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Abstract

A station closure is an abnormal operational situation in which the entrances or exits of a rail

transit station have to be closed for some time due to an unexpected incident. A novel

approach is developed to estimate the impacts of the alternative station closure scenarios

on both passenger behavioral choices at the individual level and passenger demand at the

disaggregate level in a rail transit network. Therefore, the contributions of this study are two-

fold: (1) A basic passenger behavior optimization model is mathematically constructed

based on 0–1 integer programming to describe passengers’ responses to alternative origin

station closure scenarios and destination station closure scenarios; this model also consid-

ers the availability of multi-mode transportation and the uncertain duration of the station clo-

sure; (2) An integrated solution algorithm based on the passenger simulation is developed

to solve the proposed model and to estimate the effects of a station closure on passenger

demand in a rail transit network. Furthermore, 13 groups of numerical experiments based

on the Beijing rail transit network are performed as case studies with 2,074,267 records of

smart card data. The comparisons of the model outputs and the manual survey show that

the accuracy of our proposed behavior optimization model is approximately 80%. The

results also show that our model can be used to capture the passenger behavior and to

quantitatively estimate the effects of alternative closure scenarios on passenger flow

demand for the rail transit network. Moreover, the closure duration and its overestimation

greatly influence the individual behavioral choices of the affected passengers and the pas-

senger demand. Furthermore, if the rail transit operator can more accurately estimate the

closure duration (namely, as g approaches 1), the impact of the closure can be somewhat

mitigated.

Introduction

Station closure, which is also called station disruption [1], is an abnormal and unplanned oper-

ational situation in which operators must close the entrances or exits of a rail station for vari-

ous reasons, such as unexpected incidents or taking steps to avoid overcrowding. In these

situations, passengers cannot use the closed station as their departure station or destination
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station for some time. Generally, station closure is a serious deviation from the planned opera-

tions in the rail transit context. A station closure can strongly affect both the service and

demand of the rail transit system. At the service level, a station closure means that the trains

that were planning to stop at the closed station have to pass the closed station without stop-

ping. At the demand level, the station closure may cause significant changes in passenger flow

demand at the closed stations and nearby stations. The affected passengers may react to the

station closure in different ways. They may alter their planned origin station or destination sta-

tion, wait to continue on their original path, reroute through the rail transit network, or simply

give up on the rail transit journey.

However, limited existing studies are available related to the qualitative analysis or model-

ing of passengers’ reactions to segment disruptions or line disruptions [1–8]. To our knowl-

edge, only one study has been conducted related to the topic of station disruption [1]. In that

study, a data-driven statistical method was proposed to determine the effect of station disrup-

tions on the macroscopic passenger flow demand based on the smart card data from the day of

the station disruption and the historical data. This approach was proved to be effective for

identifying the impact of a station closure, but it is not applicable for predicting the impact of a

station closure that does not actually occur or is about to occur. Therefore, an effective mathe-

matical model or simulation model that can capture the behavior of passengers affected by a

station closure is still needed for analyzing alternative closure scenarios and their likely

outcomes.

In this paper, we develop a novel approach for estimating the impact of a station closure in

the rail transit network on both the passenger behavioral choices at the individual level and

passenger demand at the disaggregate level. In addition, we assume that the demand is the

result of several decisions made by each individual in the population. Therefore, the individual

behavior model is the basis for estimating the passenger demand. The contributions of our

work are two-fold: First, a basic passenger behavior optimization model is mathematically con-

structed based on 0–1 integer programming to describe passengers’ responses to alternative

origin station closure scenarios and destination station closure scenarios; this model also con-

siders the availability of multi-mode transportation and the uncertain duration of the station

closure. Second, an integrated solution algorithm based on the passenger simulation is devel-

oped to solve the proposed model and to estimate the effects of station closure on passenger

demand in the rail transit network.

The paper is organized as follows: the next section gives a detailed review of related studies.

In the section of Methods, the detailed problem description and the passenger behavior model

framework are introduced. Then, a passenger behavior optimization model that considers the

dynamics and uncertainty of the closure duration is proposed for the case of a station closure.

Then, an integrated solution algorithm based on the passenger flow simulation is developed to

solve the model. The case study results are reported in the Case study section. Finally, some

conclusions are given in the section of Conclusions.

Literature Review

Existing approaches for studying the effects of disruptions on traffic behavior can be catego-

rized as data-driven methods or model-driven methods. The data-driven method is used to

recognize patterns of passenger behavior or to directly evaluate or predict the traffic conditions

based on the data [1, 6, 9–10]. In the data-driven methods, huge amounts of operational data

are processed, and then statistical models or demand forecasting models are developed. The
model-driven method is used in cases that lack sufficient real-life data. A qualitative analysis of

the behavior mechanism and the main behavioral decision factors are first needed; then, the
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simulation models or the analytical models are constructed. Finally, the models are tested

based on real-life data to capture the passenger/driver/cyclist behavior and to estimate the

dynamic evolution of macro traffic flow under disruptions [11–20]. Therefore, the detailed lit-

erature review mainly focuses on these two methods.

(1) The data-driven methods

With the development of Automatic Fare Collection Systems [10, 21], Vehicular Ad Hoc Net-

works [21–27], and the latest Cyber-Physical Systems [28], huge traffic data has been widely

used in recent transportation studies and practical applications. In the urban rail transit context,

Silva et al. [1] modeled passenger behavior under two types of disruptions: bidirectional line

segment closures and station closures. They proposed a statistical method using network-wide

smart card data to estimate the effects of disruptions due to unplanned station or line closures.

van der Hurk et al. [6] presented a two-step methodology for studying the effect of large-scale

disruptions on passenger behavior based on smart card data. The methodology was able to fore-

cast the passengers affected by a disruption. However, this methodology assumed that passen-

gers only altered their path choice and did not choose a different mode of transport. Bouman

et al. [9] analyzed passenger demand patterns from smart card data. They combined three types

of demand that can be detected in a smart card dataset, i.e., trip-based demand, tour-based

demand and pattern-based demand, which form the basis of generating agent populations.

