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Abstract

The features of the asynchronous correlation between accident indices and the factors that

influence accidents can provide an effective reference for warnings of coal mining accidents.

However, what are the features of this correlation? To answer this question, data from the

China coal price index and the number of deaths from coal mining accidents were selected

as the sample data. The fluctuation modes of the asynchronous correlation between the two

data sets were defined according to the asynchronous correlation coefficients, symboliza-

tion, and sliding windows. We then built several directed and weighted network models,

within which the fluctuation modes and the transformations between modes were repre-

sented by nodes and edges. Then, the features of the asynchronous correlation between

these two variables could be studied from a perspective of network topology. We found that

the correlation between the price index and the accidental deaths was asynchronous and

fluctuating. Certain aspects, such as the key fluctuation modes, the subgroups characteris-

tics, the transmission medium, the periodicity and transmission path length in the network,

were analyzed by using complex network theory, analytical methods and spectral analysis

method. These results provide a scientific reference for generating warnings for coal mining

accidents based on economic indices.

Introduction

There is a significant correlation between work safety accidents and economic factors [1], and

in China’s coal mining industry, economic factors are the primary cause of accidents [2–4]

and can be divided into two aspects: safety investments made by associated enterprises and the

macroeconomic performance of the coal mining industry. Although safety investments are

mandated by relevant laws and regulations imposed by the government, such investments are

not effective and ignored by most Chinese coal mining enterprises when they are in conflict

with economic profits (as impacted by the coal economy). The macroeconomic performance

factor can be divided into a number of specific factors, although most of these factors have not
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been thoroughly investigated. However, the correlation rules, especially the asynchronous cor-

relation rules, between accidents and certain specific factors (e.g., coal prices) could provide a

reference for a coal mining accident pre-warning system [5,6]. Asynchronous correlations are

defined as a close relationship between two variables in asynchronous scenarios, and the time

lag between these variables could be regarded as the period of time for pre-warnings. Thus, we

can utilize economic factors to provide earlier and more accurate predictions of coal mine

accidents. Therefore, we have studied the potential rules of the asynchronous correlation

between coal prices and coal mine accidents.

In previous studies, a relationship has been observed between coal mine accident deaths

and coal industry economic factors. Statistical theories and methods have been used to con-

firm that a Granger causality [6] cointegration relationship [5] occurs between coal mine

deaths and coal prices. Coal prices have been shown to be a cause of coal mine accident deaths

based on the asynchronous correlation between the two variables. However, the sample data

selected in the research studies described above are monthly and/or annual time series data

over a large time scale, and analyzing such data is not conducive to revealing the complicated

rule changes that occur when correlating non-stationary and fluctuating time series data, such

as coal prices and death tolls. In addition, the time lag of the mutual influence between prices

and deaths has not been considered; thus, the influence of the time intervals and periodicity

have not been estimated [7,8]. To date, warnings and preventive measures for coal mine acci-

dents have not been applied in accordance with changes in coal prices. Hence, we aimed to

study the features of the asynchronous correlation between coal prices and accident deaths on

a smaller time scale. How does the asynchronous correlation between coal prices and coal

mine deaths change, and which change patterns have a greater impact? How do different asyn-

chronous correlation types influence each other? When one of the asynchronous correlation

types changes, which type will play the intermediary role? What are the transmission rules,

paths and distances among the variations of the asynchronous correlation as it fluctuates? To

answer these questions and reveal the complex features of the asynchronous correlation, gen-

eral statistical methods and time series models are not suitable. The theory of complex network

aims to analyze the relationship between the elements in a network model derived from a real

complex system. Visual graphic algorithms based on complex network theory were investi-

gated to transform various types of time series into networks, in which the sequence data

points and their connections over time are considered nodes and edges, respectively [9–14].

The important features and dynamic behavior of various real systems, including macroeco-

nomics, geophysics, biology, fluid science etc., can be clearly understood by studying the topo-

logical structure and related parameters of the corresponding network models [15–25]. This

theory provides new perspectives and methods for studying correlations in a number of real

systems. For example, small-world characteristics, power-law distributions, clustering effects,

etc. are found in economic systems [26–30]. Therefore, we can use the theory and method of

complex networks to analyze the asynchronous correlation between coal prices and accidental

deaths.

