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Abstract

Background

Despite significant advances in quantitative neuroimaging, the diagnosis of ALS remains

clinical and MRI-based biomarkers are not currently used to aid the diagnosis. The objective

of this study is to develop a robust, disease-specific, multimodal classification protocol and

validate its diagnostic accuracy in independent, early-stage and follow-up data sets.

Methods

147 participants (81 ALS patients and 66 healthy controls) were divided into a training sam-

ple and a validation sample. Patients in the validation sample underwent follow-up imaging

longitudinally. After removing age-related variability, indices of grey and white matter integ-

rity in ALS-specific pathognomonic brain regions were included in a cross-validated binary

logistic regression model to determine the probability of individual scans indicating ALS.

The following anatomical regions were assessed for diagnostic classification: average grey

matter density of the left and right precentral gyrus, the average fractional anisotropy and

radial diffusivity of the left and right superior corona radiata, inferior corona radiata, internal

capsule, mesencephalic crus of the cerebral peduncles, pontine segment of the corticosp-

inal tract, and the average diffusivity values of the genu, corpus and splenium of the corpus

callosum.

Results

Using a 50% probability cut-off value of suffering from ALS, the model was able to discrimi-

nate ALS patients and HC with good sensitivity (80.0%) and moderate accuracy (70.0%) in

the training sample and superior sensitivity (85.7%) and accuracy (78.4%) in the indepen-

dent validation sample.
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Conclusions

This diagnostic classification study endeavours to advance ALS biomarker research

towards pragmatic clinical applications by providing an approach of automated individual-

data interpretation based on group-level observations.

Introduction

Amyotrophic Lateral Sclerosis (ALS) is a relentlessly progressive neurodegenerative condition.

The average diagnostic delay from symptom onset to definite diagnosis is 12 months, which

not only delays neuroprotective treatment, recruitment to pharmaceutical trials, multidisci-

plinary interventions and care planning, but misdiagnosis of ALS to other conditions may lead

to unnecessary interventions [1, 2]. Factors contributing to diagnostic delay in ALS include

disease heterogeneity, insidious symptom onset, and presentation with non-motor symptoms.

While research protocols can reliably capture genotype, and phenotype-specific changes in

ALS, [3] the role of magnetic resonance imaging in clinical practice remains limited to the

exclusion of intracranial and spinal pathology which may mimic ALS. Contrary to the qualita-

tive approach used in clinical radiology, the majority of quantitative ALS studies are based on

group-level analyses, and rely either on comparative interpretation or correlations with clinical

variables. [4–6] In recent years however, there has been an increased interest in the diagnostic

classification of individual MRI data sets.

Machine-learning and support vector machine classifier-analyses [7, 8] have been increas-

ingly applied to neurodegenerative conditions [9] including ALS. [10] Reports on the diagnos-

tic sensitivity of diffusion-tensor imaging (DTI) alone are inconsistent. A meta-analysis of 11

DTI studies, including 221 ALS patients and 187 healthy control subjects, suggested that the

diagnostic accuracy of corticospinal tract DTI alone may be insufficient. [11] Smaller studies

on the other hand, reported relatively good specificity and sensitivity based on the discrimi-

nant analyses of diffusivity measures.[12] Functional magnetic resonance imaging studies in

ALS achieved over 71% diagnostic accuracy using a support-vector machine approach. [10]

With few exceptions, [13] the commonest shortcomings of these studies include reliance on a

single imaging measure, evaluation of a single anatomical structure and a categorical classifica-

tion outcome instead of probability values. Additionally, classification studies often restrict

their discriminating features to significant voxels only, rendering their model sample-specific

i.e. overfitting and hindering model generalisability. Moreover, classification models are sel-

dom cross-validated in an independent sample.

Based-on the available literature, we hypothesised that the diagnostic accuracy of a classifi-

cation models may be increased by incorporating multiple imaging indices of multiple dis-

ease-defining anatomical structures, and that instead of binary categorical classification, it is

feasible to provide a diagnostic probability scores. Accordingly, the objective of this study was

to develop a robust, imaging based automatic diagnostic protocol, which determines the prob-

ability of a single MRI data set representing changes consistent with ALS.