Kusakabe T et al. [10] developed a data fusion methodology for estimating the behavioral attri-

butes of trips using smart card data to observe continuous long-term changes in trip attributes.

(2) The model-driven methods

The model-driven methods can be categorized into analytical models and simulation models

according to the nature of their modeling and solution approaches. The analytical models are

mainly mathematical optimization problems with a specific objective (such as User Equilib-

rium (UE) or System Optimal (SO)) [12–13] or discrete choices models. In the urban rail tran-

sit context, Nuzzolo et al. [14] proposed a schedule-based assignment model that defined path

choice behavior in two parts: (1) the pre-trip choice behavior, which includes the departure

time and the boarding station, and (2) the en-path choice behavior, which mainly includes the

decision to board an arriving train considering its residual capacity. Then, they designed a

learning mechanism based on the dynamic utility of three choice dimensions: run, stop and

departure times. However, the disruption factors were not considered. Cadarso et al. [4, 5]

used a general multinomial logit model to describe the general process of passenger travel deci-

sion making when facing segment disruptions. The utility function of each path is calculated

as the sum of the traveling time, the transfer time and the waiting time. In addition, the travel

time is estimated under disruptions before calculating the utility function, as in Tsuchiya et al.
[7]. Bouman et al. [8] focused on passenger path choice behavior for the case of track disrup-

tions, where a passenger has to decide between waiting for the end of the disruption and taking

a detour. Then, they gave an approach based on game theory and adopted the competitive

ratio in the decision process. Behavior simulation models are a popular tool in assessing the

traffic system performance and analyzing the behavior of passengers in alternative scenarios.

The passenger behavior simulation models can also generally be categorized into microscopic,

macroscopic or mesoscopic according to the granularity of the modeled traffic flow entities

and the temporal resolution [11]. The mesoscopic simulation model is mostly used to describe

the passenger behavior for alternative scenarios. Cats [16–18] established an event-based pas-

senger behavior simulation model on the mesoscopic level, in which each action, such as enter-

ing a station and boarding/alighting a train, was an event. Othman et al. [19] developed an
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agent-based simulation model of congestion and scaling dynamics of rapid transit systems in

the regular situation. The agent-based methods were also used for modeling microscopic

pedestrian behavior [20].

In summary, we can see that few studies discuss the topic of station closure. In addition, the

only related study proposed a data-driven statistical method for recognizing the effects of sta-

tion disruptions that have already occurred based on historical smart card data. Making a pre-

dictive assessment of the impact of alternative station closure scenarios that do not actually

occur or are about to occur remains an unsolved problem. Therefore, in the next section, a

new model-driven method for modeling the passenger behavior under alternative station clo-

sure scenarios is proposed.

Methods

The smart card data, which were used to generate passenger individuals, were analyzed anony-

mously. This data is introduced in the next section in detail.

In this section, we first give a detailed description of the passenger behavior modeling prob-

lem with station closures. Then, a dynamic passenger behavior model for the case of station

closures is formulated, and an integrated solution algorithm based on the passenger flow simu-

lation is developed.

Problem description and modeling framework

Large differences in passenger behavior may occur between the normal and abnormal opera-

tional situations, as shown in Fig 1. In the normal situation, passengers complete a rail transit

trip in two stages [14]. The first stage is the pre-trip choice behavior that occurs before the trip

and includes deciding on an origin station, destination station and departure time and choos-

ing a path from all feasible candidate paths. The second stage is the en-path behavior that

occurs during the trip and includes checking in at the origin rail station, waiting for a train on

the platform, boarding a train, and then alighting the train at the destination station or transfer

station. If the current station is the passenger’s destination, the passenger will check out; if the

current station is simply a transfer station, the passenger will transfer to another line.

However, in the abnormal situation, the passengers affected by the disruption may change

their travel behavior, as shown in Fig 1. If the abnormal incident occurs before the trip, the

passengers will make a judgment about whether their planned origin or destination stations

are out of service, and the affected passengers may modify their trip plans or make a new trip

decision. However, if the closure occurs during their trips, the passengers will judge whether

their planned destination stations are out of service and plan an alternative trip from the cur-

rent station to the new destination.

Many abnormal incidents, such as injury accidents at a station or taking steps to avoid over-

crowding due to a large event nearby, can lead to the closure of a rail transit station. In such sit-

uation, passengers cannot board or alight trains, and trains pass the station without stopping,

as mentioned by Silva et al. [1]. When a station closure occurs, the affected passengers face two

possible situations: the closed station is their planned origin station or the closed station is

their planned destination station. As shown in Fig 2, passenger A, whose departure station is

out of service, may change their trip plan according to information about the current situation

such as the closure duration and the availability of alternative paths. They may also choose an

alternative station near the closed station as their new departure station, wait at the closed sta-

tion for recovery, or take another transit mode. Passenger B, whose destination is out of ser-

vice, has to decide whether to choose an alternative destination station or take another transit

mode.
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Therefore, understanding passenger behavior in the case of a disruption is important.

When an origin or destination station is out of service in a rail transit system, the affected pas-

sengers will decide on an alternate station as their new origin or destination station. However,

which rail station is the best alternative among the stations in the network? In addition, how

does the passenger get to the new origin rail station from the disrupted origin station or to the

disrupted destination station from the new destination station? It is difficult to accurately cap-

ture the behavior under the station closure condition. Therefore, in this paper, we propose an

agent-based behavior optimization model to discover the mechanism of the dynamic behavior

subject to alternative station closure scenarios. To solve the proposed model, an integrated

solution algorithm embedded in a passenger simulator is developed.

Assumptions

To simplify the problem, the following assumptions are made.

(1) The duration of the station closure can be estimated. In reality, not even the operator

knows the actual ending time of the station closure [8]. However, the operators will be able to

estimate the duration of the closure based on their experience. Only in this way can they make

arrangements for measures or resources to address the coming closure and disruption. But,

Fig 1. A schematic diagram indicating the passengers’ travel behavior along a rail transit journey in the normal and

abnormal conditions. A detailed description is presented in the previous paragraph and the next paragraph. In addition, this

logic diagram is a qualitative summary of passenger travel behavior in a rail transit network and is originally presented in this

paper.

doi:10.1371/journal.pone.0167126.g001
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the estimates are usually more or less in line with actual values. Therefore, a parameter related

to the closure duration is proposed in our study.

