
RESEARCH ARTICLE

Real-Time Reliability Verification for UAV Flight

Control System Supporting Airworthiness

Certification

Haiyang Xu1,2, Ping Wang1*

1 School of Science and Information, Qingdao Agricultural University, Qingdao, Shandong, China, 2 School

of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu,

China

* gege3175@163.com

Abstract

In order to verify the real-time reliability of unmanned aerial vehicle (UAV) flight control sys-

tem and comply with the airworthiness certification standard, we proposed a model-based

integration framework for modeling and verification of time property. Combining with the

advantages of MARTE, this framework uses class diagram to create the static model of soft-

ware system, and utilizes state chart to create the dynamic model. In term of the defined

transformation rules, the MARTE model could be transformed to formal integrated model,

and the different part of the model could also be verified by using existing formal tools. For

the real-time specifications of software system, we also proposed a generating algorithm for

temporal logic formula, which could automatically extract real-time property from time-sensi-

tive live sequence chart (TLSC). Finally, we modeled the simplified flight control system of

UAV to check its real-time property. The results showed that the framework could be used

to create the system model, as well as precisely analyze and verify the real-time reliability of

UAV flight control system.

1. Introduction

UAV has been used in a vast range of civil and military applications, and also brought acci-

dents caused by airborne software failure[1–3], we expect to develop a high reliable UAV flight

control system. The traditional approach used for manned aircrafts takes robust time and

resources, which is not practical to analyze and validate UAV flight control system. For short-

ening the development cycle and improve the reliability and performance of flight control sys-

tem, developing an integrated framework for the design process of flight control system is in

need[4]. This framework could integrate the existing design methods and verification tools,

and use iterative development cycle to implement and quickly validate UAV flight control sys-

tem design. Therefore, it is important to enhance the reliability and robustness of UAV flight

control system by improving the method of modeling, testing and verifying.

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 1 / 21

a11111

OPENACCESS

Citation: Xu H, Wang P (2016) Real-Time

Reliability Verification for UAV Flight Control

System Supporting Airworthiness Certification.

PLoS ONE 11(12): e0167168. doi:10.1371/journal.

pone.0167168

Editor: Houbing Song, West Virginia University,

UNITED STATES

Received: May 24, 2016

Accepted: November 9, 2016

Published: December 5, 2016

Copyright: © 2016 Xu, Wang. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work is supported by the National

Natural Science Foundation of China (General Pro-

gram) under Grant No. 61572253, China

Postdoctoral Science Foundation under Grant

No.2011M500124.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0167168&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Federal Aviation Administration (FAA) requires that the airborne software system must be

conducted by airworthiness certification[5]. Thus, we should model and verify the UAV flight

control system in term of corresponding airworthiness certification standards.

In airworthiness certification, we considered the DO-178B standard, which is the current

software certification standard that released by Radio Technical Commission for Aeronautics

(RTCA). DO-178B prescribes the objectives for each important step during the development

process of airborne software[6]. With the development of the software verification technology,

RTCA and European Organization for Civil Aviation Equipment (EUROCAE) revised the

DO-178B and published the DO-178C/ED-12C standard in 2011. DO-178C/ED-12C proposed

several technical supplements such as software tool qualification considerations, model-based

development and verification, object-oriented technology and formalizing methods [7–9].

Development and verification based on executable models can optimize the process of air-

borne software. During the stage of requirement and design, we should find out the software

fault as early as possible in order to eliminate the errors of design and enhance the robustness

of software. According to DO-178C/ED-12C, source code should be generated from design

model directly, and they all should pass the validation.

In the development of airborne software, object-oriented technology benefits the genera-

tion of source code for test and certification via model driven architecture (MDA) or MARTE

tool. It can improve the reusability and validity of software. DO-178C/ED-12C therefore

requires adopting object-oriented technology.

DO-l78C officially indicated the effectiveness of formal methods during airborne software

development process. Formal method is consisted of formal model and formal analysis. For-

mal model is used for defining unambiguous abstract model of system based on mathematic

syntax and semantic. Formal analysis proved the consistency between system property and

software requirement by theorem proving or model checking.

The design and verification of airborne software should comply with the guidance of DO-

178C to obtain certification approval[10]. Recently, in order to improve the development

method of airborne software and meet airworthiness certification, researchers have proposed

several integrated development frameworks. Most of these methods focus on the model-based

development environment to make different tools and techniques adopted an applied. The

main challenge of model-based development approach is that we should generate precision

appropriate dynamic models of airborne software at different development stages[1]. Mathe-

matical model can only be used to describe simplified real flight control, and is just an approxi-

mation of the airborne software, because sensors of UAV are inaccurate and aerodynamic data

are not understandable enough. Therefore, mathematical model is not be able to be used for

predicting the real-time reliability responses.

To study the feasibility of applying model checking to avionic embedded software, Sree-

mani et al. took advantage of software cost reduction to describe software requirement specifi-

cation of military aircraft A-7E, and then translated specification to symbolic model verifier

(SMV)[11]. They pointed out that model checking was of help to provide a safe and reliable

software, but it could not be extended to large-scale software.

To verify the requirement specification of large-scale software, Chan et al. proposed an

interactive design process based on the progressive refinement of the models. This process can

specify the set of properties, and adopt SMV to check the requirements specification of TCAS

II. The limitation is that model checkers cannot be integrated with other CASE tools.

Pingree et al. applied model checking to the development of flight software for NASA’s

Deep Space 1 mission[12]. They used State flow to create software model and translated it into

SPIN. The approach can automatically generate software code from State chart model, but

they cannot assure that all design errors could be showed in the model.