In this paper, we propose a method of studying the features of the asynchronous correlation

between two time series of the China coal price index and the number of coal mine accident

deaths. The China coal price index (CCPI) is a comprehensive index that provides an objective

and timely description of coal economic operations and changes in coal market environment

in China. The coal mine accidental death (CMAD) index directly reflects the status of coal

mine deaths. The above questions will be answered by defining the small-scale and asynchro-

nous correlations between two variables as different fluctuation modes and transforming these

variables into different network models. To explore the features of the asynchronous correla-

tion between the two variables, the complex network analysis method will be applied to

Asynchronous Correlation on a Complex Network

PLOS ONE | DOI:10.1371/journal.pone.0167198 November 30, 2016 2 / 18



identify the key statistical parameters, the network community characteristics and the evolu-

tion mechanisms.

Materials and Methodology

Materials

The CMAD data from 2012–2015 used in this paper were obtained from the governmental

online accident inquiry system of the State Administration of Work Safety of China (http://

media.chinasafety.gov.cn:8090/iSystem/shigumain.jsp), and the CCPI data from 2012–2015

were obtained from the official website of the Chinese National Coal Association (http://www.

coalchina.org.cn/page/zt/120712/). The data were collected from publicly available databases,

and all the data applied in this paper are freely available to other researchers.

CMAD and CCPI data from July 1, 2012 to November 8, 2015 were selected and shown in

Fig 1. Because the CCPI data are published weekly, the consistency of the time scale between

the two time series had to be ensured. Thus, we aggregated the CMAD data into weekly data,

and the two resulting series each contained 176 data points.

Asynchronous scenarios

Because the correlation between the CCPI and CMAD is not necessarily synchronous, differ-

ent asynchronous scenarios were constructed provide additional information on the asynchro-

nous correlation between the two studied variables. As shown in Fig 2, the CMAD was set as

the benchmark, and then an adjustment process was implemented by the moving the CCPI

forwards and backwards 16 weeks with a unit step of 1 week. Thus, a total of 33 asynchronous

scenarios L with different time intervals and directions were obtained (the synchronous sce-

nario is L = 0). If the CCPI moved forward, then the value of L was positive, whereas if it

moved backwards, the value was negative.

Fluctuating modes of the asynchronous correlation

To explore the features of the asynchronous correlation, the fluctuation modes were defined

by the asynchronous correlation coefficient between the CCPI and CMAD within each

Fig 1. CMAD and CCPI series data from July 1, 2012 to November 8, 2015.

doi:10.1371/journal.pone.0167198.g001
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asynchronous scenario, symbolization transition and coarse-graining process. The fluctuation

modes denoted different patterns of asynchronous correlation change.

First, based on the Pearson correlation coefficient, the time delay factor was introduced to

describe the correlation at different asynchronous scenarios. The asynchronous correlation

coefficient rL
xy was calculated to quantify the degree of correlation between x (CCPI) and y

(CMAD). The asynchronous correlation rL
xy at delay L was defined as follows:

rL
xy ¼

Pn
i¼1
ðxL

i � xLÞðyL
i � yLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxL

i � xLÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðyL

i � yLÞ
2

q ; L 2 � 16; 16½ � ð1Þ

where xL
i and yL

i are the time series values of the CCPI and CMAD, respectively, in the differ-

ent asynchronous scenarios, xL and yL are the corresponding mean values, and n is the number

of data points.

Thirty-three sets of asynchronous correlation coefficients were calculated. Fig 3A shows

that the asynchronous correlation (L = 0) between the two variables was not stationary and the

fluctuation process was nonlinear, which is consistent with the features of other asynchronous

scenarios. According to Fig 3B, the overall correlation varied among the different asynchro-

nous scenarios.

