

25 PSSM-PP of ARG in the protein sequence for the Wiener index 0.00049554

26 PSSM-PP of LYS in the protein sequence for the pKa values of amino group 0.00050351

27 PSSM-PP of PRO in the protein sequence for the pKa values of carboxyl group 0.00050751

28 PHY of the surface tension of the distribution index of 75% for group 2 0.00051977

29 PSSM-PP of THR in the protein sequence for the pKa values of amino group 0.00058123

30 PSSM-PP of THR in the protein sequence for the pKa values of carboxyl group 0.00058488

31 PSSM-PP of HIS in the protein sequence for the pKa values of amino group 0.00061484

32 PHY of the charge of the distribution index of 100% for group 2 0.00062851

33 PHY of the polarizability of the transition index for group 1 0.00064670

34 PSSM-PP of GLU in the protein sequence for the pKa values of carboxyl group 0.00065977

35 PSSM-PP of PHE in the protein sequence for the pKa values of amino group 0.00066767

36 NBP(2) 0.00067536

37 PSSM-PP of ASN in the protein sequence for the pKa values of carboxyl group 0.00069458

38 PHY of the solvent accessibility of the transition index for group 3 0.00070656

39 PHY of the polarity of the transition index for group 2 0.00072207

40 PSSM-PP of TYR in the protein sequence for the pKa values of amino group 0.00072656

41 PHY of the hydrophobicity of the distribution index of 50% for group 3 0.00073102

42 PHY of the hydrophobicity of the distribution index of 75% for group 1 0.00074980

43 PSSM-PP of VAL in the protein sequence for the pKa values of amino group 0.00075765

44 PSSM-PP of GLY in the protein sequence for the pKa values of amino group 0.00076497

45 PSSM-PP of GLY in the protein sequence for the electron-ion interaction

potential

0.00081140

(Continued )
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The ACC, SE and SP of DNABP prediction were 0.7315, 0.6847 and 0.7241, respectively,

which resulted in an MCC value of 0.409. The results indicated clearly that our DNABP model

achieved the best performance and demonstrates the superiority of our DNABP method, both

in feature extraction and selection, compared with the other three methods.

In this research, we constructed DNABP model based on the Mainset dataset which is dif-

ferent from the benchmark dataset Xu et al. used to establish enDNA-Prot model [11]. Then

the question is that whether a DNABP model constructed based on the benchmark dataset

would achieve better performance than the enDNA-Prot model. Therefore, a new DNABP

model was trained based on benchmark dataset using 64 optimal features with RF algorithm

and test on two independent datasets used in the research of Xu et al. When test on indepen-

dent dataset1, DNABP model reached accuracy, sensitivity, specificity and Matthew correla-

tion coefficient equal to 89.56%, 89.02%, 90%, and 0.789, respectively. While the enDNA-Prot

model achieved accuracy, sensitivity, specificity and Matthew correlation coefficient equal to

84.62%, 73.18%, 94% and 0.7, respectively [11]. When test on independent dataset2, the pre-

diction performance of our DNABP model is also outperforms that of enDNA-Prot model

(See Table 4). Those results show that our DNABP method superior to the enDNA-Prot

method.

Table 2. (Continued)