Methods

All participants provided written, informed consent in accordance with the Medical Ethics

Approval of the research project (Ethics (Medical Research) Committee—Beaumont Hospital,

Dublin, Ireland).
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Overview

Imaging data were divided into a “training sample” to develop the probability algorithm, and a

“validation sample” to assess its generalisability. (Fig 1) Discriminating input features were

selected based on group comparisons between patients and controls in the training sample.

The selected features were adjusted for age-related differences [14]. A binary logistic regression

analysis was then conducted. The resulting algorithm was validated in the independent “vali-
dation sample” and further assessed based on follow-up scans of the same participants. The

sensitivity, specificity and accuracy of this approach were evaluated in each sub-cohort

separately.

Participants

This study incorporates imaging data from 147 participants; 81 patients with ALS and 66

healthy controls (HC). All participating patients had probable or definite ALS according to the

revised El Escorial criteria. [15] Patients with a co-morbid diagnosis of frontotemporal demen-

tia according to the Rascovsky Criteria were excluded because of the confounding effects of

imaging changes associated with this phenotype. [16, 17] 75% of the data were randomly allo-

cated to the “training sample” and 25% to the “validation sample”. Participants of the “valida-
tion sample” were rescanned longitudinally to assess the effect of disease duration of diagnostic

accuracy. We refer to this cohort as “follow-up validation sample”. The demographic profile of

each cohort is presented in Table 1.

Fig 1. The flowchart of the development and evaluation of the diagnostic classification protocol.

doi:10.1371/journal.pone.0167331.g001

Table 1. Demographic and clinical data of participants.

Training Sample Validation Sample Follow-up Validation Sample

ALS HC p-values ALS HC p-values ALS HC p-values

n 60 50 21 16 21 15

Male sex, n 39 24 p = .1 10 6 p = .74 12 9 p = .86

Age, y(mean/SD) 59.9(10.88) 60.6 (8.8) p = .68 62.5 (10.5) 60.6 (9.4) p = .56 62.9 (10.4) 61.6 (9.2) p = .69

Handedness(right/left) 52/ 8 47/ 3 p = .33 19 /2 14/ 2 p = .77 19/2 13/2 p = .72

Disease Duration months (mean/SD)* 26.1(19.5) 20.6 (15.9) 25.8 (15.6)

Site of onset(bulbar/spinal/ respiratory) 19/ 40/1 6/15/0 6/15/0

ALSFRS-R(mean, SD) 38.2 (6.2) 39 (7) 35.3(8.2)

Interval between scans months (mean/ SD) 5.3 (1.5) 4.2 (0.8) p< .05

* Disease duration from symptom onset until date of scan

doi:10.1371/journal.pone.0167331.t001
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Imaging data acquisition

MR data were acquired on a 3 Tesla Philips Achieva system with a gradient strength of 80 mT/

m and slew rate of 100 T/m/s using an 8-channel receive-only head coil. T1-weighted images

were obtained using a three-dimensional inversion recovery prepared spoiled gradient recalled

echo (IR-SPGR) sequence with FOV = 256×256×160 mm, spatial resolution = 1 mm3, TR/

TE = 8.5/3.9 ms,TI = 1060 ms, flip angle = 8˚, SENSE factor = 1.5. DTI images were acquired

using a spin-echo planar imaging (SE-EPI) sequence with a 32-direction Stejskal-Tanner diffu-

sion encoding scheme: FOV = 245 x 245 x 150 mm, spatial resolution = .5 mm3, 60 slices with

no interslice gap, TR/TE = 7639 / 59 ms, SENSE factor = 2.5, b-values = 0, 1100 s/mm2, with

SPIR fat suppression and dynamic stabilisation in an acquisition time of 5 min 41 s.

Imaging data analysis

Training sample. Discriminatory features were selected based on comparative analyses in

the training sample. Raw imaging data were pre-processed (described below) and comparisons

between patients and controls were adjusted for age, gender and disease duration to identify

brain regions affected early during the course of the disease independently of age and gender. [18]

The affected brain regions identified by these analyses were anatomically segmented and imaging

measures from these masks were retrieved to serve as input data for the classification model.