Second, based on the value of rL
xy, the asynchronous correlation was symbolized into differ-

ent types according to its ‘degree’. After calculating the proportion of 20 isometric thresholds

in the range of correlation coefficient, we discretized the correlation coefficients into 5 levels

including strong positive and negative correlation, weak positive and negative correlation and

no correlation. The symbols ACSL
i with different letters represent the corresponding degrees of

Fig 2. Construction process of the asynchronous scenarios.

doi:10.1371/journal.pone.0167198.g002
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asynchronous correlation.

ACSL
i ¼

A; rL
xy 2 ½ 0:8; 1:0 �

B; rL
xy 2 ½ 0:3; 0:8Þ

C; rL
xy 2 ð� 0:3; 0:3Þ

D; rL
xy 2 ð� 0:8; � 0:3�

E; rL
xy 2 ½� 1:0; � 0:8�;

ð2Þ

8
>>>>>>><

>>>>>>>:

Third, in the coarse-graining process, we used the method of sliding windows to divide the

asynchronous correlation coefficient sequences and symbol sequences into terms [31]. Note

that the two time scales T and ω of sliding windows 1 and 2 should be determined reasonably

and should not be too long or too short. After a comprehensive analysis, we selected the data

points for T = 3, 4, and 5 weeks as the terms and created sliding data window 1 for the correla-

tion coefficients with a sliding step of 1. Accordingly, the asynchronous correlation coefficient

sequences contained 177 − |L| − T terms. Similarly, for ω = 3, the sliding data window 2 of the

symbols could be built as terms with the same sliding step. Accordingly, the asynchronous cor-

relation coefficient sequences contained 178 − |L| − T − ω terms. Fig 4 shows the process of

defining the asynchronous correlation fluctuating modes (L = 0, T = 3, and ω = 3).

Fig 3. Correlation coefficient of the terms (L = 0) and overall correlation coefficient in the asynchronous scenarios.

doi:10.1371/journal.pone.0167198.g003
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As shown in the three sub-plots (T = 3, 4, and 5) of Fig 5, the ordinate is the proportion of

the elements in the symbol sequences and the abscissa is the asynchronous scenarios. The pro-

portion of the elements that represent no correlation (black box) increased with increases in T,

whereas the proportion of the elements representing strong correlations (bright blue and

bright red box) decreased with increases in T. For T = 5, an obvious stratification in the differ-

ent degrees of the correlation was observed. For T = 3, a significant difference was observed in

the distribution of various correlation degrees between the different asynchronous scenarios.

Asynchronous correlation fluctuating mode directed and weighted

network

The preliminary comparison and selection in the coarse-graining process identified 33

sets of asynchronous correlation fluctuation mode sequences (T = 3, ω = 3) denoted as

ACSL ¼ fACSL
i g; ðL ¼ � 16; � 15; . . . ; 16Þ. For example, the fluctuating modes evolve into

each other with time: ACS0
i ¼ fCDB! BDB! DBA!; � � � ;BEEg. To clarify the rules

underlying the development of the fluctuation modes, we constructed an asynchronous corre-

lation fluctuating mode directed and weighted network (ACFM-DWN). To minimize the pro-

portion without a correlation, 9 asynchronous correlation fluctuation mode sequences were

selected.

Fig 4. Coarse-graining process used to define the fluctuating modes (L = 0, T = 3, andω = 3).

doi:10.1371/journal.pone.0167198.g004
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By transforming the fluctuation modes and their linkages into the nodes and edges of the

networks, 9 complex network models of the CCPI-CMAD asynchronous correlation fluctua-

tion modes were established (as shown in Fig 6).

Results

As mentioned above, the 4 questions to be answered in this paper are managed by the complex

network analysis method, which provides a number of useful parameters, including the node

degree, the average path length, the clustering coefficient, and the structural hole hierarchy.

Using these parameters, the statistics, change rules and evolution mechanisms of the asynchro-

nous correlation between fluctuations in the CCPI and CMAD could be studied.

