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Abstract

Retinitis Pigmentosa (RP) is one of the most common forms of inherited visual loss with the

initial degeneration of rod photoreceptors, followed by a progressive cone photoreceptor

deterioration. Coinciding with this visual loss, the extracellular matrix (ECM) is reorganized,

which alters matrix metalloproteinase (MMP) activity levels. A potential pathological role of

MMPs, MMP-9 in particular, involves an excitotoxicity-mediated physiological response. In

the current study, we examine the MMP-9 and MMP-2 expression levels in the rhodopsin

S334ter-line3 RP rat model and investigate the impact of treatment with SB-3CT, a specific

MMP-9 and MMP-2 inhibitor, on rod cell survival was tested. Retinal MMP-9 and MMP-2

expression levels were quantified by immunoblot analysis from S334ter-line3 rats compared

to controls. Gelatinolytic activities of MMP-9 and MMP-2 by zymography were examined.

The geometry of rod death was further evaluated using Voronoi analysis. Our results

revealed that MMP-9 was elevated while MMP-2 was relatively unchanged when S334ter-

line 3 retinas were compared to controls. With SB-3CT treatment, we observed gelatinolytic

activity of both MMPs was decreased and diminished clustering associated with rod death,

in addition to a robust preservation of rod photoreceptors. These results demonstrate that

up-regulation of MMP-9 in retinas of S334ter-line3 are associated with rod death. The appli-

cation of SB-3CT dramatically interferes with mechanisms leading to apoptosis in an MMP-

9-dependent manner. Future studies will determine the feasibility of using SB-3CT as a

potential therapeutic strategy to slow progression of vision loss in genetic inherited forms of

human RP.
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Introduction

Photoreceptor degenerative diseases affect millions of patients and diminish the ability of the

retina to detect light and process visual signals. During retinal degeneration, retinal neurons

are rewired while extracellular matrix (ECM) structural properties are changed. These changes

alter matrix metalloproteinase (MMP) activity levels and influence cell-cell and cell-ECM

interactions [1, 2]. More than 20 MMPs have been divided into collagenase (MMP-1, -8, and

-13), gelatinases (MMP-2 and -9), stromelysins (MMP-3, -10, and -11), membrane-type

MMPs (MT1- to MT6-MMP) and a heterogeneous MMPs (MMP-7, -12, -20, -26, and -28),

based on their properties on the substrates [3]. Retinal degenerative diseases activate key mem-

bers of the MMP family that contribute to complications [4–6]. For example, MMP-9 contrib-

utes to excitotoxicity-mediated pathogenesis [5, 7] and neurological disorders [8, 9].

Furthermore, in the retinal degeneration 1 (rd1) mouse retina, up-regulation of MMP-9 and

MMP-2 has been documented [10]. In the past, efforts to reduce MMP-mediated retinal dam-

age with broad-spectrum MMP inhibitors (e.g., GM6001) have produced encouraging results

in animal models of retinal degeneration [5]. Inhibition of MMP-9 or well characterized

downstream targets of the MMP-9 pathway prevents pathological remodeling of the inner lim-

iting membrane and detachment-induced cell death of retinal ganglion cells (RGCs) [11, 12].

Furthermore, Chintala and colleagues (2002) reported that MMP-9 deficient mice are pro-

tected against retinal ganglion cell (RGC) death after optic nerve ligation.

Retinitis Pigmentosa (RP) begins with the death of rod photoreceptors and eventually

leads to cone photoreceptor death [13]. Various treatment strategies in both RP patients and

RP animal models include gene therapies [14–17], retinal pigment epithelium (RPE) [18],

photoreceptor [19] and stem cell transplantation [20, 21]. In the initial stage of RP, external

compounds, such as antioxidants or neurotrophic factors, protect photoreceptors because

they are less invasive [22–25]. Basic fibroblast growth factor (bFGF) slows photoreceptor

degeneration in Royal College of Surgeons (RCS) rat [26]. Ciliary neurotrophic factor

(CNTF) delays photoreceptor degeneration in human retinal degeneration [25] and animal

models such as rd1 [27] and Q334ter mice [22]. However, the effectiveness of the drug treat-

ment is also influenced by the health of retinal ECM [28]. With cell death in RP, there are a

reduced overall number of integrin receptors at the ECM, which affects the oxygen levels,

nutrients, and growth factors to the cells from the surrounding choroidal or retinal blood

supplies [29].