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 2 / 21

For rapidly synthesize, analyze and validate a candidate UAV software design, Yew Chai

Paw et al. proposed a model-based framework, which integrates a set of design tools to realize

software model synthesis, off-line and real-time simulation[1]. They pointed out that simula-

tion based on tests is important for saving cost and time. However, Seveg et al. compared sim-

ulation with formal verification in SoCs design process[13]. They indicated that formal

verification requires more time and memory, but it can identify failed properties and get the

highest credibility of the verified system.

Cofer et al. inserted formal analysis tools into a model-based development process to

improve quality of avionics software[14]. They used State flow to generate model-based speci-

fication, and used Lustre as an intermediate representation for the models, and then translated

specification into NuSMV model checker. They applied the method to the FCS 5000 flight

control system and an adaptive flight control system for UAV[15].By analyzing the causes of

156 failures on 129 space crafts, Tafazoli pointed out that 6% of these failures are due to soft-

ware failure[16].

In this study, our purpose is to verify real-time reliability for UAV flight control system.

Combining model-based method with formal analysis tool, we can reduce the cost of building

separate analysis models, and keep the model consistent with the software design.

Combining with the requirements of DO-l78C, we utilized MARTE class diagrams to set

up a time-related static model of flight control system based on MDA. We also employed

dynamic models triggered by time to describe system state changes. As MARTE is a graphical

model, we proposed a formal PTA-OZ model and constructed its model transformation rules.

Using these rules, we can translate both static models and dynamic models into corresponding

Object-Z model and PTA models, which are fit for system real-time reliability verification and

code automatic generation. In order to get the real-time specification of design model, we pre-

sented a method to extract real-time property from TLSC.

This paper proceeds as follows. Section 2 outlines the logic structure of flight control sys-

tem. Section 3 describes the PTA-OZ model based on MDA. Section 4 gives the real-time

property extract method from scenario-based language. Section 5 reports a case study of real-

time reliability verification. Finally, Section 6 concludes the paper.

2. The Logic Structure of Flight Control System

The software architecture of UAV flight control system mainly consists of communication

link (CL) module, sensor signal processing module, flight guidance (FG) module, servo control

(SC) module, mode supervise (MS) module and PWM steering output modules.

1. CL module is used for receiving telecommand (TC) from the ground control station (GCS),

down-transporting telemetry (TM) to GCS and for data communication among the air-

borne modules.

2. The function of FG module includes control law computing, TC verification and response,

route planning, operator scheduling and sending control command.

3. SC module is applied to response control command and send servo control.

4. MS module is mainly used for conflict detection and conflict resolution.

The flight control system uses embedded system design which is based on PC104 bus. It

includes five main components: processor module, serial port module, A/D, D/A card module

and power module. The communication among modules uses PC104 bus. Processor module

communicates with FG module and SC module by adopting TCP/UDP protocol. Serial port

module uses RS232 protocol to communicate with sensor module in serial communication.

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 3 / 21

The system uses A/D of AVR to collect signals, such as six degree of freedom information and

supply voltage, and uses D/A card to output PWM signal. Fig 1 shows part of hardware and

software architecture of the flight control system.

We focused on the commands and data processing structure among GCS and FG module,

SC module, and MS module. We not only require the UAV flight control software to satisfy

the DO-178C airworthiness certification requirements, but also fully reference ECSS-E-70-

41A standard to standardize the service offered by each module. So we employed telecomm

and verification service and onboard operations scheduling service which adopt ECSS-E-70-

41A standard in FG module of flight control software.

3. Modeling and Description of Time Property

The advantages of development method based on MDA in the design process of embedded soft-

ware are as follows. Firstly, the execution platform of embedded software is usually heteroge-

neous and reconfigurable. Secondly, applications often need to react with an external

environment, and embedded software design focuses on handling data or control flow. Finally,

software design is often subject to real-time requirements and resources availability[17]. Above

all, in the early stage of embedded software design, the development method based on MDA

could detect if resources and services meet the requirements specification under the given

constraints.

3.1 Time static model based on MARTE

Although model-based development tool such as SCADE suite has been used to formal verify

critical avionics software[15], it is difficult to generate code from time synchronism system.

Fig 1. Part of hardware and software architecture of the flight control system. The figure shows parts of

the organizational structure of a flight control system, and describes the data interaction among module.

doi:10.1371/journal.pone.0167168.g001

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 4 / 21

SCADE employs a reference or master clock to define all clocks as a functional sample of the

master clock[18]. It can provide a solution for generating code in uniprocessor system. How-

ever, it is difficult to generate distributed system code. For parallel implementation, MARTE

can generate the multi-threaded code from concurrent specification[19].

MARTE, which could be used to establish formal model of real-time and embedded system

(RTES), is a new UML extension profile. MARTE defines a mathematically expressive model

of time to annotate UML diagrams with formal timing interpretation. MARTE also defines the

necessary concepts to build software model of HW/SW embedded system, and its performance

depends on the interaction among the different components.

Although UML2 introduces SimpleTime package to create time model, it is too simple for

RTES. The time models based on MARTE are more suitable for software design. They may be

physical, logical, or user-defined. MARTE uses a collection of clocks to represent time, and

each clock specifies a totally ordered set of instant.

In MARTE, «ClockType» and «Clock» stereotypes can be used to represent the concept of

clock. «ClockType», which is the type of «Clock», specifies common features shared by a family

of clocks. «Clock» includes more detailed information. We adopted above stereotypes to define

a «ClockType» and several clock instants (Fig 2).

Firstly, we use «ClockType» stereotype to define a new clock type, and specify the feature of

clock type with tagged value. The new discrete «ClockType» Chronometric, whose supportive

unite is s, uses a readable resolution to determine the resolution of the associated clock, and

uses currentTime operation to get the current time.