Change rules and key fluctuation modes of the asynchronous correlation

How does the asynchronous correlation between coal prices and coal mine deaths change, and

which change patterns have a greater impact? To answer these questions, a basic statistical

Fig 5. Proportion of the elements in the symbol sequence (ω = 3, T = 3, 4, and 5).

doi:10.1371/journal.pone.0167198.g005
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description and the key fluctuation modes of the asynchronous correlation should be identi-

fied. For the 9 ACFM-DWN models in Fig 6, each node denotes one fluctuation mode repre-

senting the CCPI-CMAD correlation over a small time scale. The elements of the fluctuation

mode symbol sequence were calculated statistically. Combined with the statistical results of the

frequency distribution of the symbol elements in Fig 5A, an asynchronous correlation was

observed between the CCPI and CMAD. Taking the analysis a step further, a comprehensive

perspective of each of the asynchronous scenarios indicates that the correlation types include

strong positive, strong negative, weak positive, weak negative, and even no correlation. There-

fore, the correlation between the two variables was asynchronous and fluctuating. Certain fea-

tures are briefly summarized as follows.

Fig 6. Asynchronous correlation fluctuating mode directed and weighted networks (ACFM-DWN) (T = 3,

ω = 3). N and E are the number of nodes and edges respectively in each network. The greater the transitional

impact, the larger the node in the network.

doi:10.1371/journal.pone.0167198.g006
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• In the asynchronous scenario L = 2, a strong positive correlation (with the highest frequency

of 23.84%) occurred when the CCPI lagged the CMAD by 2 weeks. The proportion of weak

positive correlations was 20.93%. Therefore, a more positive correlation occurred between

the two variables in these asynchronous scenarios.

• In the asynchronous scenarios L = −14, −12, −10, and −8, the frequencies of strong negative

correlation elements were the highest when the CMAD lagged the CCPI 14, 12, 10, and 8

weeks, and the proportions of the elements were 23.75%, 22.84%, 23.17%, and 25.30%,

respectively. Therefore, a more negative correlation occurred between the two variables in

these asynchronous scenarios.

• For the remaining 4 asynchronous scenarios, the frequency distribution of weak and no cor-

relation elements accounted for more than 58.00%, whereas the maximum was 64.00%.

Therefore, the degrees of correlation between the CCPI and CMAD in these 4 scenarios did

not accurately explain the fluctuation process.

The key fluctuation mode of the asynchronous correlation indicated the mode that had a

much higher impact in the ACFM-DWN, and fluctuation modes with a greater node strength

were more likely to have a significant impact. The statistics of node strength, based on the

transformation between modes, contains both the neighbors’ number of node and the weights

between them [32]. Thus, the key fluctuation mode of the asynchronous correlation could be

found by calculating and analyzing the node strength and the topological properties in the net-

work model. The node strength nsi is defined as the sum total of the weighted values of the

edges connected to one node, which indicates the comprehensive local information of node.

The node strength can be calculated using the following equation:

nsi ¼
X

j2Ni

wij; ð3Þ

where Ni is the total number of neighbors of node i and wij is the weight of edge from node i to

node j, which is the frequency of transformation between them. In Fig 6, larger nodes indicate

a greater node strength value.

Theoretically, there may be 125 types of fluctuation modes along with the possible combi-

nations of letters. However, approximately 90 types of modes form nodes in each model.

Table 1 shows the double logarithmic relationship between the weighted degree of the node

and the transmission probability within the 5 ACFM-DWNs (L = 2, −8, −10, −12, and −14).

The calculation indicated that the weighted degree node of the fluctuation modes in the net-

works obeys a power-law distribution [33]. In addition, the corresponding linear regression

equations and coefficients of determination (R2) were obtained. According to the characteris-

tics of the power-law distribution, we determined that these 5 networks were scale-free net-

works. Therefore, the frequencies of most of the fluctuation modes in the network models

were low, and only a small fraction had a significant impact on the fluctuation of the

Table 1. Power-law distribution in the ACFM-DWNs.