In RP, rhodopsin S334ter-line3 (S334ter) rat retina, rods die in “clusters” [30–32], suggest-

ing inductive cell death mechanisms consistent with animal models and human studies dem-

onstrating that degenerating rods often lead to deaths of immediate neighbors [33–35].

Recently, we discovered Tissue Inhibitor of Metalloproteinase 1 (TIMP-1) restores the cone

mosaic and protects cone outer segments at later stages of retinal degeneration in S334ter-

line3 retina [32, 36, 37]. Although TIMP-1 influences MMP activity, it specifically binds to and

inhibits MMP-9 activation [38]. The TIMPs consist of structurally and functionally distinct N-

and C-terminal domains [39]. The N-terminal domain of a TIMP is for MMP inhibition [40].

In contrast, the C-terminal domain of TIMPs influences cell survival in an MMP-independent

manner [41, 42]. There is evidence that TIMP-1 could enhance cell survival by directly sup-

pressing apoptosis signaling pathways, in an MMP-independent manner [43, 44]. Thus, apply-

ing TIMP-1 cannot rule out the possibility that the C-terminal domain may involve in cell

survival independently of MMP-9. In this study, we used SB-3CT, a highly selective inhibitor

of MMP-2 and MMP-9 [2, 8, 45] to delay the death of rods in S334ter-line3 retina. The other

synthetic MMP inhibitors (e.g., GM6001) [46–48], although highly successful in preclinical

studies, lacked specificity and as a consequence failed due to adverse side effects [46–50]. The
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data in the present study demonstrate that SB-3CT treatment slows the death of rods and dis-

rupts the cluster form of rod death in S334ter-line3 retina. In addition, MMP-9 is elevated and

MMP-2 is relatively unchanged between control and S334ter-line3 retinas. These findings sug-

gest that application of SB-3CT interferes with mechanisms leading to rod death in an MMP-

9-dependent manner.

Materials and Methods

Animals

The third transgenic line of albino Sprague-Dawley (SD) rats homozygous for the truncated

murine opsin gene (stop codon at Serine residue 334; S334ter-line-3) were originally pro-

vided by Matthew LaVail, Ph.D. (University of California, San Francisco, CA, USA). Homo-

zygous S334ter-line-3 female rats were mated with Long Evans (LE) male rats to produce

heterozygous offspring for the S334ter-line-3 transgene and referred to as the S334ter model.

S334ter rats were euthanized at postnatal (P) days 15, 18, 30, 33, 37, 43, 45, and 60 (number

of animals per group, 5 to 7 for each stage). For controls, age matched SD rats (Harlan, India-

napolis, IN, USA) were used. Controls were euthanized at P15, P33 and 37 (N = 5 for each

stage). All rats were maintained on a daily 12/12-hour cycling light/dark cycle. The Veteri-

nary Authority of University of Southern California and Use Committee reviewed and

approved all procedures.

Administration of SB-3CT

2-[(4-phenoxyphenyl)sulfonylmethyl]thiirane, SB-3CT, (EMD Millipore, Temecula, CA,

USA) was prepared in phosphate buffered saline (PBS) with 0.05–0.1% dimethyl sulfoxide

(DMSO) [51]. For preliminary testing of SB-3CT, 2 ml of several different final concentrations

(10, 25 and 50 mg/ml) were injected into normal and S334ter rats at P30. Injection procedures

were established and similar to our previously published studies [36, 37]. After preliminary

testing, 25 ug/ml was used throughout this study. The developmental stage for the injection of

SB-3CT was either P15, when there was peak rod death [52] and formation of dying rod clus-

ters [31, 32], or P40, when cone rings were observed throughout the retina [36]. One eye was

injected with SB-3CT and the other eye was injected with PBS with 0.05–0.1% DMSO for com-

parison for each animal. Induction of anesthesia was done by intraperitoneal (IP) injection of

ketamine (20 mg/kg; KETASET, Fort Dodge, IA, USA) and xylazine (5 mg/kg, X-Ject SA; But-

ler, Dublin, OH, USA). Following injections, veterinary ophthalmic antibacterial ointment

was applied to prevent drying of cornea and infection.