Grey matter (GM) analyses. A voxel-based morphometry type analysis was carried out

using FSL. [19] Images were brain-extracted, tissue-types were segmented and aligned to the

Montreal Neurological Institute 152 standard space using non-linear registration. A study-spe-

cific template was created including 16 randomly selected ALS patients and 16 age- and gen-

der- matched healthy controls (ALS: male = 8, mean age = 62.9 years ± 9.3; HC: male = 8,

mean age = 62.3 years ± 9.3; p = .85). All native grey matter images were then non-linearly reg-

istered to the study-specific template and modulated to correct for focal contractions and

enlargement due to the non-linear component of the spatial transformation. An isotropic

Gaussian kernel (σ = 3 mm) was used to smooth the modulated grey matter images. Voxel-

wise generalised linear models and permutation-based non-parametric testing (10,000 permu-

tations) were applied to determine differences between ALS patients and healthy controls

using age, gender and disease duration as covariates. A trend of difference was identified in the

precentral gyrus between patients and controls based on the Harvard-Oxford atlas [20] at p<

.15, corrected for multiple comparisons using family-wise error (FWE). Fig 2 The grey matter

feature of the classification model was defined based on the location of these discriminatory

voxels. As laterality and focality of motor cortex pathology defines motor disability in ALS [4,

21], the precentral gyrus mask of the Harvard-Oxford atlas [20] was split into left and right

hemispheric regions and fed into the classification model separately.

White matter (WM) analyses. Diffusion weighted image pre-processing included eddy

current corrections, motion corrections, and brain-tissue extraction in FSL. [22] A diffusion

tensor model was fitted at each voxel, generating maps of fractional anisotropy (FA), mean dif-

fusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Each dataset was aligned to

the FMRIB58_FA standard space image. Each subject’s aligned FA data was then projected

onto the mean FMRIB58_FA skeleton representing the common white matter tracts and the

resulting data were subsequently fed into voxel-wise cross-subject statistics. ALS patients were

compared with healthy controls controlling for age, gender and disease duration, using a

voxel-based generalised linear model and permutation-based non-parametric testing with

10,000 permutations. The threshold-free cluster enhancement (TFCE) method [23] was

applied and the significance level was set at p< .01, corrected for multiple comparisons using

family-wise error (FWE) method. Significant group differences were identified in the corpus
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callosum and along the corticospinal tracts in FA and RD at p< .01 (FWE), (Fig 2) but not in

MD or AD.

Analogous to the GM analyses, discriminatory “features” were defined as the anatomical

regions which included statistically significant voxels in the patients versus controls contrasts.

The FSL JHU atlas was used for spatial segmentation, which consists of 48 white matter tracts

labels created based on the diffusion tensor maps from 81 subjects. [24] The region of interest

map for the corona radiata was manually created.

Based on the above comparative analyses, the following white matter structures were

selected as input features for the classification algorithm (Fig 2): the genu (gCC), the body

(bCC) and the splenium (sCC) of the corpus callosum, the inferior corticospinal tracts (iCST)

in the pons, the mesencephalic cruri (ME) of the cerebral peduncles, the internal capsule (IC),

the inferior corona radiata (iCR) and the superior corona radiata (sCR). With the exception of

the midline corpus callosum segments, the left and right hemispheric segments of the corti-

cospinal tracts were included separately, resulting in 26 white matter features in total: FA and

RD of the gCC, bCC, sCC, left iCST, right iCST, left ME, right ME, left IC, right IC, left iCR,

right iCR, left sCR, right sCR.

Validation Sample. The pre-processing steps of the “independent validation sample” were

analogous to the pre-processing pipeline of the “training sample”. For grey matter analyses,

Fig 2. Feature selection. Left (VBM): Grey matter. Affected cortical regions at p<0.15 FWE are displayed in red, and the corresponding anatomical label, the

precentral gyrus is shown in green. Middle and Right (DTI): White matter. Factional anisotropy (FA—Top) and Radial diffusivity (RD–Bottom) group

comparison results are shown in red at p<0.01 FEW-TFCE. The corresponding anatomical labels colour coded as follows: dark green—lateral fibres of the

corona radiata, blue—body of the corpus callosum, turquoise—genu of the corpus callosum, purple–splenium of the corpus callosum, bright yellow–inferior

corona radiata, green—internal capsule, beige—mesencephalic cruri of the cerebral peduncles, grey–inferior corticospinal tracts in the pons.

doi:10.1371/journal.pone.0167331.g002
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data from each subject was co-registered to the template of the “training sample”. The same

smoothing kernel was applied (σ = 3 mm) and the “feature” masks described above were used

to extract average grey matter density values from the left and right precentral gyrus.