Secondly, we introduced a predefine clock idealClk in MARTE library, which is an instance

of IdealClock. It represents the continuous clock of physical time, and uses s as its unit of time. t1,

t2, t3, t4, t5, which are instances of Chronometric, use clock constraint to specify their deviations

with respect to the ideal one. In «ClockConstraint» stereotype, we adopted clock constraint spec-

ification language(CCSL) to express the clock constraints. The c is defined as an ideal discrete

clock whose resolution is 0.001 s. For idealClk, we declare a clock t1 with a period of 10ms and

resolution of 0.01 s. The t2, t3, t4, t5, whose resolution is 0.001 s, can be sampled every 10 periods.

As MARTE can support system-level design, we adopted RtUnited and PpUnit for the

active object of UML to create model of flight control system. Fig 3 showed the class diagrams

in software logic structure of flight control system. The structure consists of GCS and airborne

system. The logic entities of airborne system include CL module, FG module, SC module and

MS module. GCS interacts with airborne system through TC and TM signal. RtUnit is used to

Fig 2. ClockType and its clock. We can use MARTE time stereotypes to define and describe clock class.

doi:10.1371/journal.pone.0167168.g002

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 5 / 21

represent the entities, which can encapsulate object and behavior in a single entity. Any real-

time unit can invoke services of other real-time units to send/receive data flow. In class dia-

grams, we defined attributes, operations and associations, and offered the interface definitions

with entity. FG module can dynamically create schedulable resources to execute its services,

and MS module has a pool of 10 schedulable resources.

All real-time units share data that is represented by the class DataBase. As the concurrent

execution of real-time units, we need to protect the data access encapsulated in the class Data-
Base. In order to do this, we tagged the class DataBase by «PpUnit» stereotype, whose concPo-

licy property of DataBase is set to guarded, which means that real-time unit should access the

DataBase property one after another.

3.2 Dynamic model supporting time-triggered

State chart can describe the dynamic behaviors of object through creating object model about

its life cycle, and focuses on the object behavior changes caused by events. In state chart, an

Fig 3. The software logic structure of flight control system. Using RtUnited and PpUnit, we build part of the software logic

modle of flight control system.

doi:10.1371/journal.pone.0167168.g003

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 6 / 21

event is an occurrence of motivation, which can trigger state transition. As a special event,

Time event represents the state transition triggered by time related factors.

According to the clocks defined in 3.1, we described all kinds of time-triggered mechanisms

to create UML dynamic model. So we need to extend UML state chart with time model to sup-

port events and behaviors triggered by time.

To reference time-related concept for state chart, we use «TimedProcessing» stereotype of

MARTE to specify duration for a behavior and improve the use of UML behavior. Through

reference defined clocks, we specified behavior of state chart with user-defined clocks to sup-

port time-triggered dynamic mechanism, and described RTES software to offer support for

multi-clock mechanism of distributed environment.

In MARTE, we use «TimedEvent» stereotype to represent time event, which extends from

the meta-class SimpleTime::TimeEvent of UML. Time event is used to specify the state transi-

tion triggered by time in state chart.

Flight control system is forced to obey the following operation rules:

1. GCS_request: GCS requests a flight command.

2. FG_command: FG sends a flight command to SC.

3. MS_command: If a flight conflict is detected, MS would send a specific flight command to

SC to resolve the flight conflict. MS command is able to override the GCS request and FG

command.

4. MS_clear: Executes GCS request or FG command when there is no potential flight conflict.

All previous requests would be canceled when a flight conflict was confirmed. At this point,

the value of MS_clear variable is false, and the values of all command variables are false.

Fig 4 described the state chart of flight control system. «TimedProcessing» stereotype

showed that the dynamic model supports time-triggered mechanism, and use on attribute to

specify associated clock of the current model. « TimedEvent» stereotype was used to define

time events: requestTimeout and detectTimeout. Event requestTimeout described that FG mod-

ule must generate a new air route within 50ms after receiving user’s TC command, otherwise

it would trigger timeout transition. Event detectTimeout requires MS module to detect and

resolve short-term conflict within 10ms, otherwise timeout transition would be triggered.

State chart uses state and state transition to describe dynamic behavior model of system for

event response, and is widely used for model programming. Comparing with state chart,

automaton is formal to analyze recognizable language. As automaton is the foundation of state

chart, it could accurately verify behaviors of class[20, 21].

3.3 Formal description based on PTA-OZ

As a graphical modeling language, MARTE works well in establishing the software model for

RTES, but it has following deficiencies: 1) As defined in different ways, there are inconsisten-

cies existing among abstract grammar, static semantics and dynamic semantics. 2) MARTE

lacks reasoning authentication mechanism. These disadvantages limit MARTE’s application

field and development, we therefore need to define precise and formal semantics for MARTE.

We proposed a formal integrated model called PTA-OZ[22], which uses Object-Z to

describe the static semantics of MARTE and uses probability timed automata(PTA) to define

its dynamic semantics. The formal integrated model could mathematically prove whether soft-

ware models meet the requirements[23], and it could also increase the safety and correctness

of software.

Definition 1 A PTA-OZ is a tuple PO = (A, I, L, P, OZ), where:

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 7 / 21

• A is used to deal with inheritance, lists all parent class using inherit clause.

• I is the interface, and consists of channel declarations, which are provided and used by

classes.

• L is local methods, which can only be accessed from the inside.

• P is a PTA that maps the state, event and transition of state chart to the attributes and opera-

tions of Object-Z.

• OZ is from Object-Z that includes a state schema, an initial schema and several operations.

We designed a transforming algorithm for the implementation of the formal model[24].By

mapping the class and state chart of MARTE to Object-Z class and PTA expression in Object-

Z format, we created the software model of flight control system through MARTE, and then

translated into PTA-OZ model.