Tissue preparation

Animals were anesthetized by IP injection of Euthasol (40mg/kg, Fort Worth, TX, USA) and

the eyes were enucleated. Then, animals were euthanized by administration of an overdose of

Euthasol. The cornea and lens were removed, and the eyecups were fixed in 4% paraformalde-

hyde for 90 minutes at 4˚C. The eyecups were then transferred to 30% sucrose in 0.1 M phos-

phate buffer (PB) for 24 hours at 4˚C. Following the procedure, the eyecups were frozen in

liquid nitrogen, and stored at -70˚C. The eyecups were embedded in Optimal Cutting Temper-

ature embedding medium (Tissue-Tek, Elkhart, IN, USA) for cryostat section, then quickly

frozen in liquid nitrogen and subsequently sectioned on a Leica cryostat at a thickness of

20μm. For whole mount preparation, the retinas were isolated from the eyecups and dissected

as whole-mounts.
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Immunohistochemistry

The complete protocols for immunohistochemistry were previously published [31, 32, 36, 37].

Briefly, for retinal section immunohistochemical staining, 20 μm thick cryostat sections were

incubated in 10% normal donkey serum (NDS) (Jackson ImmunoResearch Laboratories) for 1

hour at room temperature, and then incubated overnight with rabbit polyclonal antibody

directed against glial fibrillary acidic protein (G9269, GFAP, Sigma-Aldrich Corp, dilution

1:500). Retinas were washed in PBS, and afterward incubated for 2 hours at room temperature

in carboxymethylindocyanine (Cy3)-conjugated donkey anti-rabbit IgG (Jackson ImmunoRe-

search Laboratories, dilution 1:500). Next, the sections were washed with 0.1M PB, and cover

slipped with Vectashield mounting medium (Vector Labs, Burlingame, CA, USA).

Similar procedures to the ones described above were used for whole-mount immunohisto-

chemical staining;however, tissues were treated with 1% Triton X-100 in 0.1M PBS before 10%

NDS (Jackson ImmunoResearch Laboratories) incubation to enhance antibody penetration.

The whole-mounts were incubated with primary antibodies (rabbit polyclonal antibody

directed against green opsin (M-opsin, dilution 1:2,000); mouse monoclonal antibody directed

against rhodopsin (rho 1D4 [53], dilution 1:1,000)) in 0.5% Triton X-100 in 0.1M PBS for 48

hours at 4˚C. After this incubation, the whole mounts were rinsed for 45 minutes with 0.1 M

PBS. Afterward, they were incubated with corresponding secondary antibodies (carboxy-

methylindocyanine (Cy3) conjugated affinity-purified donkey anti-rabbit IgG or Alexa 488

conjugated donkey anti-mouse IgG (Molecular Probes, Eugene, OR, USA; dilution 1:300) for

24 hours at 4˚C. The whole mounts were then washed again for 45 minutes with 0.1 M PB and

cover slipped with Vectashield mounting medium.

A Zeiss LSM 710 (Zeiss, NY, USA) confocal microscope was used for the digital images,

processed with the Zeiss LSM-PC software, and the brightness and contrast were adjusted by

using Adobe Photoshop 7.0 (Adobe Systems, San Jose, CA, USA). All the adjustments were

carried out equally across sections and whole mounts.

TUNEL staining

Cell death was visualized using a In Situ Cell Detection kit (Boehringer Mannheim, Mann-

heim, Germany) according to manufactor’s recommendations. The sections and whole

mounts were incubated with TUNEL reaction mixture (terminal deoxynucleotidyl transferase

with nucleotide mixture in reaction buffer) for 90 minutes at 37˚C. The sections or whole

mounts were then washed for 30 minutes with 0.1 M PB and cover slipped with Vectashield

mounting medium.

Nuclei-positions map for TUNEL assay and M-cone distribution

The detailed instructions for evaluating the Nuclei-Position Map were previously published

[36]. Confocal images of the retinas (n = 3–5 animals for each group) were taken at the focal

level of the rod nuclei and M-cone nuclei, covering 1 x 1mm2 areas at the mid-peripheral

region (3 mm away from optic disc) of the superior temporal retina. Each TUNEL stained

nucleus or M-cone nucleus was marked with a white dot using the paint tool in Photoshop.

Using these images, Voronoi domain and the coefficient of clustering (CC) were also analyzed.

Voronoi analysis

The detailed instructions for the Voronoi analysis was previously published [36, 54]. Briefly,

the Voronoi domain of each dying rod or M-cone was generated, and then the areas of each
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polygon were calculated and plotted on a histogram for the Voronoi analysis. The coefficient

of clustering (CC) was also determined as previously described [36, 54].