For white matter analyses, the data from each subject was co-registered to the FMRI-

B58a_FA standard space image. The above described gCC, bCC, sCC, left iCST, right iCST,

left ME, right ME, left IC, right IC, left iCR, right iCR, left sCR, right sCR white matter masks

were used to extract average FA and average RD values from each pathognomonic white mat-

ter region.

Removal of nuisance variability. To account for age-related differences, a linear regres-

sion model was fitted to the values of each feature in the control group using age as an inde-

pendent variable. In order to prevent the removal of disease-specific changes, only control

data was used. This approach has been previously described to increase classification accuracy.

[14, 25]

Binary logistic regression. A binary logistic ridge regression model was utilised based on

all age-corrected ALS-specific features and designating group as the outcome variable. The sta-

tistical software R and the package ‘glmnet’ (α = 0) [26] was utilised to carry out the logistic

regression. The tuning parameter λ was selected based on ten-folded cross-validation which

was repeated 100 times. The hyperparameter lambda was determined only using the training

data. The model with the smallest misclassification error averaged over the 100 estimations

was selected.

Results

Binary logistic regression

The predicted probability profile of individual participants to exhibit ALS-specific changes is

displayed in Figs 3–5. The classification results in the training and the validation samples are

shown in Table 2 using a probability cut-off of 50%.

Misclassification

The demographic profiles of misclassified individuals in the “Training Sample” and “Valida-
tion sample” are presented in Table 3, Table 4, and Table 5. The same patients and controls

were misclassified in the “Validation sample” and in the follow-up “validation sample”.

Discussion

Classification methods and imaging biomarkers are increasingly used in medicine, and are

particularly well integrated into clinical decisions in oncology and Alzheimer’s disease. Bio-

marker development in ALS yielded mostly to descriptive results to date, but the establishment

of multi-centre data repositories creates a unique opportunity to test classification models in

cross-platform data sets. The main objective of this study was to develop a computer-aided

diagnostic tool based on disease-specific pathological signatures and multiple imaging mea-

sures, which provides a diagnostic probability score.

Based on the outlined multi-modal neuroimaging approach, diagnostic classification accu-

racy was achieved with good sensitivity and moderate specificity. Previous classification stud-

ies of ALS did not use an independent validation sample, but relied solely on cross-validation

within the training sample [11–13, 27–30] Validation in an independent patient cohort is

essential to demonstrate the generalisability of the model, and it also paves the way for inclu-

sion of cross-platform data sets. [31] While previous classification studies have relied on the

highly discriminatory voxels of the initial comparisons, [13] we used anatomical labels around

A Quantitative Disease-State Classification Study of Amyotrophic Lateral Sclerosis
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these regions to avoid model overfitting. This circumvents relying on maps which are uniquely

specific to the training sample. Furthermore, we selected brain regions i.e.: discriminatory ana-

tomical “features” which are affected early in the course of ALS by regressing out the effect of

disease duration. As disease duration is also a key factor in classification accuracy, we evalu-

ated diagnostic accuracy longitudinally in the independent validation cohort.

In a clinical setting, where a possible diagnosis of ALS is suspected, not only high sensitivity

values and quantitative probability outcomes are desirable, but high specificity is also para-

mount to prevent patients with mimic neurodegenerative conditions to be misclassified as

ALS. A number of mathematical classification models have been previously applied to imaging

data sets, such as random forest approaches, discriminant function analysis, Naïve Bayes classi-

fication and support vector machines [32]. The advantage of the binary logistic regression

model is that it provides probability outcomes, as opposed to categorical classification. Quanti-

tative diagnostic probability outcomes are more easily integrated in clinical decision making

Fig 3. Classification accuracy in the training sample. The probability of individual participant’s MRI data

demonstrating ALS-specific change based on the classification algorithm. Patients with ALS are represented by

filled circles, healthy controls by empty circles. Misclassified participants are displayed in red; correctly classified

participants in green.

doi:10.1371/journal.pone.0167331.g003
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alongside the gold standard assessments, such as the neurological examination and

electrophysiological testing.