(2) Passengers can transform their whole trip into a maximum of two combinations when

subject to a station closure, as shown in Fig 3. Specifically, a planned rail trip (shown in

Fig 2. An example of a station closure in the Beijing rail transit network. As indicated in this example,

the Life Science Park station on the Changing Line is out of service. Passenger A is going to depart from this

station by rail transit. Passenger B is currently at the South Gate of Forest Park station on Line 8, and his

destination is the Life Science Park station.

doi:10.1371/journal.pone.0167126.g002

Fig 3. An illustration of assumption 2. For a particular rail passenger, O and D denote the planed origin and

destination stations, respectively. O’ denotes the alternative origin station when the planed origin station is

closed, and D’ denotes the alternative destination station when the planed destination station is closed. (a)

represents the passenger’s planned rail journey in the normal situation. (b) shows that the passenger will take

a bus or taxi to the new alternative origin station and will then take rail transit from the new origin station to the

planned destination when the planned origin station is closed. (c) shows that the passenger will take rail transit

from the planned origin station to the new alternative destination and will then take a bus or taxi to the planned

destination station then when the planned origin station is closed. Only the two situations of (b) and (c) are

considered in our studies for station closure.

doi:10.1371/journal.pone.0167126.g003
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Fig 3(a)) can only be re-planned as a combination of “by bus/taxi” and “by rail” in sequence

following the closure of the origin station (shown in Fig 3(b)) or as a combination of “by rail”

and “by bus/taxi” in sequence following the closure of the destination station (shown in Fig 3

(c)). The combination of three or more parts, such as “rail”, “bus/taxi” and “rail” in sequence,

is not used in our studies.

(3) We limit our study to the scenario in which only the origin station or the destination

station is closed in the particular time interval for a particular passenger. We do not consider

the possibility that both the origin station and destination station are closed simultaneously for

a passenger. In addition, the closed station is assumed to be an ordinary station, not a transfer

station. The closure of a transfer station may cause a failure to transfer, which is not considered

in our behavior model.

Model formulations

Notations.

(1) Sets and indices

S: set of stations, S = {s1, s2,. . .,sn}. Here, the transfer station is abstracted as two or three vir-

tualized stations, the number of which equals to the number of lines that the transfer station

links; see Ref. [29].

T: set of equivalent time intervals, T = {1, 2, 3,. . .,Tn}. The time interval can be any value

such as 30 seconds, 1 minute, or 5 minutes.

t: index of the equivalent time intervals for passengers to make a new travel decision for the

case of a station closure, t 2 T.

P: set of passengers in the current rail transit system.

M: set of modes of urban transport, M = {taxi, bus, rail}.
M0: subset of M, M0 = {taxi, bus}.
Si, sj: indexes of stations, si,sj 2 S.

m: index of the urban transport mode in M, m 2M.

Pt
ij: set of passengers from station si to station sj at time t, Pt

ij � P.

Rm;t
ij : set of candidate paths of urban transport mode m from station si to station sj at time t.

The candidate paths of the rail transit network are calculated by our proposed method [30],

and the other paths refer to the Direction API of Baidu map [31].

pt
ij: index of the passenger with the origin station si, destination station sj, and departure

time of time t, pt
ij 2 Pt

ij.

rm;k;tij : the kth candidate path of urban transport mode m from station si to station sj at time t,
k� K. In addition, K is a constant denoting the maximum number of candidate paths.

(2) Passenger travel strategy parameters

αm: the value of the travel time of urban transport mode m, which can be found in local

studies in China [32,33].

tm;t;kij : the travel time for taking transport mode m along the kth path from station si to sta-

tion sj at time t in the normal situation.

f m;k;t
ij : the fee for taking transport mode m along the kth path from station si to station sj at

time t.
cm;k;tij : the generalized cost of taking transport mode m along the kth path between station si

and station sj at time t considering the travel time and price.

(3) Station closure parameters

gt
i : the constant parameter denoting whether station si is closed. gt

i equals 1 when station si is

out of service and is 0 otherwise.
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tstarti : the beginning time of the closure of station si.
tendi : the actual ending time of the closure of station si.
g: a constant coefficient related to the actual duration, g 2 [1,1), indicating the operator’s

decision preferences. A larger g is produced by a more conservative operator. g = 1 indicates

that the operator knows the exact ending time of the station closure. g =1 indicates that the

operator has no idea how long the station closure will last and that it will perhaps last until the

end of daily operations.

em;k;tij : the extra journey time cost of rail transit along the kth path from station si to station sj
at time t due to the station closure:

em;k;tij ¼

g � ðtendi � tÞ; if si is closed and m ¼ rail; tendj > t

g � ðtendj � t � tm;k;tij Þ; if sj is closed and m ¼ rail; tendj > t

0; otherwise

8
>><

>>:

ð1Þ

Model formulation. First, we use sO and sD to denote the planned origin station and the

destination station, respectively, of the passenger’s rail transit journey, where sO, sD 2 S. For

the passenger pt
OD, we construct a behavior optimization model to describe their decision-mak-

ing process for the case of station closure.

(1) Decision variables

xt
i : the main decision variable denotes whether station si should be chosen as the alternative

origin or destination station at time t, where

xt
i ¼

1; if station si is selected as the replaceable origin=destination station;

0; otherwise:

(

ð2Þ

zm;t
ij : the decision variable denotes whether the transport mode m should be the alternative

transport mode from station si to station sj at time t, where

zm;t
ij ¼

1; if tranport mode m is selected as the replaceble transport mode between si and sj;

0; otherwise:

(

ð3Þ

ym;k;t
ij : the decision variable indicates whether the kth path should be chosen from the feasible

path set between station si and station sj at time t while taking transport mode m.

ym;k;t
ij ¼

1; if kth route of transport mode m is eventually selected between si and sj;

0; otherwise:

(

ð4Þ

(2) Objective and constraints

For any passenger pt
O;D, the objective of this behavior model is to minimize the generalized

travel cost of making a new travel strategy for the case of a station closure.