Immunoblot analysis

The detailed instructions for the immunoblot analysis were published in a recent study [55].

Briefly, 45 μg of protein per retina were electrophoresed on the 10% SDS-PAGE, transferred to

nitrocellulose membranes (LI-COR Biotechnology, Lincoln, NE). After 1 hour of protein

blocking with Odyssey blocking buffer (LI-COR Biotechnology), membranes were incubated

overnight sequentially with primary antibodies for anti β-actin (A5316 Sigma, 1:4000) and

either anti-MMP-9 (MAB3309 Millipore, 1:500), or anti-MMP-2 (sc-8835 Santa Cruz, 1:100).

Appropriate secondary antibodies with a fluorophore (680 nm or 800 nm) were used for detec-

tion under the infrared detection system (GENESys, Syngene, Frederick, MD). For all optical

density analysis, we used NIH Image J software version 1.50i to quantify the intensity of each

band. Relative amounts of the MMP-9 and MMP-2 were calculated by dividing the intensity of

the MMP-9 or MMP-2 band by the intensity of the β -actin band. The average of the normal

and saline-treated S334ter was set as 100%.

Gelatin zymography

Samples were prepared as described above for immunoblot analysis. 45 μg of retinal protein

extracts were mixed with zymogram loading buffer (Novex Tris Glycine SDS Sample buffer,

Novex Life Technologies, Carlsbad, CA) without boiling and applied to 10% NOVEX Pre-Cast

SDS polyacrylamide gel (Novex Life Technologies) in the presence of 0.1% gelatin under non-

reducing conditions for electrophoresis. Positive controls for MMP-9 and MMP-2 included

1.5 ng of recombinant mouse MMP-9 (AnaSpec, Fremont, CA) and 6.6 ng of recombinant

mouse/rat MMP-2 (R&D Systems, Minneapoilis, MN), respectively. After electrophoresis, the

gels were washed with deionized water, and then each was incubated in zymogram renaturing

buffer (Novex Life Technologies) for 30 minutes at room temperature and then developed in

zymogram developing buffer (Novex Life Technologies) for 16 hours at 37˚C to allow proteol-

ysis of the substrates in the gels. After staining with SimpleBlue™ Safestain (Novex Life Tech-

nologies) for 1 hour, gels were de-stained in deionized water for 1 hour and imaged. Images

were scanned using HP Photosmart 7520 and processed using Photoshop CC (Adobe, San

Jose, CA) software.

Statistical analysis

All the statistics were presented as mean + standard error of the mean (SEM). Student’s t-test,

two-way ANOVA and Fisher’s least significant difference procedure (LSD test) were used to

examine the differences among the groups. To perform the test and generate graphs, Graph-

Pad Prism 6 (La Jolla, CA, USA) was used. The difference between the means of separate

experimental conditions was considered statistically significant at p< 0.05.

Results

Expression of MMP-9 and MMP- 2 in the S334ter retina

Increased MMP-9 or MMP-2 expression is associated with retinal degenerative diseases [3, 5,

10, 56]. To determine whether rod cell death in S334ter is mediated by MMPs in our rat

model, we first investigated the expression levels of MMP-9 and MMP-2 in retinal extracts by

immunoblot analysis using specific antibodies against MMP-9 and MMP-2. The MMP-9 (92

kDa) and the MMP-2 (72 kDa) immunoreactive bands of (Fig 1A) were identified in retinal
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extracts of P15 normal, which is consistent with a previous study showing single bands in nor-

mal mouse retina [5]. Our data showed that MMP-9 is elevated (Fig 1A) while MMP-2 is rela-

tively unchanged between normal and S334ter retinas. Densitometry of these MMP-9- and

MMP-2-immunoreactive proteins was performed (Fig 1B). The MMP-9 protein levels were

~20% higher in P15 S334ter retinas than in P15 normal retinas (unpaired, two-sided t-test,

n = 3 normal and n = 5 S334ter retinas; P < 0.01). In contrast, there were no significant differ-

ences in the expression levels of MMP-2 between normal and S334ter retinas (Fig 1B). Beta-

actin expression was probed with an antibody as a loading control. Our data indicated that

only MMP-9 expression was elevated at this early stage of degeneration in the S334ter retina.