Lag Average path length Fitted equation R2

L = 2 6.732 P(k) = 2.7463 k -2.326 0.848

L = -8 6.664 P(k) = 3.1551 k -2.441 0.775

L = -10 7.027 P(k) = 1.7268 k -2.092 0.632

L = -12 6.508 P(k) = 3.0628 k -2.594 0.746

L = -14 7.402 P(k) = 4.3289 k -2.802 0.801

doi:10.1371/journal.pone.0167198.t001
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asynchronous correlation. For example, the 7 modes ABE, BBB, BAE, BEE, CAA, AED, and

EDB (shown in Fig 6B) play key roles in the fluctuation process and present a total transforma-

tion frequency of more than 16%. It means that the positive and negative correlation obviously

exist between in asynchronous scenario L = −12. The direction and degree of correlation in

key fluctuation modes generally represent the characteristic of asynchronous correlation

under the corresponding time delay. Therefore, the trends of accidents will be obtained key

fluctuation modes could be useful for determining the trends of accidents.

Community characteristics

How do different asynchronous correlation types influence each other? To answer this ques-

tion, we must determine the fluctuation rules and the fluctuation modes that play central roles.

In the fluctuation process of the CCPI-CMAD asynchronous correlation, certain fluctuation

modes interact with each other, and changes in one fluctuation mode are always controlled by

another mode. As shown in Fig 6, a certain amount of small network groups are observed in

each ACFM-DWN. Accordingly, because the community structure is one of the most impor-

tant topological properties in complex networks, it should be studied within the 5 ACFM-

DWNs (L = 2, −8, −10, −12, and −14). Due to the network models with small scale, the method

for mining the local close-knit structures with a relatively loose definition and higher resolu-

tion is needed [34–37]. In particular, a mixed method will be applied by combining the k-plex

method with the clustering coefficient.

In any subgroup explored by the k-plex method, each node has g − σ linkages with the other

nodes, where g is the number of nodes in a subgroup and σ is the adjustment parameter. With

decreases of σ and increases of g, fewer subgroups could be explored, which indicates that

there are more transformation forms of the nodes in the network [38]. The transmission prob-

ability between neighbor nodes in the subgroups can be analyzed by calculating the clustering

coefficient of each node to identify the core node in the subgroup [39]. If the clustering coeffi-

cient of node is greater in subgroup, the transformation with other nodes is more closely and

the core position is more significant.

CCi ¼
Ei

kiðki � 1Þ=2
; ð4Þ

where Ei is the number of actual shared edges between neighbor nodes and ki(ki − 1)/2 is the

maximum number of shared edges.

Table 2 shows the subgroups of the 5 ACFM-DWNs, where g = 3 and σ = 2. Three to six

subgroups were obtained within the 5 networks of the asynchronous scenarios. The clustering

coefficient of each fluctuation mode is elaborated in Table 2, which confirms each subgroup’s

correlation category and its core mode.

According to the results in Table 2, the correlation categories of the 5 subgroups (L = −14)

were diverse. Thus, in this asynchronous scenario, specific rules cannot be applied to the fluc-

tuation of the CCPI-CMAD correlation.

In addition, in the context of L = 2, three out of the five subgroups mainly showed weak

positive correlation in fluctuation, and the CCPI will change with a same trend as the CMAD.

Combined with the actual data, the CMAD stably fluctuated with fewer than 25 persons and

the CCPI slowly increased by approximately 1% after 2 weeks, whereas CMAD increased

sharply with more than 25 persons and the CCPI decreased continuously and rapidly by

approximately 2.5% after 2 weeks.

Finally, for L = −8, three subgroups were all characterized by weak negative correlations;

for L = −10, four out of six subgroups showed obvious negative correlations; and for L = −12,
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three out of five subgroups primarily showed negative correlations. Therefore, the CMAD will

follow an opposite trend from that of the CCPI when the CCPI shows an 8, 10, and 12 week

lag. A comparison of the actual data showed that for L = −8, when the CCPI declined by

approximately 0.7%, the CMAD increased by approximately 7 persons after 8 weeks; whereas

when the CCPI increased at a rate between 0.2% to 1.8%, a significant reduction of the CMAD

occurred after 8 weeks, and the CMAD was maintained at less than 11 persons. For L = −10,

when the CCPI decreased at a rate between 0.7% and 3.9%, a surge in the CMAD of 14 to 24

persons was observed after 10 weeks; whereas when the CCPI increased at a rate of approxi-

mately 1.8%, the CMAD showed a distinct reduction and remained at less than 5 persons after