Objective

min
X

j2fO;Dg

gt
j J

t
j ð5Þ
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Subject to

JtO ¼
X

si2S

xt
ið
X

m2M0
ðzm;t

O;i

XK

k

ðym;k;t
O;i cm;k;tO;i ÞÞ þ

XK

k

ðyrail;k;t
i;D crail;k;ti;D ÞÞ; 8t; pt

O;D;O is out of service ð6Þ

JtD ¼
X

si2S

xt
ið
XK

k

ðyrail;k;t
O;i crail;k;tO;i Þ þ

X

m2M0
ðzm;t

i;D

XK

k

ðym;k;t
i;D cm;k;ti;D ÞÞÞ; 8t; p

t
O;D;D is out of service ð7Þ

gt
O þ gt

D ¼ 1; 8t; pt
O;D ð8Þ

X

si2S

xt
i ¼ 1;8t ð9Þ

X

m2M0
zm;t
ij � 1; 8t; i; j ð10Þ

XK

k

ym;k;t
ij � 1; 8t;m; i; j ð11Þ

cm;k;tij ¼ am � ðtm;k;tij þ em;k;tij Þ þ f m;k;t
ij ; 8t;m; k; i; j ð12Þ

tstarti � t � tendi ; 8i ¼ O or D ð13Þ

Objective function (5) minimizes the generalized travel cost. It is the combination of two

situations: the closure of the origin station and the closure of the destination station. However,

for a particular passenger pt
O;D, only one situation satisfies constraints (6)–(8).

Eqs (6)–(8) indicate the basic constraints of the station closure situation for a particular pas-

senger. Constraint (6) denotes the generalized travel cost of making a new journey plan if the

passenger’s origin station is out of service. Constraint (7) denotes the generalized travel cost of

making a new journey plan if the passenger’s destination station is out of service. Constraint

(8) indicates that only one case occurs for a particular passenger, which means that either the

origin station (gt
O ¼ 1; gt

D ¼ 0) or the destination station (gt
O ¼ 0; gt

D ¼ 1) is closed. Other

cases, such as the cases of gt
O ¼ 1; gt

D ¼ 1 or gt
O ¼ 0; gt

D ¼ 0, are beyond the scope of this

model.

Eqs (9)–(11) indicate the constraints of the decision variables. Constraint (9) indicates that

an alternative origin or destination station will be chosen. Constraint (10) donates that one

alternative transport mode will bridge the invalid original origin station to the new alternative

origin station or the new alternative destination station to the invalid original destination sta-

tion instead of the rail transit mode. In addition, if i = j,
X

m2M0
zm;t
ij ¼ 0. Constraint (11) donates

that a feasible path will be chosen from the optional paths for a particular transport mode m

between station si and station sj. Finally, if i = j,
XK

k

ym;k;t
ij ¼ 0.

Eq (12) shows how to calculate the generalized cost of taking transport mode m along the

kth path between station si and station sj at time t considering the travel time and price. As

defined in Eq (1), this considers a dynamic time variable that will change over time.
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Eq (13) indicates that the time interval for making a decision for a particular passenger

occurs during the period of the station closure. Specifically, the model is applicable when the

passenger has just been faced with the station closure.

Output analysis of the behavior model. This model addresses a particular passenger’s

travel decision problem when faced with the closure of the origin station or destination station.

As our decision variables are 0–1 integer variables, and the model objective is to minimize the

value of the objective function, our proposed passenger behavior model is belonged to optimi-

zation models based on 0–1 integer programming. That also means the outputs of our pro-

posed behavior model are optimal for the passengers under the effect of alternative station

closure scenarios.

(1) The model outputs under origin station closure (gt
O ¼ 1): This case occurs before the

passenger starts his rail transit journey. If xt
i ¼ 1 and i = O, the passenger will not change his

travel strategy but instead wait for the recovery of his original station. If xt
i ¼ 1 and i = D, the

passenger will give up on the rail transit portion of their journey and will take a bus or taxi

instead. If xt
i ¼ 1 and i 6¼ O, D, the passenger should take a bus or taxi from the old origin sta-

tion sO to the new origin station si and then continue their rail transit journey from the new

origin station si to the destination station sD.

(2) The model outputs under destination station closure (gt
D ¼ 1): This case may occur

before the passenger starts their rail transit journey or during their rail trip. In addition, if the

passenger is on a rail transit trip, such as when they are at a transfer station or on board a train,

the current station will be processed as the origin station in our model. Then, the passenger

will make a decision about whether to change their travel strategy. For the situation of

(gt
D ¼ 1), the following options are possible: If xt

i ¼ 1 and i = O, the passenger will give up on

the rail transit portion of the journey and take a bus or taxi instead. If xt
i ¼ 1 and i = D, the pas-

senger will not change their travel strategy. If xt
i ¼ 1 and i 6¼ O,D, the passenger should take

the rail transit from the origin station sO to the new destination station si and continue their

journey by bus or taxi from the new destination station si to the original destination station sD.

An integrated solution algorithm

As the decision variables, constraints and some key parameters are time-depended, the passen-

ger behavior optimization model we construct belongs to the category of dynamic 0–1 integer

programming problems. Some mathematical algorithms have been developed to solve similar

discrete problems [34,35]. But it is still difficult for existing algorithms to solve our proposed

model while some dynamic parameters are complex and changeable over time. Therefore, an

integrated solution algorithm for solving the model is developed. This algorithm contains two

modules: the passenger simulator and the basic model solver. The relationship between the

two modules is demonstrated in Fig 4.

The passenger simulator is developed to simulate passenger movements in the rail transit

network in real time, mainly based on train schedules and huge amounts of smart card data. In

addition, it provides a particular passenger with the planned origin station and destination sta-

tion, the system time, the current state, the current path and the position of each passenger for

our model solver. Furthermore, the simulator also estimates the effect of station closures on

passenger demand at the disaggregate level.