Absence of glial activation and cell death with SB-3CT treatment

SB-3CT is a specific inhibitor of MMP-2 and MMP-9 [2, 8, 45]. First, the safety of SB-3CT in

concentrations used for intravitreal injections (10, 25 and 50 ug/ml) was tested at P30. To

check if SB-3CT was toxic to retinal cells, normal retinas from the saline- and the SB-3CT-

treated groups were immunohistologically stained with GFAP, a marker for glial activation

[57], after 3 days and after 1 week post-injection. The controls showed GFAP expression in the

nerve fiber layer (NFL, Fig 2A and 2B), and there was no significant up-regulation of GFAP

expression at 3 days or 1 week in 10 ug/ml (data not shown) and 25 ug/ml groups (Fig 2C and

2D). 50 ug/ml SB-3CT treated groups showed a moderate up-regulation of GFAP expression

(Fig 2E and 2F, arrows). There were no TUNEL-positive cells in any group especially 25μg/mL

injected group (S2 Fig). Thus, 25 ug/ml SB-3CT was used for all following additional studies.

To determine if administration of SB-3CT treatment (25 ug/ml) inhibited MMP-9 and

MMP-2 expression and activity in S334ter retina, we used immunoblot analysis (Fig 2G and

2H) and zymography (Fig 2I), respectively. SB-3CT was injected at P15 and retinal extracts

were collected 12 hours after injection because MMP-9 activity showed maximum changes

between 6 hours and 24 hours after the injection (5, 9). The 12 hours-post injection of SB-

3CT-treated S334ter retinal lysates showed that the expression levels of MMP-9 (92kDa) and

MMP-2 (72kDa) significantly decreased (Fig 2G and 2H). Gelatin zymography on the saline-

treated retinal lysates showed both pro-MMP-9 (92kDa) and active-MMP-9 (82kDa) bands. In

addition, both pro-MMP-2 (72kDa) and active-MMP-2 (63kDa) bands were present in retinal

Fig 1. Expression of MMP-9 and MMP- 2 in the S334ter retina. Immunoblot analysis of MMP-9 and MMP-2

immunoreactive protein levels in the P15 normal and P15 S334ter rat retinas. Immunoblots were processed with specific

primary antibodies stained for MMP-9 and MMP-2, demonstrating a single band at 92 kDa (arrow) and 72 kDa (arrow),

respectively (A). Immunoblot analysis reveals up-regulation of MMP-9 in the S334ter retina. In contrast, MMP-2 was not

affected. Immunodetection using a primary antibody for beta-actin was used to evaluate equal protein loading as a control

(44kDa). Densitometry analysis of immunoblots as shown in B. Data represent mean + SEM; *p < 0.01.

doi:10.1371/journal.pone.0167102.g001
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lysates of saline-treated S334ter retina. Gelatinolytic activity of pro-MMP-9, active-MMP-9,

pro-MMP-2, and active-MMP-2 were also significantly decreased in SB-3CT-treatd P15

S334ter retina (Fig 2I). Recombinant mouse MMP-9 and recombinant mouse/rat MMP-2

were used as loading controls. We also performed gelatin zymography on retinal lysates of P15

(12hours after the injection), P30, P45, and P60 saline- and SB-3CT treated S334ter retinas.

The SB-3CT was injected at P15 and retinal lysates were collected at P15, P30, P45, and P60

(S3 Fig). In later stages of S334ter retinas, we observed no detectable activity of MMP-9 and

MMP-2 (S3 Fig). In summary, SB-3CT dramatically inhibits MMP-9 and MMP-2 activities in

early stage of S334ter retina (i.e. P15). In addition, the activity of MMP-9 and MMP-2 dimin-

ished after peak rod death at P15 [52].

SB-3CT treatment delays rod death in S334ter retina

To determine if inhibition of up-regulated MMP-9 via SB-3CT (Figs 1 and 2) can affect cell

survival, we injected either SB-3CT (25 ug/ml) or saline (for control) to P15 S334ter rats. After

Fig 2. Absence of glial activation and cell death with SB-3CT treatment. Confocal micrographs taken from frozen cryostat

sections of normal retinas processed for GFAP immunoreactivity shown for saline-treated groups (A, B) and SB-3CT treated

groups (C-F) after 3 days and after 1 week post-injection. The saline and SB-3CT were injected at P30. The saline (A, B) and

25 ug/ml SB-3CT (C, D), caused no significant up-regulation of GFAP expression. 50 ug/ml SB-3CT showed modest up-

regulation of GFAP expression (E, F, arrows). Retinal proteins were extracted 12 hours after intravitreal injection of saline or

25 ug/ml SB-3CT (G-I). In the immunoblot analysis, the level of MMP-9 (92kDa) and MMP-2 (72kDa) were significantly

decreased in SB-3CT treated retina after 12 hours post-injection (G, H). In the gelatin zymography, SB-3CT attenuated the

level of pro-MMP-9 (92 kDa), active MMP-9 (82 kDa), pro-MMP-2 (72 kDa) and active MMP-2 (63 kDa) in S334ter (I).