8 weeks. For L = −12, when the CCPI decreased by 0.4% to 2.2%, the CMAD increases greatly

by approximately 6–20 persons after 12 weeks; whereas when the CCPI increased by 0.2%-

0.8%, the CMAD decreased and remain at approximately 4 persons after 12 weeks.

By exploring and mining the subgroups and their core modes in the networks, differences

in the correlation categories were observed among subgroups; however, frequent transforma-

tions occurred between the fluctuation modes within the same subgroup. Consequently, differ-

ent fluctuation modes did not show a disorderly transform into each other and their

transformations are centered on several modes, with each type of subgroup fluctuating around

one core mode.

Furthermore, we found that a weak positive correlation occurred between the CCPI and

CMAD with positive values of L, which was primarily because after the large and sharp

increases in the number of deaths caused by an accident, large-scale reform measures were

performed. Subsequently, the production rates in a large number of coal mining enterprises

Table 2. Subgroups in the 5 ACFM-DWNs.

Lag No. Subgroup of fluctuation mode Correlation category

L = 2 1 ABB(0.067) BBE(0.083) BBB(0.500) Weak positive correlation

2 ABB(0.067) BBA(0.167) BAB(0.050) Weak positive correlation

3 CEE(0.083) EEB(0.083) EEE(0.083) Weak negative correlation

4 ADB(0.167) DBA(0.500) BAD(0.083) Weak positive correlation

5 BCC(0.083) CCB(0.167) CBC(0.167) No correlation

L = -8 1 EDD(0.067) DDE(0.083) DDD(0.167) Weak negative correlation

2 EDD(0.067) DDA(0.024) DDD(0.167) Weak negative correlation

3 ECD(0.033) CDE(0.050) DEC(0.083) Weak negative correlation

L = -10 1 EBB(0.050) BBB(0.100) BBE(0.033) Weak positive correlation

2 BBB(0.100) DBB(0.050) BBD(0.083) Weak positive correlation

3 EEC(0.083) CEE(0.033) ECE(0.500) Strong negative correlation

4 DDA(0.083) ADD(0.033) DAD(0.083) Weak negative correlation

5 DEA(0.083) EAD(0.500) ADE(0.500) Weak negative correlation

6 EEB(0.033) BEE(0.033) EEE(0.500) Strong negative correlation

L = -12 1 BBB(0.050) EBB(0.083) BBE(0.083) Weak positive correlation

2 ECD(0.167) CDE(0.050) DEC(0.500) Weak negative correlation

3 BEE(0.024) EEE(0.050) EEB(0.050) Strong negative correlation

4 DDD(0.167) DDA(0.050) ADD(0.050) Weak negative correlation

L = -14 1 DEE(0.033) EEE(0.500) EEA(0.083) Strong negative correlation

2 BAA(0.167) AAB(0.050) AAA(0.050) Strong positive correlation

3 CCE(0.024) DCC(0.050) CCC(0.500) No correlation

4 CDE(0.083) DEC(0.083) ECD(0.167) Weak negative correlation

5 EBB(0.083) BBC(0.083) BBB(0.500) Weak positive correlation

doi:10.1371/journal.pone.0167198.t002
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decreased, thereby leading to an overall decline in the coal economy. However, a strong and

weak negative correlation was observed between the CCPI and CMAD in the asynchronous

scenarios with negative values of L, which was caused by the decline of the CCPI. Safety invest-

ments are limited by their reduction of economic benefits to the enterprises. Therefore, the

asynchronous negative correlation rule has a reference value in coal mining accident preven-

tion, and based on the changing trends of the core fluctuation modes and the length of the lag,

an adequate amount of time should be available to implement prevention and control mea-

sures for accidents.