Rank Feature p-value

46 PHY of the charge of the transition index for group 3 0.00081304

47 PSSM-PP of ILE in the protein sequence for the pKa values of amino group 0.00083573

48 PHY of the hydrophobicity of the transition index for group 1 0.00090222

49 PSSM-PP of ASN in the protein sequence for the molecular mass 0.00095262

50 PSSM-PP of TRP in the protein sequence for the pKa values of amino group 0.00096390

51 PSSM-PP of TYP in the protein sequence for the Wiener index 0.00096746

52 PHY of the polarity of the distribution index of 75% for group 3 0.00098588

53 PSSM-PP of LYS in the protein sequence for the electron-ion interaction

potential

0.00098960

54 PSSM-PP of MET in the protein sequence for the pKa values of carboxyl group 0.00176958

55 PHY of the hydrophobicity of the distribution index of 100% for group 1 0.00318856

56 PHY of the charge of the composition index for group 3 0.00648432

57 PSSM-PP of GLN in the protein sequence for the pKa values of amino group 0.00961556

58 PHY of the charge of the distribution index of first for group 2 0.01480051

59 PHY of the surface tension of the transition index for group 3 0.02073781

60 PSSM-PP of ASP in the protein sequence for the molecular mass 0.04208745

61 PSSM-PP of ALA in the protein sequence for the pKa values of carboxyl group 0.05963021

62 PSSM-PP of LYS in the protein sequence for the number of lone electron pairs 0.07794997

63 PSSM-PP of ARG in the protein sequence for the electron-ion interaction

potential

0.10816428

64 PHY of the solvent accessibility of the distribution index of 100% for group 1 0.15849621

doi:10.1371/journal.pone.0167345.t002

Table 3. The performance of DNABP, enDNA-Port, iDNA-Prot|dis and nDNA-Prot based on the Testset

Method ACC SE SP MCC

DNABP 0.7315 0.6847 0.7241 0.409

enDNA-Port 0.5911 0.5419 0.6404 0.183

iDNA-Prot|dis 0.6601 0.7340 0.5862 0.324

nDNA-Prot 0.5000 0.0000 1.0000 0.000

doi:10.1371/journal.pone.0167345.t003
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The feature selection results

Based on the mRMR-IFS method, we selected 64 features as the optimal feature subset from

292 original features. The 64 features outperformed all 292 features for distinguishing DNA-

binding proteins from non-binding ones. The 292 features are divided into three types:

PSSM-PP, BP/NBP and PHY and the number of each type of feature in the optimal feature

subset is shown in In recent years, rapid advances in genomic and proteomic techniques have

generated numerous DNA-binding protein sequences. In 2014, the number of DNA-binding

proteins in the UniProt database was more than 10 times greater than that in 2000. These large

amounts of data provide the foundation for research on the identification of DNA-binding

proteins using computational approaches. Fig 3A. There are 38 PSSM-PP features, three BP/

NBP features and 23 PHY features in the optimal features subset. Therefore, in the optimal

subset, the number of PSSM-PP features is the highest and the number of BP/NBP features is

the lowest. Considering that the number of each type of feature is different, we calculated the

proportion of each type of selection feature for the corresponding type of feature. As shown in

Fig 3B, we found that although the number of BP/NBP features in the optimal feature set was

the lowest (3), the selection proportion of BP/NBP features was the highest (75%). This result

indicated that BP/NBP features play an important role in the prediction of DNA-binding pro-

teins. The number of PSSM-PP features is lower than the number of PHY features in the origi-

nal feature set, while the number of PSSM-PP features is higher than the number of PHY

features in the optimal feature subset. Thus, PSSM-PP features have the second largest selec-

tion proportion and PHY features have the smallest selection proportion. This result indicated

Table 4. Comparison of the performances of DNABP and enDNA-Prot based on various test dataset

Model Test dataset ACC SE SP MCC

DNABP Independent dataset1 0.8956 0.8902 0.9000 0.789

enDNA-Prot* Independent dataset1 0.8462 0.7318 0.9400 0.70

DNABP Independent dataset2 0.8599 0.8571 0.8626 0.720

enDNA-Prot* Independent dataset2 0.8171 0.8455 0.7905 0.64

*The results are obtained from reference [11]

doi:10.1371/journal.pone.0167345.t004

Fig 3. (a) Feature distribution for the 64 optimal features. (b) The selection proportion of each type of feature.

doi:10.1371/journal.pone.0167345.g003
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that PSSM-PP features are more effective than PHY features in distinguishing DNA-binding

proteins from non-binding ones. Taken together, these results proved that the results obtained

in Table 1 are reliable. We also investigated the statistical significance of the differences for

these features between DNA-binding proteins and non-binding proteins on the Mainset. The

p-values of a two-sample t-test were calculated and are shown in Table 2. A small p-value indi-

cated greater separation and large p-values indicated less separation. As seen from Table 2, 53

out of 64 (53/64 = 0.828) features have a p-value less than 0.001. This result, that 64 optimal

features selected by the mRMR-IFS method have statistically significant differences between

DNA-binding proteins and non-binding proteins, indicated that those features are useful for

separating the DNA-binding proteins from non-binding proteins and could greatly improve

the prediction performance for DNA-binding proteins.