The presented study is not without limitations. The study uses a standard single-platform,

single-centre approach and is not validated on data acquired from other centres. Despite

advances in cross-centre harmonisation, [31] the effect of pulse sequence differences on spatial

statistics is well established. [33] Multicentre MR studies have been successfully conducted in

Alzheimer’s disease, [34] and the cross platform calibration of the Alzheimer’s Disease Neuro-

imaging Initiative (ADNI) [35] using travelling MRI phantoms has been comprehensively

described. Despite the relatively high accuracy of our algorithm, our analysis of misclassifica-

tions suggests that young ALS patients, patients with high ALSFRS-r and short disease

duration and older controls are the most likely to be misclassified. We acknowledge that mis-

classification of patients high ALSFRS-r may have implications to establishing early-stage

diagnosis.

Fig 4. Classification accuracy in the validation sample. The probability of individual participant’s MRI data

demonstrating ALS-specific change based on the classification algorithm. Patients with ALS are represented by

filled circles, healthy controls by empty circles. Misclassified participants are displayed in red; correctly classified

participants in green.

doi:10.1371/journal.pone.0167331.g004
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The Neuroimaging Society in ALS (NiSALS) has established a large data repository which is

an ideal resource to test classification models in ALS. [36] Our study is limited to patients with

classical ALS and controls. Patients with comorbid frontotemporal dementia and mimic con-

ditions were not included. Notwithstanding the relatively modest specificity results, our data

suggest that the inclusion of additional pathognomonic regions such as basal ganglia [37, 38]

spinal cord [39, 40], or cerebellar measures [41] may increase the diagnostic accuracy of the

model further. Moreover, the inclusion of other imaging parameters such as cortical thickness

measurements, volumetrics, connectivity measures, or spectroscopy may further enhance

diagnostic models [42]. From a clinical perspective, urgent work is required to develop classifi-

cation models which can reliably identify early-stage ALS and distinguish it from mimic con-

ditions and other neurodegenerative conditions. Such models also have to include anatomical

regions which are not typically affected in ALS but are implicated in other neurodegenerative

conditions. [43] The accurate classification of overlap syndromes such as ALS-FTD may be

Fig 5. Classification accuracy in the follow-up validation sample. The probability of individual participant’s MRI

data demonstrating ALS-specific change based on the classification algorithm. Patients with ALS are represented

by filled circles, healthy controls by empty circles. Misclassified participants are displayed in red; correctly classified

participants in green.

doi:10.1371/journal.pone.0167331.g005
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particularly challenging. These conditions have a less distinctive imaging signature with fea-

tures of both ALS and FTD. The sensitivity of proposed classification models should be tested

on presymptomatic cohorts which are likely to exhibit disease-specific imaging traits long

before the manifestation of the disease. [44]

The classification methodology outlined in this study can be used beyond the initial diagno-

sis to segregate ALS phenotypes. ALS is an outstandingly heterogeneous condition encompass-

ing distinctive motor phenotypes, genotypes, [45] cognitive cohorts, [46] slow and fast

progressors. [45, 47] As these phenotypes have distinguishing imaging features, newly diag-

nosed or suspected patients could potentially be sub-phenotyped for stratification into phar-

maceutical trials. Cross-sectional MRI data have been previously evaluated for their predictive

value of clinical decline, [48] but have not been used to segregate patients with slow and fast

progression rates. Finally, classification pipelines developed for ALS are transferable to other

Table 2. Classification results using the 50% probability threshold.

Training Sample

class ALS HC

Predicted class Sensitivity 83.34%

ALS 50 24 Specificity 52.00%

HC 10 26 Accuracy 69.09%

Validation Sample

class ALS HC

Predicted class Sensitivity 90.47%

ALS 19 6 Specificity 62.50%

HC 2 10 Accuracy 78.37%

Follow-up Validation Sample

class ALS HC

Predicted class Sensitivity 85.71%

ALS 18 5 Specificity 66.67%

HC 3 10 Accuracy 77.77%

doi:10.1371/journal.pone.0167331.t002

Table 3. Comparison of correctly classified and misclassified ALS patients and controls in the training sample.