Transmission medium

When one of the asynchronous correlation type changes, which type plays the intermediary

role? To answer this question, we analyzed the characteristics of the structural hole of the net-

works to determine the fluctuation modes that act as the transmission medium in the

ACFM-DWNs. The presence of structural holes provides the middle-position fluctuation

modes with key communication functions and allows them to control the transmission process

of the correlation fluctuation to a great extent. Generally, the Coleman-Theil disorder index is

used to measure the hierarchy of structural holes for each node in network, and the index is

defined as Hi.

H i ¼

P
j

Cij
C=N

� �
ln Cij

C=N

� �

N lnðNÞ
; ð5Þ

where N is the set of the individual networks consisting of node i and its neighbors and C/N is

the mean value of all node constraints Cij. The node constraint Cij is the ability level of node i
to use the structural hole in its individual network, and it is expressed as follows [40]:

Cij ¼ pij þ
X

q

piqppj

� �2

; ð6Þ

where piq is the proportion of the relationship between nodes i and q in the total relationships.

Fig 7 shows that a small fraction of the fluctuation modes possess a higher structural hole

hierarchy; however, low node strengths occur in each ACFM-DWN (L = −12, −10, −8, 2). For

DBA, BBB, ADB, and BBA in ACFM-DWN (L = 2), the highest hierarchy of the structural

hole reaches 0.731. Accordingly, although certain of these nodes are not the major modes, they

all likely play important roles in the transformation of the weak positive correlation between

the CCPI and CMAD. Moreover, the appearance of these transmission media indicate

whether or not this period is conducting a significant transformation; subsequently, the next

fluctuation mode can be predicted via the transmission probability.

Transmission periodicity and path

What are the transmission rules, paths and distances among the different variations within the

fluctuation of the asynchronous correlation? To answer this question, the periodicity of the

asynchronous correlation coefficient and the shortest distance between each pair of fluctuation

modes were determined. By performing a spectral analysis and calculating the shortest path

length, the periodic features and major fluctuating patterns of the asynchronous correlation

were studied.

The periodic features of the CCPI-CMAD asynchronous correlation could be illustrated by

a spectral analysis, whose core function is to express the time series as a superposition of sines

and cosines with different frequencies. Fig 8 shows the spectral analysis results of the 4 sets of
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correlation coefficient time series (L = −12, −10, −8, 2) randomly selected by a length of 50

weeks. The results indicate that periodicity in the asynchronous scenarios generally appeared

in the superposition after 13 weeks. For instance, in the asynchronous scenario (L = −10), the

Fig 7. Distribution between the node strength and the hierarchy (L = −12, −10, −8, 2).

doi:10.1371/journal.pone.0167198.g007

Fig 8. Spectral map (L = −12, −10, −8, 2).

doi:10.1371/journal.pone.0167198.g008
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periodicity of strong negative correlation is 13 weeks, which means the situation that CMAD

would increase after CCPI decrease 10 weeks happens once every 13 weeks. From the perspec-

tive of accident prevention, the 13 weeks can be regarded as the periodicity of implementation

of normalized control measures.

On the basis of the periodicity obtained by spectral analysis, the average path length indi-

cates the transformation distance and path between nodes [41], and the shortest path length is

the minimum number of edges between any pair of nodes. We can therefore improve the accu-

racy of the periodicity length and the specific form of the modes on the path. The average path

length of the network APL was the average value of the shortest path lengths of all pairs of

nodes, and it was defined as follows:

APL ¼
1

nðn � 1Þ=2

X

i�j

dij; ð7Þ

where dij is the minimum number of edges from node i to node j.
In Fig 9(A), a similar distribution pattern of the average shortest path length appears in 5

networks, and the shortest path and longest path are 1 and 19, respectively. The distances with a

high frequency that were observed in than 40% of cases in the ACFM-DWNs are 6, 7, and 8. The

average path length APL of the 5 networks was approximately 7 (Table 1). Thus, if a fluctuation

mode transformed to another mode, 6 or 8 types were involved in the process. Because of the low

proportion of paths with under 2 or above 11 steps, different modes can rarely complete the trans-

formation using these distances. Fig 7(B) presents the transmission probabilities of the major fluc-

tuating modes within the 5 networks. Although the number of neighboring nodes of these major

nodes was only 2 to 4, there were only 1 or 2 neighbors with higher transmission probabilities.