Recombinant mouse MMP-9 and recombinant mouse/rat MMP-2 were applied to the gel and transferred to the membrane as

positive controls. P, postnatal; D, days; wk, week; N, normal; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner

nuclear layer; IPL, inner plexiform layer; GCL, ganglion cell layer; NFL, nerve fiber layer. Scale bar = 50 um. Data are

presented as mean + SEM. The symbol * and ** indicates p<0.05 and p<0.01, respectively.

doi:10.1371/journal.pone.0167102.g002
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a single injection at P15, animals were sacrificed at P30, P45 and P60. For quantitative analysis,

rhodopsin-immunoreactive stained cells were counted at each time point. Fig 3A–3F shows an

example of a whole-mount processed for rhodopsin immunoreactivity at P30 (Fig 3A and 3B),

P45 (Fig 3C and 3D), and P60 (Fig 3E and 3F) taken at the central part of saline-treated (Fig

3A, 3C and 3E) and SB-3CT treated (Fig 3B, 3D and 3F) retinas. Consistent with our previous

Fig 3. SB-3CT treatment delays rod death in S334ter retina. Confocal micrographs of whole-mounts

labeled with rhodopsin in saline-treated S334ter retina (A, C and E) and SB-3CT treated S334ter retina (B, D

and F) at P30, P45 and P60 in the central (1mm away from optic disc) retina. Rod number per 1mm2 in SB-

3CT treated S334ter retina was significantly higher than age matched saline-treated S334ter retina at P30,

P45, and P60 (G). Data are presented as mean + SEM. The symbol * indicates p<0.05. P, postnatal, Scale

bar = 100 um.

doi:10.1371/journal.pone.0167102.g003
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work, we observed holes in the rod mosaic in P30 saline-treated S334ter retina (Fig 3A [32]).

In later stages of the degeneration, fewer and scattered cells were observed (Fig 3C and 3E). In

contrast, rods in P30 SB-3CT-treated S334ter retina were more homogeneously distributed

(Fig 3B). In P30, P45 and P60 retinas, more rods were detected in SB-3CT treated groups com-

pared to the age matched saline-treated groups (Fig 3B, 3D and 3F). The summary graph illus-

trates the mean rod density (Fig 3G) measured from the 1x1 mm2 sampling areas (for details,

see methods) of saline-treated and SB-3CT-treated S334ter retinas. The mean density of cells

in saline–treated S334ter retinas at P30, P45, and P60 were 5,640±551, 469±63 and 33±5 cells/

mm2, respectively. The density of cells changed with SB-3CT–treated S334ter groups. The den-

sity from the SB-3CT–treated S334ter retinas showed higher numbers of 8,611±296, 3,348

±417, and 304±61 cells/mm2 at P30, P45, and P60, respectively (Fig 3G). The two-way

ANOVA analysis showed significant differences between the mean of different groups and the

different postnatal days (Fig 3G; p< 0.001). These data clearly demonstrate that SB-3CT treat-

ment substantially enhances survival by delaying rod death in S334ter retina.

Disruption of cluster-form of rod deaths with SB-3CT in S334ter retinas

In rhodopsin S334ter-line3 RP retina, rods die in clusters and create holes in the rod mosaic in

the early stage of retinal degeneration and the resulting pattern triggers the formation of cone

rings [31, 32]. In Fig 3A, we observed a more homogenous distribution of rods in SB-3CT-

treated retina. Thus, we investigated if SB-3CT disrupts cluster-form of rod death to prevent

holes in the rod mosaic. The presence of the cluster-form of rod death was described around