Rule 1 In term of the basic transformation rules[25], we could define the transformation

rule from MARTE model to PTA-OZ model. 1) MARTE class is translated to Object-Z class of

PTA-OZ model. 2) The state chart of MARTE is mapped to PTA expression in Object-Z for-

mat. This rule is described as follows:

mapMARTEToPTA_OZ: MARTE!PTA_OZ

8mar: MARTE•mapMARTEToPTA_OZ (mar) = {po: PTA_OZ |

8mc:mar.class•9oz:po.oz•oz = mapMARTEClassToOZ(mc)

8ms:mar.statechart•9pta:po.pta•pta = mapMARStateChartToPTA (ms)}

Fig 4. State chart of flight control system. State chart can be used to describe dynamic behavior triggered by event.

doi:10.1371/journal.pone.0167168.g004

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 8 / 21

3.3.1 Static class transformation. The class name of MARTE is mapped to the class name

of Object-Z. The attributes of MARTE class are translated into state schemas. The association

class is translated into the attribute of class. Interface operation invoked by class is translated

into a channel schema of PTA-OZ. Interface operation offered by class is translated into a

method schema.

Fig 5 showed a class of FG module, which was described in Object-Z format. Depending on

class FG, association class CL was translated into attribute comm of class FG. The attributes

route, t3, servo, comm of class FG were mapped to state schemas of PTA-OZ model. The opera-

tions like verifyTc, scheduleOperation, sendCommand provided by class FG were translated into

methods of PTA-OZ model. The operations like sendData, dataLink invoked by the class FG
were translated into channels of PTA-OZ model.

Fig 5. FG module described in Object-Z class. Object-Z is a formal language, it can be used to model the static model

accurately.

doi:10.1371/journal.pone.0167168.g005

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 9 / 21

The processing time required by the invariance of the class FG should be no more than

50ms. We used effect+operationname to specify the operational effect, and used enable+opera-
tionname to express the operational trigger. For example, in effect_scheduleOperation, telecom-

mand route releases if and only if the release status is enabled, the execution is unblock, and the

destination can execute the command. The guard condition of operating enable_sendCom-
mand is that connection comm has been established and servo command has been analyzed.

3.3.2 Dynamic state chart transformation. As a class, the state chart can describe the

behavior of class. In Object-Z, the behavior of class can create model in term of the attributes

and operations of class. The attributes show the different statuses of the object, and the opera-

tions can change the value of the attributes. The state chart of MARTE consists of state, time

event and transition. We thus mainly focus on these compositions to define transformation

rules.

We used behavior attributes to create observable states model of object which value is bool-

ean type. If true, object was in behavior state, and was regarded as an active state in MARTE.

So each state should be mapped to a behavior attribute of Object-Z.

An event is the reception of a signal or the invoking request of an operation[26]. The

response to a request can be modeled as receiving operation. Each event of state chart is mapped

to the event acceptor operation of Object-Z. If an Object-Z operation was corresponding to a

transition, we defined it as the triggered transition operation of event receives operation.

Time event is used to represent transition event triggered by time related factors and state

transition in state chart triggered by time. The timing constraints of event in state chart are

mapped to the clock constraints annotation on the edge of PTA. In Object-Z, we denoted state

transition by comparing clock value with state invariance.

A transition represents either the change of object state or the execution of action. Due to

that source state is the condition of transition and the target state is the result of transition, the

value of source state is as the precondition of operation, and the value of target state is as the

post condition of operation. The source state of transition is mapped to the initial state of

behavior attributes in Object-Z, and the target states of transition are mapped to the termina-

tion states of behavior attributes.

A functionmapStateMachineToOZ, which formally describes the transformation rules

between state chart and Object-Z, is defined to translate state, time event and transition of

state chart into the attributes and operations of Object-Z.

Fig 6 showed a PTA expression in Object-Z format. The state is translated into the behavior

attributes of Object-Z class. The initial state of state chart is expressed by the Init state schema

in Object-Z class, and it is labeled Ready. An event is defined as different event receive opera-

tions. For example, event GCSRequestSent is defined as the operation of sending the route data,

and causes the state to change from Ready state to Request state. Time event requestTimeout
represents the transition event triggered by timeout, so that Its time can be realized by opera-

tion timeCount, and the state will be changed from Request state to Ready state. All the transi-

tions belong to transition operations of Object-Z class. The behavior attributes of source state

and target state are respectively defined as the precondition and post condition of transition

operations. Transition operations contain all these effective activities. For example, the source

state of transition transRequesttoFGcmd is Request, the target state is FGcmd, and effective

activity is verifyTC.

4. Extracting Real-Time Specifications

The assurance of real-time requirement is the key of verifying software real-time, and is also

the foundation for design, verification and realization of real-time reliability[27]. Most of the

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 10 / 21

software real-time problems are caused by the inadequacy of acquiring real-time requirement.

Flight control system is a hard real-time system, and it has strict deadlines on task. If the task

could not satisfy the response time or response is not in time, it would lead to disastrous

consequences.

The real-world software system developed according to natural language specifications is

difficult to verify whether the resulting software satisfies the natural specifications[28]. For

checking the software model, it is necessary to use a formal and precise symbol to represent

the design specifications. Ogawa et al. proposed a goal-oriented analysis method of the

Fig 6. PTA expression in Object-Z format. Dynamic state transition can be described by the state schema

in Object-Z.

doi:10.1371/journal.pone.0167168.g006

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 11 / 21

requirement specification[29], which uses natural language to specify the specifications, then

refines them into linear temporal logic (LTL) formulas and checks them through SPIN model

checker. Therefore, model checking always uses LTL to specify properties to unambiguously

describe the desired behavior of system. Each formula expresses a specific expectation of soft-

ware behavior, a set of all formulas describe a consistent pattern of behavior.

4.1 Scenario-oriented requirement description

At the stages of design and verification, we need to identify the performance scenarios from

end to end, which are usually extracted directly from requirements and used to evaluate the

system response times[30]. The duration of a single processing or an end-to-end execution

usually needs to be described. We can specify time information within the model by marking

time-labeled UML2 interaction diagrams.