Consequently, the transmission probabilities could be used to conclude the fluctuation form in

next period and applied to build the risk estimation model combined with the severity of specific

modes. The corresponding control policy would be refined according to the risk level.

Discussion and Conclusions

In this paper, our major goal was to study the features of the asynchronous correlation between

the CCPI and CMAD over a small time scale using the method of complex network. The 33

asynchronous scenarios of the double-variable time series were first constructed. The

Fig 9. Frequency of the distance and transmission probability of the major fluctuating modes.

doi:10.1371/journal.pone.0167198.g009
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fluctuation mode of the asynchronous correlation was defined by the asynchronous correla-

tion coefficients, symbolization, and coarse-graining process. Based on a mode-representing

fragment, the correlation between the CCPI and CMAD was asynchronous and characterized

by fluctuation. After introducing the complex network theory, the properties of the correlation

fluctuating mode directed and weighted networks were studied. The approach in this paper is

suitable for analyzing the asynchronous correlation between the coal mine price index and

accident deaths, and it can also be used for other coal mine economic indices, which could

provide value for coal mine accident pre-warning systems. The features of the asynchronous

correlation between the coal price index and accidental deaths could provide an effective refer-

ence for governmental agencies tasked with executing safety supervision measurements. The

accident prevention strategies could be divided into various degrees that correspond to the

fluctuation modes of varying degrees of importance to the asynchronous correlation. When

key fluctuation modes are observed, a strong prevention strategy is required because the asyn-

chronous correlation will exhibit a more complex pattern of changes, and certain changes may

cause an increase in the number of accidental deaths. By exploring the sub-groups in which a

small fraction of fluctuation modes influence each other at a high frequency, governmental

agencies could forecast the changing trends of accidental deaths based on the changing forms

of the CCPI. In particular, a continuous decline in the degrees of variation in the CCPI may

cause a sudden rise in the CMAD within different ranges. However, because there is at least an

8 week lag before an accident occurs, the governmental agency will have sufficient time to take

preventive measures. The fluctuation modes with high structural hole hierarchies indicate the

role of the transmission medium, which can warn governmental agencies that changes will

occur in the fluctuation form of the CCPI-CMAD asynchronous correlation. Calculating the

periodicity and the shortest path and length indicates the impact pattern of the CCPI and the

corresponding changing rule in the CMAD within a short recurrent period and can provide a

reference for accident pre-warning policies.

Certain issues must be investigated in greater detail in future research. Firstly, the method

in this study fits for analyzing the asynchronous correlation features between two variables.

However, there must be other indices who are more suitable for pre-warning CMAD. So, a

more appropriate approach and determining coefficient for screening better pre-warning

index are well worth in further study. We will take more network measures, such as clustering

coefficient entropy and network cross-transitivity into consideration [42,43]. Secondly,

according to the method and results of this study, a pre-warning model for coal mine acciden-

tal deaths can be established based on asynchronous correlation features of multivariate time

series. More features would be adopt in studying the estimation method, acceptable criteria,

and control policy of CMAD in a view of risk pre-warning. It is different from the general risk

estimation models because the factors containing actual value of sub-variables, time delay,

influence degree, transmit distance and probability, periodicity, time-scale of pre-warning and

so on are considered. The influence of information losses could be avoided in the fluctuation

process of the multivariate asynchronous correlation, and the pre-warning information of coal

mining accidental deaths could be more accurately and detailed. Then, the authorities respon-

sible for overseeing the work safety environment in the coal mining industry could take pre-

ventive measures that are consistent with specific changes in the CCPI to control for large-

scale coal mine accidents before they occur. In addition, this paper may also inspire readers by

providing a new approach for the study of asynchronous correlations between two time series.
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