Analysis of 64 features obtained by the mRMR-IFS method

Analysis of PSSM-PP features in 64 optimal features. Thirty-eight PSSM-PP features

were selected in the optimal features subset. Among the 38 selected PSSM-PP features, there

are 13 features constructed by the pKa values of amino groups, nine features constructed by

the pKa values of carboxyl groups, five features constructed by the electron-ion interaction

potential (EIIP), one feature constructed by the number of lone electron pairs, three features

constructed by the Wiener index and seven features constructed by the molecular mass. The

contributions of each type of physicochemical property that constitutes the PSSM-PP features

are shown in Fig 4. This result showed that among the six physicochemical properties, pKa val-

ues of the amino group and pKa values of the carboxyl group were selected the most and the

number of lone electron pairs was selected the least. This shows that the pKa values of the

amino group and pKa values of the carboxyl group play important roles in DNA-binding pro-

tein prediction and that the number of lone electron pairs contributes least to the prediction of

DNA-binding proteins, which is consistent with the result obtained in Table 2.

Analysis of BP and NBP features in the optimal features. The mRMR-IFS method

selected two BP features and one NBP feature among the 64 optimal features, which means

that only one NBP feature was not selected in the optimal feature subset. The high selection

proportion suggested that BP and NBP features contribute most to distinguish DNA-binding

Fig 4. (a) Physicochemical property distribution of the 38 PSSM-PP features that were selected in the optimal feature set. (b)

The type of amino acid distribution used to construct the 38 PSSM-PP features that were selected in the optimal feature set.

doi:10.1371/journal.pone.0167345.g004
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proteins from non-binding ones. As shown in Table 2, the p-values of BP and NBP features

between the binding proteins and the non-binding ones were much less than 0.001. This result

also indicated that BP and NBP play a vital role in discriminating between DNA-binding pro-

teins and non-binding proteins.

The BP/NBP features selected in the optimal feature subset were BP(1), BP(2) and NBP(2).

The BP(1) feature represented the information of the appearance of DNA-binding residues in

the query protein. The selection of the BP(1) feature reveals the reliability of the definition

of the BP(1) feature that DNA-binding residues should appear in the DNA-binding proteins.

BP(2) and NBP(2) represent the correlation of DNA-binding residues with DNA-binding

residues and non-binding residues with non-binding residues in the amino acid sequence,

respectively. The selection of BP(2) and NBP(2) indicated that the BP(2) and NBP(2) formulas,

which represented the spatial information in DNA-binding proteins and non-binding pro-

teins, respectively, were reliable. NBP(1) was not selected as an optimal feature, possibly

because the number of non-binding residues is greater than the number of DNA-binding

residues in the majority proteins, which would result in no statistically significant difference

between DNA-binding proteins and non-binding proteins.

Analysis of PHY features in the optimal features. Twenty-three PHY features are in the

optimal feature subset, and their distribution is shown in Fig 5. The 23 PHY features were

divided into eight types by physicochemical properties, including hydrophobicity, polarity,

polarizability, charge, surface tension, secondary structure, solvent accessibility and normal-

ized Van der Waals volume. As seen from Fig 5A, there are seven PHY features obtained from

hydrophobicity property, which was the most among the eight physicochemical properties.

The charge property and the solvent accessibility property both have four PHY features, which

were the second most among the eight physicochemical properties. These results indicated

that the three physicochemical properties were more useful for revealing the mechanisms of

DNA and protein interactions than the other five physicochemical properties. A possible

explanation could be: 1) DNA-binding residues in binding proteins should cluster on the sur-

face of the proteins to bind to DNA; therefore, binding residues would tend to be hydrophobic

residues, and the solvent accessibility property of DNA-binding residues should be stronger

than that of non-binding residues; 2) DNA-binding residues tend to be positively charged so

Fig 5. (a) Physicochemical property distribution used to construct the 23 PHY features that were selected in the optimal

feature set. (b) Distribution of the three descriptors used to construct the 23 PHY features that were selected in the optimal

feature set.

doi:10.1371/journal.pone.0167345.g005
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that they can easily interact with DNA, which is negatively charged. The polarizability property

only has one PHY feature and the normalized Van der Waals volume did not have any PHY

feature in the optimal feature subset. Thus the polarizability and the normalized Van der

Waals volume contributed least to distinguishing DNA-binding proteins from non-binding

ones.