Scenario-oriented language is able to graphically describe the software requirements, and

then be used to verify the properties of design model. The advantages are straightforward

and visualization. Message sequence chart (MSC) is widely used in the development field of

industry software by International Telecommunication Union(ITU) as the standard and the

description language of communication behavior of real-time system. However, MSC is

only used to describe the causal relationships among messages, but explain the time partial

order constraints of behavior, and clearly distinguish specifications from executable

requirements[31, 32]. These drawbacks of MSC limit its expression ability and application.

Based on the extension of MSC, Werner Damm and David Harel proposed live sequence

chart (LSC) [31], which distinguishes the existential scenario and the universal scenario of

system. If the condition of universal scenario was true, the system must execute the scenario

described in sequence chart, meaning the universal scenario is suitable to specify the activity

of scenario.

Yves Bontemps et al. applied an extension of LSC to air traffic control system[33],and speci-

fied scenario-oriented requirements by associating an instance with a class. But LSC still

adopts timing constraints in MSC, such as timer and delay interval, turning out that this appli-

cation is limited.

MARTE extends sequence diagram, and defines timing constraints on sending and receiv-

ing events, and could record the start and end time, and also uses value specification language

(VSL) to specify timing constraints among events. For overcoming the shortcomings of LSC in

time property, we adopted MARTE to enrich the expressive power of LSC, and proposed

TLSC method, which could intuitively describe time-enriched property and timing partial

order relation of behaviors.

For overcoming the drawbacks of LSC in time property, we proposed TLSC method to

intuitively describe time-enriched property and timing partial order relation of behaviors by

using value specification language(VSL) to specify timing constraints among events and to

extending sequence diagram by using MARTE. The extension by MARTE is that adding tim-

ing constraints to sending and receiving events for recording the start and end time.

We still adopted the property on of «TimedProcessing» stereotype to associate clocks with

current TLSC. Sequence diagram is used to specify the interaction behavior among objects,

which may be restricted by time factors in time trigger architecture, thus we need to introduce

time observation to describe timing constraint. Time observation offers a method to acquire

execution time and duration of system. «TimedInstantObservation» stereotype acquires the

start or end instant and uses operation @t to store acquired time in variable t. «TimedDuratio-
nObservation» stereotype can be used to express the duration of event, using {t, t+d} to denote

that an event starts at t time and ends at t+d time.

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 12 / 21

Fig 7 showed a scenario-oriented end-to-end requirement for flight control software. In

order to reference ideal clock, we use «TimedInstantObservation» stereotype of MARTE to

express time observation. Similarly, we defined a time observation of UML to associate with

receive events of control message, and referred to the same ideal clock. The rules of execution

time among modules of flight control software are that the delay time for receiving telecom-

mand is less than 5ms, the calculating time of flight path is less than 50ms, the response time

of conflict detection is less than 10ms, the execution time of servo control is less than 10ms,
the output delay time of telemetry is less than 5ms. That is to say, the time from sending tele-

command to receiving telemetry is no more than 80ms. Thus, we need to define a timing con-

straint, which shows that the duration between time observation events stop and start is less

than 80ms.

4.2 Monitoring real-time specification

In the process of software design, it is difficult to design a bug-free system, so we need to

employ model checking to find the bugs, which can be used to verify whether software model

meets design specification. It is difficult to write bug-free specifications, since we do not know

whether the system specification could fully capture the design expectation of software.

Although graphical TLSC could intuitively express timing partial order relation of behav-

iors, and is suited to describe customer requirement by software engineer, it could not be

used to verify the system specification. In the scenario-oriented software engineering, tem-

poral logic is widely applied to describe the software requirements, but it is not realistic to

require software engineer to intuitively use temporal logic formula to specify software

requirement. Therefore, we tried to extract time property formula from software require-

ment of flight control system described by TLSC. Firstly, we gave the formal definition of

TLSC[34].

Fig 7. Scenario-oriented requirement for flight control software. MARTE time model is used to describe the

requirement. With timing constraints.

doi:10.1371/journal.pone.0167168.g007

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 13 / 21

Definition 2 A TLSC is a tuple TLSC =<I, Loc, E, C, δ,Mode, inv, μ>, where

• I is a set of instances.

• Loc is a set of locations.

• E is a set of events, and it contains two events condition Con and message Msg, that is, E =

ConUMsg.

• C is a finite set of clock variables.

• δ: E!Loc is an event mapping function which maps each event to a location.

• Mode: E!{cold, hot} is a behavior mapping function which identifies each event with a pro-

visional or mandatory behavior.

• inv:Loc!F(C) is a timing constraint mapping function, by which each location ‹i,l› is given

assigns timing constraint inv(l) called location invariance.

• μ:E!F(C) is a time interval mapping function, it defines the time interval of event

occurrence.

Trace-based semantic adopts finite or infinite state sequence to describe the relation of state

transition. Using the form of trace-based semantic, precise meaning of software behavior

could be reflected, and temporal logic formula could be extracted from TLSC. Here we gave

the trace-based semantic of universal chart in TLSC.