ALS Patients

True Positive False Negative p-values

N 50 10

Male sex, n 32 7 P = .72

Age, y (mean, SD) 60.66 (10.46) 56.04 (12.69) P = .30

Handedness (right/left) 44/ 6 8/ 2 P = .86

Disease duration from symptom onset until date of scan, m (mean, SD) 25.72 (16.07) 28.2 (33.01) P = .82

Type of onset, (bulbar/ spinal/respiratory) 18/ 31/ 1 1/ 9 P = .23

ALS-FRS-R (mean, SD) 37.46 (6.57) 42 (4.06) P < .01

Probability of ALS (mean, SD) 61.16 (8.44) 47.63 (1.79) P < .01

Healthy controls

True Negative False Positive p-values

N 26 24

Male sex, n 16 8 P = .08

Age, y (mean, SD) 60.34 (8.48) 60.99 (9.33) P = .80

Handedness (right/left) 25/ 1 22/ 2 P = .94

Probability of ALS (mean, SD) 56.08 (4.39) 43.08 (5.07) P < .01

doi:10.1371/journal.pone.0167331.t003
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neurodegenerative conditions where pathological change also occurs in a unique, disease-spe-

cific anatomical pattern.

Conclusions

The classification approach outlined in this study relies on assessing multiple imaging mea-

sures in multiple disease-defining anatomical regions in individual data sets to provide a diag-

nostic probability score. In an era where cross-platform harmonisation is gaining increasing

momentum and acquisition protocols constantly improve, the presented approach is likely to

lead to increasingly accurate diagnostic classification. Ultimately, imaging biomarkers in ALS

Table 4. Comparison of correctly classified and misclassified ALS patients and controls in the validation sample.

ALS Patients

True Positive False Negative p-values

N 19 2

Male sex, n 11 1 P = .83

Age, y (mean, SD) 62.96 (10.9) 57.85 (1.91) P = .10

Handedness (right/left) 17/ 2 2/ 0 P = .63

Disease duration from symptom onset until date of scan, m (mean, SD) 21.58 (16.47) 11.5 (4.95) P = .12

Type of onset, (bulbar/ spinal/respiratory) 6/ 13 0/ 2 P = .91

ALS-FRS-R (mean, SD) 38.58 (7.27) 43 (1.41) P < .05

Probability of ALS (mean, SD) 59.84 (5.87) 44.73 (5.48) P = .13

Healthy controls

True Negative False Positive p-values

N 10 6

Male sex, n 7 3 P = .42

Age, y (mean, SD) 57.44 (10.07) 65.8 (5.29) P < .05

Handedness (right/left) 9/ 1 5/ 1 P = .70

Probability of ALS (mean, SD) 44.36 (1.76) 60.53 (7.72) P < .01

doi:10.1371/journal.pone.0167331.t004

Table 5. Comparison of correctly classified and misclassified ALS patients and controls in the follow-up validation sample.

ALS Patients

True Positive False Negative p-values

N 18 3

Male sex, n 10 2 P = .72

Age, y (mean, SD) 63.44 (11.04) 56.67 (0.38) P < .05

Handedness (right/left) 17/ 1 2/ 1 P = .65

Disease duration from symptom onset until date of scan, m (mean, SD) 22.11 (16.58) 11.67 (8.14) P = .14

Type of onset, (bulbar/ spinal/respiratory) 5/ 13 1/ 2 P = .84

ALS-FRS-R (mean, SD) 38.58 (7.27) 43 (1.41) P < .05

Probability of ALS (mean, SD) 61.38 (4.69) 42.08 (6.39) P < .05

Healthy controls

True Negative False Positive p-values

N 10 5

Male sex, n 7 2 P = .58

Age, y (mean, SD) 59.35 (10.16) 65.28 (5.74) P = .17

Handedness (right/left) 9/ 1 4/ 1 P = .59

Probability of ALS (mean, SD) 40.91 (4.57) 57.34 (5.89) P < .01

doi:10.1371/journal.pone.0167331.t005
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are gradually expanding beyond their descriptive role to be developed into viable diagnostic

and prognostic markers.
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