The 23 PHY features were divided into three groups by the descriptors, which are composi-

tion index (C), transition index (T) and distribution index (D). As shown in Fig 5B, the C

index has four PHY features, the T index has seven PHY features and the D index has 12 fea-

tures among the 23 PHY features in the optimal feature subset. Each physicochemical property

generated 21 PHY features and the C index generates three PHY features, the T index gener-

ates three PHY features and the D index generates 15 PHY features. Although the D index has

the most features in the optimal feature subset, the selection proportion of the D index is the

least (10% (12/(15�8)). The selection proportion of the T index is the most among the three

descriptors (29.2% (7/(3�8)), which suggested that the T index contributed most to predicting

DNA-binding proteins.

The reliablility of negative samples in the Mainset

As mentioned in “Dataset” section, the mainset was comprised by 7131 non-binding proteins

randomly selected from the negative dataset and all of the the 7131 DNA-binding proteins in

the positive dataset. The question arises then, whether the random selection of different dataset

of 7131 non-binding proteins would change the prediction performance. Therefore other four

randomly selected datasets of non-binding proteins was used to construct the DNABP model.

Four dataset of 7131 non-binding proteins randomly selected from the negative dataset were

respectively combined with 7131 DNA-binding proteins in the positive dataset and form four

main dataset named Mainset_1, Mainset_2, Mainset_3 and Mainset_4. The predicton perfor-

mances of DNABP models which built respectively from four main datasets using the RF algo-

rithm with all of the 292 features were list in Table 5. The performance of four DNABP models

which built from four different main datasets were very similar to the performance which

obtained from Mainset. The result shows that the 7131 negative samples in Mainset is reliabil-

ity to constructed DNABP model.

Web server

Based on the 64 optimal features selected by the mRMR-IFS method, a web server DNABP

was developed to identify DNA-binding proteins from amino acid sequences. DNABP is freely

available at http://www.cbi.seu.edu.cn/DNABP/. On the DNABP web page, users can submit

an amino acid sequence in FASTA format. The DNABP model was established using the RF

algorithm on the Mainset. The RF algorithm is implemented using the R package [46]. After

submitting the query sequence, the DNABP web server returns a quick prediction result that is

sent to the user by e-mail. The DNABP server also returns the binding information of each

Table 5. Comparison of the performances of various dataset using the RF algorithm based on 292 features with five-fold cross-validation

Dataset ACC SE SP MCC

Mainset 0.8464 0.8223 0.8706 0.706

Mainset_1 0.8443 0.8260 0.8626 0.689

Mainset_2 0.8527 0.8547 0.8507 0.705

Mainset_3 0.8436 0.8446 0.8425 0.687

Mainset_4 0.8612 0.8622 0.8602 0.722

doi:10.1371/journal.pone.0167345.t005

DNABP

PLOS ONE | DOI:10.1371/journal.pone.0167345 December 1, 2016 16 / 20

http://www.cbi.seu.edu.cn/DNABP/


residue, which is predicted by DNABR when the query protein is predicted as the DNA-bind-

ing protein.

Conclusions

To predict the DNA-binding proteins using sequence information, we proposed a new and

useful method, DNABR, which combines an RF algorithm and an mRMR-IFS feature selection

method. The method has novel features, including evolutionary information that combines

conservation information with the physicochemical properties of amino acids (PSSM-PP),

binding propensity measures (BP) and non-binding propensity measures (NBP). The results

proved that these features markedly improved the predictions. The mRMR-IFS feature selec-

tion method was implemented to obtain the optimal feature subset. The RF model with the

novel optimal feature subset selected from the hybrid feature set, including PSSM-PP, PHY,

BP and NBP, achieved excellent performance with 86.90% accuracy, 83.76% sensitivity,

90.03% specificity and an MCC of 0.727. A comparison between DNABP and other prediction

methods indicated that our DNABP method is currently the most effective method to predict

DNA-binding proteins using only sequence information. A web server named DNABP

(http://www.cbi.seu.edu.cn/DNABP/) has been developed to aid the use of the DNABP model

to predict DNA-binding proteins.
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