Definition 3 Let a CUT sequence r = (cut0,v0), (cut1,v1),. . ., (cutk,vk) be an execution of

TLSC, where cuti denotes a mapping of current locations of all the instances, and vi denotes

the clock interpretation of current state. cut0 is the starting point and clock interpretation v0 =

0, cutk is the terminal point, and (cuti,vi) = succ((cuti-1,vi-1),<i, li>) (i = 0,1,. . .,k-1). The set of

all runs is denoting to Runs. We use rk = {r|8r2Runs^|r| = k} to denote the sub path of run r
with k-path, and use Path(cuti,vi) = {r|8r2Runs^cut0 = cuti} to denote a path of a run starting

at (ci,vi). An execution trace, which is the trace of a CUT sequence, is denoted by π = trace(r)

cut0!
p0 cut1!

p1
� � �!

pk� 1 cutk

Then π = π0, π1,. . ., πk-1 denotes the events that trigger the state transition, and

pi ¼
dði; liÞ if ðcuti; viÞ ¼ succððcuti� 1; vi� 1Þ; hi; liiÞ

ε else

(

In term of execution trace, we define the trace-based language of TLSC tl, that is

L ¼ fpj9r 2 RunsðtlÞ ^ r ¼ ðcut0; v0Þ; . . . ; ðcutk; vkÞ s:t: p ¼ traceðrÞg

In the universal chart, all runs must satisfy the given scenario. If executions r of TLSC are in

the same sub chart, the relation between formulas is logical conjunction. If executions r are in

the different sub charts, the relation is logical implication. Algorithm 1 showed that temporal

formulas corresponding to different message in sub chart were combined into an algorithm

about ACTL formula.

Algorithm1 combinedGenerating(ϕmsg1,ϕmsg2)

1: if type(�msg1) = pre-chartthen
2: if type(�msg2) = pre-chartthen
3: � = ¬�msg2U (�msg1(X�msg2))
4: elseiftype(�msg2) = main-chartthen

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 14 / 21

5: � = �msg1!(X�msg2)
6: endif
7: elseiftype(�msg1) = main-chartthen
8: if type(�msg2) = pre-chartthen
9: � = �msg1
10: elseiftype(�msg2) = main-chartthen
11: � = ¬�msg2U (�msg1(X�msg2))
12: endif
13: endif
14: return(�)

Universal chart can be used to express the mandatory scenario. If the event in pre-chart was

activated, there must have response event in main chart. Hence in term of Algorithm 1, we

could get the ACTL formula corresponding to TLSC as follow

AGðð ^
8pi2Msgp

�
0

pi ;succðpiÞ
^ ^
8mi 2 Msgm;

pj ¼ MaxpðijÞ

�
0

pj;mi
^ ^
8pi 2 Msgp;

pj ¼ MaxpðijÞ

:χpi;pjÞ

! ð ^
8mi2Msgm

�
0

mi ;succðmiÞ
^ ^

mj¼MaxmðijÞ
AFinvþumj ^ ^

8ei 2 Msg;

mj ¼ MaxmðijÞ

:χei ;mjÞÞ

WhereMsg is the set of messages, succ(m) denotes the immediate successor of message m.

�
0

ei ;ej
¼ :ej [ei is order attribute and it shows that message ej will not occur until ei occurs.

χei ;ej ¼ ð:ei ^ ejÞ [ðei ^ Xðð:ei ^ ejÞ [eiÞÞ is uniqueness property and denotes that message ei
occurs twice before ej. We can also use optimization strategies to improve the algorithm per-

formance[35].

Using Algorithm 1, we could extract temporal logic formula of real-time property from

TLSC for flight control system as showed in Fig 7. After sending message sendRequest to UAV

from GCS, each module began to work, and FG module computed the flight path, MS module

detected conflict, and SC module sent servo command. We could get the temporal logic for-

mula of real-time property from scenario-oriented TLSC as follow

AGðAð:compute ^ :detect ^ :controlÞ [sendRequestÞ ! AFt<80receiveFeedÞ

5. Real-Time Reliability Analysis

In the verification of PTA-OZ model, we could check the correctness of grammar and type in

Object-Z part, and make sure that all the operations strictly use state model. By using the exist-

ing formal tools Z/EVES and PVS, specification could be checked and analyzed in Z form. We

could automatically extract corresponding burden of proof for Object-Z specification accord-

ing to a certain rule, and then test by inputting them to Z/EVES. Through strictly type exami-

nation, we could analyze specifications in Object-Z form, and locate the inconsistent

information between specifications and requirements.

However, Object-Z is only suitable for data refinement, and does not support the structure

similar to program language. Hence, there is semantic gap between Object-Z and program lan-

guage, while PTA-OZ model can overcome the shortcoming and realize operation refinement

through verifying the correctness of operation.

PTA model could be used to express the state transition diagram of flight control system.

We could create mathematics model of real-time reliability by applying Markov process to

achieve the state transition probability matrix of system. There are three status types of real-

time reliability: up denotes that system is in working, down denotes that system shuts down,

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 15 / 21

danger denotes that some transient failures have occurred but have not yet caused system

shutdown.

There are various kinds of sensors in UAV for receiving signal, data or command. The per-

formance of sensors is a gradual recession process, thus reduce the reliability of hardware

devices. The failure of sensors will cause the software failure of FG module. Though the reli-

ability assessment of hardware devices, the reliability of sensors will reduce after working 1000

h, and will down to 0 after working 1500 h. In flight control system, software module will

reboot to rectify the transient fault. If the system was in sensor failure, FG module was unable

to read data from the sensor, meanwhile the system would be forced to skip the current cycle.

If the number of skipped cycles exceeded a threshold value, then flight control system would

fail and emergency instructions or self-destruct would start.

Fig 8 showed the expected time of each status within T unit time described in logarithm

form. Since the requirement of total time from sending telecommand to receiving telemetry is

no more than 80ms, Fig 8(a) showed the expected time of different system states within 80ms.
Fig 8(b) showed the expected time of different system states within 1h when UAV carries out a

short-term mission. The expected time in failure status gradually increases, but it is still less

than the working time. Fig 8(c) showed that the expected time of down status will increase sig-

nificantly while UAV carries out a long-term mission. As shown in Fig 8, the failure status of

software caused by hardware fault would gradually increase along with the execution time

increase. Thus we could improve the design method of software through enhancing the reli-

ability of hardware.

The integrated framework for UAV flight control development can execute real-time simu-

lation[1]. It adopts real-time operating system, does real-time monitoring by GCS, and exe-

cutes the embedded software code in real-time. Compared with similar method[1], we can

accurately calculate the expected time of each status. The result showed that UAV is highly reli-

able when it carries out a short-term mission and it is not suiteable for a long-term mission.