P18 [32]. Thus, we injected SB-3CT at P15 and observed the effects of SB-3CT after 3 days of

saline- or SB-3CT post-injection. Saline-treated and SB-3CT-treated retinas at P18 were

stained with TUNEL (Fig 4A and 4C). As expected in the saline-treated retina, cluster-form of

cell death appeared (Fig 4A). [31, 32]. In SB-3CT-treated retinas, TUNEL positive cells were

randomly distributed (Fig 4C). Furthermore, when we used Voronoi analysis to determine the

geometry of rod death, clusters of rod death are distinguishable from the random distribution

of rod death in the saline-treated P18 retina (Fig 4A, arrowheads). Illustrating this morpholog-

ical distribution with the Voronoi diagram, we observed that most of smaller domains were

closer to other small domains, while most of larger domains were surrounded by larger

domains (Fig 4B). After 3 days of SB-3CT post-injection, we no longer observed clusters of rod

death. TUNEL staining showed a homogenous distribution of rod death (Fig 4C). Consis-

tently, the Voronoi diagram showed only a mixture of large and small domains (Fig 4D). We

quantified the correlation between the sizes of neighboring domains by calculating the coeffi-

cient of clustering (CC) [36]. If the small domains or large domains are aggregated together

CC would be greater than 1. If instead, Voronoi domain showed random distribution, the CC

would be near 1. The CC was high in saline-treated (1.48 ± 0.03) and became significantly

lower with SB-3CT injection (1.32 ± 0.006) (Fig 3E, p = 0.006). Therefore, the pattern of dying

rods became less clustered upon SB-3CT injection.

To examine if application of SB-3CT can induce a homogeneous cone mosaic, we injected

SB-3CT at P40 and analyzed the cone mosaic 3 days post-injection (i.e. P43). By P40, cone

rings were observed throughout the entire retina [36]. The positive staining of M-opsin cones

were immunolabeled in the S334ter whole-mount retinas of the saline-treated (Fig 5A) and the

SB-3CT-treated (Fig 5C) groups. Voronoi analysis on S334ter retinas of saline-treated (Fig 5B)

and SB-3CT-treated (Fig 5D) was performed to quantify changes in the cone mosaic (i.e. dis-

appearance of cone rings). In the S334ter saline-treated retinas, most Voronoi domains were

small, as cell bodies of M-cone are distributed around the rim of the rings. A few large Voronoi

domains were observed in the center of the rings (Fig 5B). In contrast, in SB-3CT–treated

Inhibition of Matrix Metalloproteinase 9 Enhances Rod Survival

PLOS ONE | DOI:10.1371/journal.pone.0167102 November 28, 2016 9 / 18



retinas, Voronoi domains with extremely large sizes are reduced, and cones became more

homogeneous after 3 days of post-injection (Fig 5D). Our results showed significant differ-

ences in CC between saline treated (1.89 ± 0.08) and SB-3CT-treated (1.24 ± 0.02) S334ter reti-

nas (Fig 5E, p = 0.003). In summary, SB-3CT induced mosaics of M-cones in S334ter retinas

to maintain and potentially restore homogeneity.

Discussion

Up-regulation of MMP-9 protein expression levels in S334ter retina

Inherited human retinal degenerative diseases are induced by mutations in over 190 genes [58,

59], including some genes in ECM-specific proteins [1]. In past studies, it was reported that

changes in the properties of the ECM affect the function of a different types of cells and modu-

late the synthesis and release of MMPs/TIMPs [60, 61].

In this study, we demonstrated that MMP-9 is linked to and contributes to rod death in the

RP associated with the S334ter retina (Figs 1, 2 and 3). The MMP-9 immunoreactive protein

levels were ~20% higher in P15 S334ter retinas than in P15 normal retinas. P15 is the stage

that has the highest number of apoptotic cells in the outer nuclear layer (ONL) in S334ter ret-

ina [52]. In contrast, there were no significant differences in the levels of expression of MMP-2

between normal and S334ter retinas (Fig 1). These data are different from a previous study

showing up-regulation of both MMP-9 and MMP-2 in rd1 mouse retina model [10]. The dif-

ference is unclear; however, in rd1 retina they observed that MMP-2 was significantly higher at

Fig 4. Disruption of cluster-form of rod deaths with SB-3CT in S334ter retinas. Confocal micrographs of

whole-mounts labeled with TUNEL staining in saline-treated S334ter (A) and SB-3CT treated S334ter (C)

retina at P18. Corresponding Voronoi domains are shown for each Fig (B, D). While S334ter retina showed

clusters of cell death (A, arrows, B), SB-3CT treated S334ter retina showed a random distribution of rod cell

death (C, D). Coefficient of clustering (CC) was significantly different within the two groups (E). Data are

presented as mean + SEM. The symbol * indicates p<0.05. P, postnatal, Scale bar = 50 um.