The basic model solver is developed to solve the passenger behavior model for the station

closure case for an individual passenger at a particular time. The solver outputs the alternative

station (replacing the origin station or the destination station), the alternative transport mode

for bridging the alternative station and the closed station, and the path of each alternative

transport mode. These types of updated passenger travel information are then fed back to the
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passenger simulator. Changeable station closure information is also required for the model

solver.

Passenger simulator module. First, some necessary parameters used in the simulation

process are introduced. We label ts as the starting time of the simulation, te as the ending time

of the simulation, Td as the duration of each simulation period, Δt as the simulation step, tpi as

the entry time of passenger p at station si, stp as the current location of passenger p at time t, tp
as the current time of passenger p, dv

i as the departure time of train v at station si, and av
i as the

arrival time of train v at station si. statep is the state of passenger p and can be “In”, “Entry”,

“Waiting”, “Transfer”, “Boarding”, “Alighting”, “Exit”, or “Out”.

“In”: indicates that the passenger agent has just been generated.

“Entry”: indicates that the passenger agent has just completed checking in at entry gates

and is going to the platform to wait for a train.

“Waiting”: indicates that the passenger agent is waiting on the platform for a train.

“Boarding”: indicates that the passenger agent has completed the boarding process and is

now on a train.

“Transfer”: indicates that the passenger agent has completed the alighting process and is

now transferring to another platform or train.

“Exit”: indicates that the passenger agent has completed the alighting process and is now

going to check out at the exit gates of the destination station.

“Out”: indicates that the passenger agent has completed checking out and is now out of the

rail transit system.

In addition, some constant parameters concerning the passenger walking time consump-

tion are introduced: tIni donates the average walking time at station si from the check-in gate

Fig 4. The framework of the integrated solution algorithm. There are two core modules in the solution

algorithm: the passenger simulator and the model solver. The main inputs of the passenger simulator are the

rail transit network, train schedules, smart card data, and bus/taxi data. In addition, the simulator provides

instant passenger information, including the current path, station, and train, for the tens of thousands of

behavior optimization models. The closure duration and its overestimation are also the inputs of the model

solver. Finally, the outputs of the model solver, namely, the updated destination station, origin station, the

transport mode and paths, are computed and then become the inputs of the passenger simulator.

doi:10.1371/journal.pone.0167126.g004
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to the platform, tOuti is the average walking time for station si from the platform to the check-

out gate, and trij is the average walking time for transferring from the departure platform of sta-

tion si to the target platform of station sj.
Finally, the passenger simulation algorithm is introduced in Fig 5.:

Basic model solver module. The basic model solver, shown in Fig 6, is embedded in the

simulation algorithm in front of the “switch” statement. For a particular passenger, the system

time, current state, current path and position of each passenger are provided by the simulator.

The outputs of the passenger behavior model are produced after a station closure occurs. Pas-

sengers update their current station, planned origin/destination station, current state and cur-

rent time parameters, which are then fed back to the simulator.

Case study

Background

Beijing rail transit network. The Beijing rail transit system is one of the busiest tracks in

the world. In Beijing, there are more than 10 million riders traveling daily through the heavily

utilized rail transit network, which connects 17 lines with a total length of 561 kilometers and

328 operating stations (a single transfer station is split into two stations if two lines join

together at the transfer station); see Fig 7. Station closures have become frequent in the Beijing

rail transit’s daily operations and has a large impact on passengers’ regular journeys, such as

increasing their journey time and disrupting their normal travel plans.

Data preparation. Although many parameters are considered in the above behavior opti-

mization models and simulation algorithms, two main types of parameters should be obtained:

(1) smart card data used to generate the passenger agents and (2) the time and money con-

sumptions of buses or taxis for trips between each pair of rail stations, which are the basic

input parameters of the proposed behavior model. Moreover, the basic rail transit network of

the Beijing rail transit, the planned timetables of each rail transit line, the inbound capacity of

each station, and the parameters concerning the passenger walking time are also acquired.

(1) Smart card data of the Beijing rail transit

The data are used in the passenger simulation. Smart card data can be acquired through the

Beijing rail transit’s automatic fare collection (AFC) system and is used to generate the passen-

ger agents. Four essential elements are our focus: the entry rail station, the entry time, the exit

rail station and the exit time. Every weekday, nearly 5 million items of valid transaction details

of smart cards are processed. In this article, the smart card data from 19/5/2015 from 4 o’clock

to 12 o’clock are processed. A few examples of smart card data are listed in Table 1.

(2) Bus and taxi cost

The bus and taxi cost data are the key input for the passenger behavior models. Direction
API is adopted to obtain the expected time and money consumptions of buses and taxis

between each two rail stations. Direction API is a free and open access application program-

ming interface developed by Baidu, Inc. It provides services for traveler guidance using buses,

driving and walking using http based on the Baidu map in real time and can retrieve data in

xml or json formats. We process the data file with C# programming tools according to the pro-

vided data structure on the Baidu developer’s main page [31]. Some examples are listed below

in Table 2.

Case study descriptions

Case One: JISHUITAN as the closed station. In the first case study, JISHUITAN station

is selected as the disrupted station. The duration of the station closure is from 7:30 to 8:30 on
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Fig 5. The passenger simulator module. The parameters are initialized firstly. And then the in each

simulation step of each simulation period, each passenger will get the most out of what they can do. One

passenger’s single rail journey will start from the entering a station, and ends up with exiting a station. The

whole process will be tracked by the transitions of passenger states, namely “In”, “Entry”, “Waiting”,

“Transfer”, “Boarding”, “Alighting”, “Exit”, or “Out”.

doi:10.1371/journal.pone.0167126.g005
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Tuesday, May 19, 2015. JISHUITAN station on Line 2 is among the busiest stations during

morning rush hour, and the location is shown in Fig 8. Furthermore, to intuitively display the

relationship between JISHUITAN station and the nearby stations, the travel cost by bus is

shown in Fig 9.

Case Two: TIANTONGYUAN as the closed station. In the second station closure case

study, TIANTONGYUAN station is set to be closed. In addition, the duration of the station

closure is also from 7:30 to 8:30 on Tuesday, May 19, 2015. TIANTONGYUAN station of Line

5 is located in the Tiantongyuan area, which is among the top large-scale residential areas of

Beijing. The location is shown in Fig 10. In addition, the travel cost between the TIANTON-

GYUAN and the nearby stations by bus is shown in Fig 11.