The system reliability depends on the threshold value K, Table 1 showed the expected time

of system states with danger and up. When the value of K increases, the expected time both

increase. The increasing of expected time in up is significantly higher than in danger. The dif-

ferent value of K also effects the system reliability. The reliability probability of processor-in-

the-loop was given in Fig 9. The increasing value of K makes the reliability probability to

stabilize.

6. Conclusions

Compared with existing integrated framework[1, 36, 37], we used graphics modeling language

MARTE to create software model of flight control, and transformed static structure and

dynamic behavior models into formal integrated framework PTA-OZ through defined trans-

formation strategies. We specially focused on the model and verification of time property,

which is not considered by most integration framework. The different processes such as analy-

sis, modeling, transforming and verification in proposed framework are tightly-coupled.

For modeling and verification of the real-time reliability of UAV flight control system, we

have mainly done following works. Combined with DO-178C standard, we studied model-

based method, object-oriented technology and formal method in the framework of software

development, and propose a formal PTA-OZ model, which can formalize MARTE model in

an object-oriented way by transformation rules. To eliminate the difference in the description

of the real-time property formula among software engineers, we proposed an extracting

method of temporal logic formula from TLSC, which could automatically generate real-time

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 16 / 21

specification. By verifying the real-time reliability of software model, we could analyze its sta-

tus type at different time periods.

In order to meet the airworthiness certification, we proposed a design, development and

validation framework for UAV flight control system. To begin with, we used MARTE to create

the time property model, then translated it into PTA-OZ model. Eventually we could analyze

Fig 8. The expected time of each status within T unit time described in logarithm form. (a) The

expected time within 80ms. (b) The expected time within 60m, (c) The expected time within 24h. (a)Within

80ms, the probability of system shutdown is smaller. (b) As time goes on, the danger status goes up. The UAV

is fit to carry out a short-term mission. (c)The reliability of hardware determines UAV whether can perform

tasks for a long time.

doi:10.1371/journal.pone.0167168.g008

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 17 / 21

and verify the real-time reliability of UAV flight control system by existing formal verification

tools.

Supporting Information

S1 Fig. The reliability probability of each processor. With the increasing K value, the reliabil-

ity probability became stable.

(TIF)

S1 Table. The reliability probability for different value of K.

(DOC)

Acknowledgments

We thank Professor Zhuang Yi at Nanjing University of Aeronautics and Astronautics, China,

for her helpful comments on this article.

Table 1. The Expected time in states “danger” and “up”.

K Expected time

danger(hrs) up(days)

1 0.29 420.78

2 0.39 559.40

4 0.45 651.25

8 0.46 664.53

16 0.46 664.74

doi:10.1371/journal.pone.0167168.t001

Fig 9. The reliability probability of each processor. With the increasing K value, the reliability probability

became stable.

doi:10.1371/journal.pone.0167168.g009

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167168.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167168.s002

Author Contributions

Conceptualization: HX.

Data curation: HX.

Formal analysis: HX.

Funding acquisition: PW.

Investigation: PW.

Methodology: HX.

Project administration: HX.

Resources: HX.

Software: HX.

Supervision: PW.

Validation: PW.

Visualization: PW.

Writing – original draft: HX.

Writing – review & editing: PW.

References
1. Paw YC, Balas GJ. Development and application of an integrated framework for small UAV flight control

development. Mechatronics. 2011; 21(5):789–802.

2. Song H, Rawat D, Jeschke S, Brecher C. Cyber-Physical Systems: Foundations, Principles and Appli-

cations Waltham, MA, USA: Elsevier; 2016.

3. Jeschke S, Brecher C, Meisen T, Özdemir D, Eschert T. Industrial Internet of Things: Cybermanufactur-

ing Systems. Switzerland: Springer; 2016.

4. Pouryazdan M, Kantarci B, Soyata T, Song H. Anchor-Assisted and Vote-Based Trustworthiness

Assurance in Smart City Crowdsensing. IEEE Access. 2016; 4:529–41.

5. Souyris J, Wiels V, Delmas D, Delseny H. Formal verification of avionics software products. the 16 Inter-

national Symposium on Formal Methods; Toulouse, France: Springer; 2009. p. 532–46.

6. Bingfeng X, Zhiqiu H, Jun H, Xiaofeng Y. Model-driven safety dependence verification for componet-

based airborne software supporting ariworthiness certification. Acta Aeronautica et Astronautica Sinica.

2012; 33(5):796–808.

7. Gigante G, Pascarella D. Formal methods in avionic software certification: the DO-178C perspective.

5th International Symposium ON ISoLA 2012, Part II, LNCS 7610; Heraklion, Crete, Greece: Springer-

Verlag; 2012. p. 205–15.

8. Moy Y, Ledinot E, Delseny H, Wiels V, Monate B. Testing or Formal Verification: DO-178C Alternatives

and Industrial Experience. IEEE Software. 2013; 30(3):50–7.

9. Cofer D. Model checking: cleared for take off. 17th International SPIN Workshop; Enschede, The Neth-

erlands Springer; 2010. p. 76–87.

10. Jacklin SA, Lowry MR, Schumann JM, Gupta PP, Bosworth JT, Zavala E, et al. Verification, validation,

and certification challenges for adaptive flight-critical control system software. American Institute of

Aeronautics and Astronautics (AIAA) Guidance, Navigation, and Control Conference and Exhibit2004.

p. 1–10.

11. Sreemani T, Atlee JM. Feasibility of model checking software requirements: A case study. Proceedings

of the eleventh annual Conference on Computer Assurance: systems integrity, software safety, process

security; Gaithersburg, Maryland: Institute of Electrical and Electronics Engineers; 1996. p. 77–88.