Simulation experiment groups settings. To validate the behavior model under station

closure conditions, a set of simulation experiments are designed, as listed in Table 3. The simu-

lation period is set from 4:00 to 12:00. Every station is also set to have an inbound capacity

according to the capacity of equipment and facilities according to the historical data.

The overestimation of the closure duration is comprehensively investigated by adopting dif-

ferent values of the parameter g. In addition, the effects of station closures on passengers’

Fig 6. The basic model solver module. For each passenger, all stations will be traversed and examined

with the objective of passenger behavior optimization model. And then the station with the minimum model

objective will be chosen as the alternative station.

doi:10.1371/journal.pone.0167126.g006
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individual behavior and passenger demand can be estimated for different g. We use the time

value αm of 25 according to previous studies on Chinese cities [32, 33].

Results and discussion

To find the solutions of the passenger behavior model for the case of a station closure, our

behavior model and the algorithm are implemented with C# and are performed on a PC with

a 3.2 GHz, Intel(R) Core(TM) i5-3470 processor and 16 GB of RAM running Windows 7 (64

bit). The object-oriented programming technology, which is the mainstream programming

technology, is adopted in our implementation.

Fig 7. The Beijing rail transit network map for 2015. This map is originally presented in this paper by the Haodong Yin,

based on open access data of the Beijing rail transit using our own developed software.

doi:10.1371/journal.pone.0167126.g007

Table 1. Example of smart card data.

ID Entry station Entry time Exit station Exit time

1 XIDAN 2015/5/19 8:05:24 Beijing Railway Station 2015/5/9 8:18:24

2 XIDAN 2015/5/19 5:27:00 DONGZHIMEN 2015/5/19 5:58:20

3 QIANMEN 2015/5/19 7:20:30 Beijing Railway Station 2015/5/19 7:31:22

. . . . . . . . . . . . . . .

doi:10.1371/journal.pone.0167126.t001
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In the following discussions, the general introduction of the simulation results is firstly

given, where huge data and its display are shown. And then, the dynamic effects of closure

duration and its overestimation on passenger behavioral choices and passenger demand are

presented. Finally, a questionnaire survey is conducted and the results are compared with the

model outputs.

General introduction of the simulation results. (1) Hug data and the simulation

results. Approximately 2,074,267 items of smart card data from 4 o’clock to 12 o’clock are pro-

cessed in our developed simulator. The simulation results are displayed in Fig 12. We divide

the whole simulation process into 32 periods. Fig 13(a) shows the total dynamical entries,

transfers and exits in the whole rail transit network in each simulation period. The number of

instantaneous online passengers on the rail transit network at the end of each simulation

period is also shown in Fig 13(b). The maximum number of instantaneous online passengers

reaches nearly 500,000. The entries in hundreds of stations during the 32 simulation periods

are shown intuitively and dynamically in Fig 14.

Table 2. Example of expected fare and time consumption of buses and taxis between each pair of rail stations.

ID Station O Station D Fares of direct bus

(RMB)

Time required for the bus

(min)

Taxi fares

(RMB)

Time required for the taxi

(min)

1 JISHUITAN GULOUDAJIE 2 20.8 18 12.4

2 JISHUITAN PING’ANLI 2 17.1 17 9.6

3 Beijing Railway

Station

JISHUITAN 3 81 33 28.7

. . . . . . . . . . . . . . . . . . . . .

doi:10.1371/journal.pone.0167126.t002

Fig 8. The location of JISHUITAN station in the Beijing rail transit network. The red point is JISHUITAN

station.

doi:10.1371/journal.pone.0167126.g008
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(2) Total affected passengers. We define the affected passengers as those who have to wait

for extra time for the recovery of the closed station, alter their departure or destination sta-

tions, or give up their rail transit journey. As the announced closure duration increases, more

passengers are affected, as shown in Fig 15. In other words, if the rail transit operator can accu-

rately estimate the closure duration, fewer passengers will be affected.

Fig 9. The total time consumption, distance and fee between JISHUITAN station and nearby stations. The parameters

(t, d, f) on each arc that are marked by a red arrow are the total journey time (minutes), distance (kilometers) and fee (RMB) by

bus, including the walking during the trip. (a) denotes the travel cost from the closed station to some nearby stations. (b)

indicates the travel cost from the nearby stations to the closed station. It should be noted that the travel costs on the arcs in the

different directions between the pairs of stations are different.

doi:10.1371/journal.pone.0167126.g009

Fig 10. The location of TIANTONGYUAN station in the Beijing rail transit network. The red point is the

TIANTONGYUAN station.

doi:10.1371/journal.pone.0167126.g010
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Effects of a station closure on passenger behavioral choices. (1) Passengers’ behavior

choices will change as the closure duration or its overestimation changes. Fig 16 shows that

with increasing closure duration, more passengers will alter their planned origin stations or

quit their rail transit journey, and fewer passengers will wait at the closed station for its recov-

ery. A similar conclusion can be drawn when g increases, as shown in Fig 17. With increasing

g, which means that the rail transit operator’s overestimation of the closure duration increases,

the number of passengers who alter their planned origin stations or give up on their rail transit

journey gradually increases, and the number of passengers waiting at the closed station

decreases.

Fig 11. The total time consumption, distance and fee between the TIANTONGYUAN station and nearby stations. The

parameters (t, d, f) on each arc that are marked by a red arrow are the total journey time (minutes), distance (kilometers) and

fee (RMB) by bus, including the walking during the trip. (a) denotes the travel cost from the closed station to some nearby

stations. (b) indicates the travel cost from the nearby stations to the closed station. It should be noted that the travel costs on

the bidirectional arcs between the same two stations may be different.

doi:10.1371/journal.pone.0167126.g011

Table 3. The different values of the parameters in the simulation cases.

ID Cases g Closure duration Simulation period Description

1 Experimental Group 1: JISHUITAN as the closed station 1 [7:30,8:30] [4:00,12:00] The 1st Closure Scenario

2 1.5 [7:30,8:30] [4:00,12:00] The 2nd Closure Scenario

3 2 [7:30,8:30] [4:00,12:00] The 3rd Closure Scenario

4 3 [7:30,8:30] [4:00,12:00] The 4th Closure Scenario

5 5 [7:30,8:30] [4:00,12:00] The 5th Closure Scenario

6 10 [7:30,8:30] [4:00,12:00] The 6th Closure Scenario

7 Experimental Group 2: TIANTONGYUAN as the closed station 1 [7:30,8:30] [4:00,12:00] The 7th Closure Scenario

8 1.5 [7:30,8:30] [4:00,12:00] The 8th Closure Scenario

9 2 [7:30,8:30] [4:00,12:00] The 9th Closure Scenario

10 3 [7:30,8:30] [4:00,12:00] The 10th Closure Scenario

11 5 [7:30,8:30] [4:00,12:00] The 11th Closure Scenario

12 10 [7:30,8:30] [4:00,12:00] The 12th Closure Scenario

13 No-treatment Control Group ~ ~ [4:00,12:00] Normal situation with no closures

doi:10.1371/journal.pone.0167126.t003
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(2) Alternatives of origin stations. Figs 18 and 19 show in detail the top stations that pas-

sengers prefer to choose as their alternative origins when their planned origin stations are

closed. Fig 18 shows the main stations that passengers choose as their alternative origin sta-

tions after JISHUITAN station is closed. We can see that GULOUDAJIE station to the east of

Fig 12. The passenger flow status at every 5 minutes on the rail network from 8:00–8:30. We can simulate every moment of

each passenger in our passenger simulator. In addition, once trains enter the segment, the passengers in the trains is counted by the

segment, and the train’s capacity is also merged. If N stands for the total passenger count and Ca stands for the capacity of all the

trains passing through the segment, the train load of the segment can be calculated as N/Ca. We use four colors to display the train

load of each segment: lime indicates a load range from zero to 80%; yellow indicates a load from 80% to 100%; red indicates a load

from 100% to 120%; and black indicates that the load is greater than 120%.

doi:10.1371/journal.pone.0167126.g012

Fig 13. Online passengers in the rail transit network. (a) represents the total entries, transfers and exits of the rail transit network at

every 5 minutes. (b) shows the number of instantaneous passengers on the rail transit network at the end of each simulation period. The

number of passengers reaches its peak, namely, 490,397, at end of the simulation period [8:15, 8:30). The simulation results are

computed in the normal situation with no station closure.

doi:10.1371/journal.pone.0167126.g013
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the closed station always attracts the most passengers. Fig 19 shows the main stations that the

passengers choose as their alternative origin stations after TIANTONGYUAN station is closed.

The TIANTONGYUAN South station ranks first in attracting passengers from the closed sta-

tion. It can also be seen that a larger overestimation of the closure duration, that is, a larger g,

will result in fewer passengers waiting at the closed station and more passengers altering their

planned origin station.

(3) Alternative destination stations. Figs 20 and 21 show the top stations that passengers

choose as their alternative destinations when their planned destination stations are closed.

PING’ANLI station is the most selected station after the JISHUITAN station is closed, and

TIANTONGYUAN South is the most selected station after the TIANTONGYUAN station is

closed. Passengers’ choices of alternative destinations are relatively more concentrated than

the choices of alternative origins.

Effects of the station closure on the passenger flow demand. (1) Changes in the passen-

ger flow at the closed stations. Fig 22 shows the effects of the station closure on the passenger

flow at the closed station. More passengers choose to wait at the planned origin station for sta-

tion recovery when the overestimation of the closure duration is smaller. When the closure

ends, the waiting passengers gradually begin to enter the closed station, which leads to more

entries than normal. Moreover, every station has a limited inbound capacity (the inbound

capacity of JISHUITAN is 1362 persons per 5 minutes, and TIANTONGYUAN is 1500 per-

sons per 5 minutes). Therefore, a certain number of passengers in some closed stations may

need to wait for a longer time due to the limited inbound capacity. As a result, it takes longer

than the closure duration itself for the entries of some closed stations to return to normal

Fig 14. Number of entries in each station every 5 minutes. This graph has three dimensions: time, stations and the number

of passengers. Every point in a colored area donates the entries of a particular station during a particular period. The color

indicates the number of passengers entering the station.

doi:10.1371/journal.pone.0167126.g014
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levels, as shown in Fig 22(b). Fig 22 also indicates that the duration of the closure’s influence

on some closed stations will increase with decreasing g.

(2) Changes in the passenger flow at the nearby stations. Fig 23 shows the effects of the

station closure on the passenger flow at stations near the closed stations. The closure of

JISHUITAN station results in a significant increase in the number of entries at the nearby

Fig 15. Affected passengers for varying overestimation of the closure duration. A longer announced closure

duration, that is, a larger overestimation of the closure duration, results in more affected passengers.

doi:10.1371/journal.pone.0167126.g015

Fig 16. The relationship between the closure duration and the passenger behavioral choices. (a) represents the simulation results

in the JISHUITAN case. (b) denotes the simulation results in the TIANTONGYUAN case.

doi:10.1371/journal.pone.0167126.g016
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stations. With increasing g, the nearby stations suffer a more significant impact due to the clo-

sure, and the severity and duration of the closure impact increase greatly.

Comparisons of model results and manual survey. To validate our behavior model, we

conduct a questionnaire (S1 File) about the passengers’ choices about alternative origin sta-

tions when their planned origin station is closed. One pair of OD from the JISHUITAN sta-

tion of Line 2 to the DAWANGLU station of Line 1 is selected to create a station closure

scenario with a closure duration of 30 minutes and g equal to 1. Finally, 149 answers are col-

lected. The model results and the manual survey data are shown in Fig 24. The comparisons of

the model outputs and the manual survey show that the accuracy of our proposed behavior

optimization model is approximately 80%.