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 19 / 21

12. Pingree PJ, Mikk E, Holzmann GJ, Smith MH, Dams D. Validation of mission critical software design

and implementation using model checking. Proceedings of the 21st Digital Avionics Systems Confer-

ence; Piscataway, New Jersey: IEEE; 2002. p. 6A4-1–6A4-12.

13. Segev E, Goldshlager S, Miller H, Shua O, Sher O, Greenberg S. Evaluating and comparing simulation

verification vs. formal verification approach on block level design. Proceedings of the 2004 11th IEEE

International Conference on Electronics, Circuits and Systems; Tel Aviv, Israel: IEEE; 2004. p. 515–8.

14. Cofer D, Whalen M, Miller S. Software model checking for avionics systems. Proceedings of 27th Digital

Avionics Systems Conference; St. Paul, Minnesota: IEEE; 2008. p. 5D-1-5D-8.

15. Whalen M, Cofer D, Miller S, Krogh B, Storm W. Integration of Formal Analysis into a Model-Based Soft-

ware Development Process. 12th International Workshop on Formal Methods for Industrial Critical Sys-

tems; Berlin, Germany: Springer; 2007. p. 68–84.

16. Tafazoli M. A study of on-orbit spacecraft failures. Acta Astronautica. 2009; 64(2):195–205.

17. Li W, Song H. ART: An Attack-Resistant Trust Management Scheme for Securing Vehicular Ad Hoc

Networks. IEEE Transactions on Intelligent Transportation Systems. 2016; 17(4):960–9.

18. Yu H, Talpin J-P, Besnard L, Gautier T, Marchand H, Le Guernic P. Polychronous controller synthesis

from MARTE CCSL timing specifications. 9th IEEE/ACM International Conference on Formal Methods

and Models for Co-design; Cambridge, UK: IEEE; 2011. p. 21–30.

19. Posadas H, Penil P, Nicolas A, Villar E. System synthesis from UML/MARTE models: The PHARAON

approach. Proceedings of the 2013 Electronic System Level Synthesis Conference; Austin, Texas,

USA: IEEE; 2013. p. 1–8.

20. Kim S-K, Carrington D. A formal metamodeling approach to a transformation between the UML state

machine and Object-Z. 4th International Conference on Formal Engineering Methods; Shanghai,

China: Springer-Verlag; 2002. p. 548–60.

21. Kim S-K, Burger D, Carrington D. An MDA approach towards integrating formal and informal modeling

languages. International Symposium of Formal Methods Europe; Newcastle, UK: Springer; 2005.

p. 448–64.

22. Haiyang X, Yi Z, Jingjing G. A Formal Modeling Method for Embedded Software Architecture. Acta elec-

tronica sinica. 2014; 42(8):1515–21.

23. Guan T, Wang Y, Duan L, Ji R. On-Device Mobile Landmark Recognition Using Binarized Descriptor

with Multifeature Fusion. Acm Transactions on Intelligent Systems & Technology. 2015; 7(1):1–29.

24. Zhang Y, Guan T, Duan L, Wei B, Gao J, Mao T. Inertial sensors supported visual descriptors encoding

and geometric verification for mobile visual location recognition applications. Signal Processing. 2015;

112:17–26.

25. Haiyang X, Yi Z. A Formal Transformation Approach for Embedded Software Modeling. Journal of Soft-

ware. 2014; 9(4):807–13.

26. Wang Z, Yu J, He Y, Guan T. Affection arousal based highlight extraction for soccer video. Multimedia

Tools & Applications. 2014; 73(1):519–46.

27. Wei B, Guan T, Duan L, Yu J, Mao T. Wide area localization and tracking on camera phones for mobile

augmented reality systems. Multimedia Systems. 2014; 21(4):1–19.

28. Rozier KY. Linear temporal logic symbolic model checking. Computer Science Review. 2011; 5(2):163–

203.

29. Ogawa H, Kumeno F, Honiden S. Model checking process with goal-oriented requirements analysis.

Proceedings of the 15th Asia-Pacific Software Engineering Conference Beijing, China: IEEE; 2008.

p. 377–84.

30. Jiang Y, Song H, Wang R, Gu M. Data-Centered Runtime Verification of Wireless Medical Cyber-Physi-

cal System. IEEE Transactions on Industrial Informatics. 2016;PP(99:):1-.

31. Damm W, Harel D. LSCs: breathing life into message sequence charts. Formal Methods in System

Design. 2001; 19(1):45–80.:

32. Marelly R, Harel D, Kugler H. Multiple instances and symbolic variables in executable sequence charts.

ACM SIGPLAN Notices. 2002; 37(11):83–100.

33. Bontemps Y, Heymans P, Kugler H. Applying LSCs to the specification of an air traffic control system.

Second Workshop on Scenarios and State Machines: Models, Algorithms, and Tools; Portland, Ore-

gon: IEEE; 2003. p. 1–7.

34. Haiyang X, Yi Z, Jingjing G. Monitoring time property in time-sensitive LSC. Journal of Systems Engi-

neering and Electronics. 2015; 26(4):857–67.

35. Wei B, Guan T, Yu J. Projected Residual Vector Quantization for ANN Search. IEEE Multimedia. 2014;

21(21):41–51.

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 20 / 21

36. Li D, Li F, Huang X, Lai Y, Zheng S. A model based integration framework for computer numerical con-

trol system development. Robotics and Computer-Integrated Manufacturing. 2010; 26(4):333–43.

37. Mazzolini M, Brusaferri A, Carpanzano E, editors. An integrated framework for Model-based Design

and Verification of discrete automation solutions. IEEE International Conference on Industrial Informat-

ics; 2011.

Real-Time Reliability Verification for UAV Flight Control System

PLOS ONE | DOI:10.1371/journal.pone.0167168 December 5, 2016 21 / 21