Conclusions

We develop a novel approach for estimating the impact of alternative station closure scenarios

in a rail transit network on passenger behavioral choices at the individual level and on

Fig 17. The relationship between the overestimation of the closure duration and the passenger behavioral choices. (a) shows

the proportion of passenger behavioral choices after the station closure in the JISHUITAN case. (b) shows the proportion of passenger

behavioral choices after the TIANTONGYUAN station is closed in the second closure case. With increasing g, the number of passengers

taking an alternative origin station or giving up on their rail transit journey gradually increases.

doi:10.1371/journal.pone.0167126.g017

Fig 18. The main stations that passengers choose as their alternative origin stations after JISHUITAN station is closed. The red

circles represent the alternative origin stations, including the closed JISHUITAN station. The size of each circle represents the number of

passengers who choose that station, and a larger radius indicates relatively more passengers.

doi:10.1371/journal.pone.0167126.g018
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Fig 19. The main stations that passengers choose as their alternative origin stations after TIANTONGYUAN station is closed.

The red circles represent the alternative origin stations. The size of each circle represents the number of passengers who choose that

station, and a larger radius indicates relatively more passengers.

doi:10.1371/journal.pone.0167126.g019

Fig 20. The main stations that passengers choose as their alternative destination stations after JISHUITAN station is closed.

The red circles represent the alternative destination stations, and a larger radius indicates a larger proportion.

doi:10.1371/journal.pone.0167126.g020

Fig 21. The main stations that passengers choose as their alternative destination stations after TIANTONGYUAN station is

closed. The red circles represent the alternative destination stations, and a larger radius indicates a larger proportion.

doi:10.1371/journal.pone.0167126.g021
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passenger demand at the disaggregate level. An agent-based passenger behavior optimization

model for a station closure is proposed for the first time. To solve the model, an integrated

solution algorithm with a passenger simulator is developed in this article. To address the pas-

senger’s uncertainty of the station closure duration, a parameter indicating the overestimation

Fig 22. The number of entries at the closed stations for varying values of g. (a) shows the number of entries at JISHUITAN station.

(b) represents the number of entries at TIANTONGYUAN station. As shown in the first closure case in Fig 22(a), when g equals 1,

JISHUITAN station experiences 2343 more entries than in the no closure situation after 8:30. However, in the case of g equal to 10, this

difference is 197, which is 91.7% smaller than in the case of g equal to 1. The duration is 75 minutes in the case of g equal to 10, which is

16.7% more than in the case of g equal to 1. As shown in the second closure case in Fig 22(b), when g equals 1, the TIANTONGYUAN

station experiences 3195 more entries than in the no closure situation after 8:30. However, in the case of g equal to 10, this difference is

422, which is 86.8% less than in the case of g equal to 1. The duration is 90 minutes in the case of g equal to 10, which is 38.5% more than

the duration in the case of g equal to 1.

doi:10.1371/journal.pone.0167126.g022

Fig 23. The number of entries at the affected stations for varying values of g. (a) shows the number of entries at GULOUDAJIE

station in the JISHUITAN case. (b) shows the number of entries at TIANTONGYUAN South station in the TIANTONGYUAN case. The

inbound capacity of the GULOUDAJIE is 1000 persons per 5 minutes, and the TIANTONGYUAN South station is 1062 persons per 5

minutes. As shown in the first closure case in Fig 23(a), when g equals 1, the GULOUDAJIE station experiences 1,284 more entries than

in the no closure case. However, in the case of g equal to 10, this difference is 2,064, which is 60.9% more than that in the case of g equal

to 1. The duration in the case of g equal to 10 is 60 minutes, which is 33.3% more than in the case of g equal to 1. As shown in the second

closure case in Fig 23(b), when g equals 1, the TIANTONGYUAN South station experiences 4,979 entries more than in the no closure

case. However, in the case of g equal to 10, this difference is 7294, which is 46.5% more than that in the case of g equal to 1. The duration

in the case of g equal to 10 is 65 minutes, which is 44.4% more than in the case of g equal to 1.

doi:10.1371/journal.pone.0167126.g023
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of the closure duration is adopted in our proposed model. The Beijing rail transit system is

introduced as a case study using real-world smart card data and online urban transit data. The

JISHUITAN station and the TIANTONGYUAN station are tested as the closed stations in our

case studies. The effects of the closure duration and its overestimation on passenger behavioral

choices and passenger flow demand are discussed. The following conclusions can be drawn:

1. Our proposed behavior optimization model is valid for capturing passenger behavior dur-

ing a station closure at an approximate accuracy of 80%, which is supported by the results

of a manual survey. Moreover, our developed model and simulation-based algorithm can

dynamically provide quantitative results about the effect on passenger demand.

2. When a station closure happens, the affected passengers prefer choosing alternative stations

with convenient transitions from the closed station to the new origin station or from the

new destination station to the closed station. In addition, with increasing closure duration

or its overestimation, more passengers will alter their planned origin stations or give up on

their rail transit journey, and fewer passengers will wait at the closed stations for the station

recovery.

3. It may take longer than the closure duration itself for the entries of the closed station, with

limited inbound capacity, to return to normal levels. Moreover, with increasing g, the dura-

tion of the closure’s influence on the closed stations will decrease. However, the nearby sta-

tions suffer a more significant impact due to the closure, and the severity and the duration

of the closure impact increase greatly.

4. Furthermore, if the rail transit operator can more accurately estimate the closure duration

(namely, as g approaches 1), the impact of the closure can be somewhat mitigated.

In our future research, the effect of alternative station closure scenarios, including different

closure durations and their overestimation, on the passenger journey time will be investigated.

Passenger behavior models with different granularities will be further developed and validated.

Fig 24. The comparisons of the model outputs and the manual surveys in the JISHUITAN closure case. In the manual survey,

80% (119 of 148) of passengers choose to alter their planned origin station (Fig 24(a)) and 87% (104 among the 119) passengers choose

the GULOUDAJIE as their new origin station (Fig 24(b)). But our model results show that all the affected passengers will change their

origins and choose the GULOUDAJIE station as their new origins, which indicates that there is an error of no more than 20% between the

model results and the actual survey results.

doi:10.1371/journal.pone.0167126.g024
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