doi:10.1371/journal.pone.0167102.g004
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P2 than that in later stage (e.g., P14). Furthermore, MMP-2 activity/expression was reported to

remain unchanged in other retinal degeneration models such as excitotoxic injury, ischemia-

reperfusion (IR) injury or optic nerve transection [11, 62, 63]. Hence, some discrepancies

between the rd1 and our study may be related to different animal disease models or the rapid

onset of retinal degeneration at an earlier postnatal time.

Although the precise mechanisms that lead to up-regulation of MMP-9 in S334ter are not

clear at this time, previous studies have suggested that the reorganization of the ECM during

the degenerative process may influence MMP activity because the levels of MMPs are modu-

lated by cell-cell and cell-ECM interactions [2]. Alternatively, up-regulation of MMP-9 in

S334ter may be due to glutamate-induced toxicity in RP [64]. Glutamate is known to be

involved in the activation of MMP-9 [65]. Delyfer and coworkers (2005) reported that photo-

receptor degeneration was associated with excessive free glutamate levels and with an up-regu-

lation of glutamate turnover in rd1 mouse retinas. Thus, we hypothesize that up-regulation of

MMP-9 is resulted by glutamate toxicity in S334ter. Further studies are needed in order to test

and verify this hypothesis.

Fig 5. Disruption of cone rings with SB-3CT in S334ter retinas. Confocal micrographs of whole-mounts for M-opsin

immunohistochemical staining of saline-treated S334ter (A), and SB-3CT treated S334ter retina (C). Saline and SB-3CT (25

ug/ml) are injected at P40. Cones in SB-3CT treated S334ter retinas (C) have rearranged into a homogeneous pattern 3 days

after injection, while cones in S334ter retinas showed a ring-like pattern in the superior temporal region at the same age (A).

Corresponding Voronoi domains are shown for each Fig (B, D). While S334ter retina showed ring-like pattern (A, B), SB-3CT

treated S334ter retina showed a random distribution of cones (C, D). Coefficient of clustering was significantly different within

the two groups (E). Data are presented as mean + SEM. The symbol * indicates p<0.05. P, postnatal, Scale bar = 50 um

doi:10.1371/journal.pone.0167102.g005
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Delaying rod death with SB-3CT

We first confirmed that SB-3CT treatment inhibited MMP-9 (and MMP-2) expression and

activities by performing immunoblot analysis and gelatin zymography (Fig 2), respectively.

SB-3CT attenuated the level of pro- and active- forms of both MMP-9 and MMP-2 in S334ter

after 12 hour post-injection. The results presented in this study are also consistent with other

recent work in the central nervous system [66–68]. In our study, the inactive-form of MMP-2

and MMP-9 was not detected on the immunoblot analysis, whereas the level of their expres-

sion was detected by zymography under the same experimental conditions in retinal extracts.

The apparent discrepancy between the zymography and immunoblot analysis could be

explained by the sensitivity and detection of the methods. The sensitivity of detecting MMPs

with immunoblot analysis is lower than with zymography [69–71]. Thus, relative absence of

inactive-forms of MMP-2 and MMP-9 on immunoblot analysis does not rule out the presence

of inactive-forms.

Our results showed that treatment with SB-3CT delays rod death in S334ter retinas (Fig 3).

At P30, many rods have died [32, 52] while the number of cones remains similar in normal

and S334ter retinas even at an older age (P180) [30]. The activity of MMP-9 in a later stage of

S334ter treatment (i.e. P30, P45, P60), retinas did not show significant induction compared to

that of P15 S334ter retinas (S3 Fig). The results suggest that up-regulation of MMP-9 may be

associated with a retinal stage of active cell death. Our results, clearly demonstrated that inhibi-

tion of up-regulated MMP-9 in P15 (peak cell death) was significant enough to cause effects

on the number of rods at the later stage of S334ter retinas (Figs 2, 3 and S3). Thus, exogenous

application of SB-3CT at peak stage of cell death (P15) may interfere with the mechanisms of

rod death in an MMP-9-dependent manner. The exogenous application of SB-3CT in S334ter

may counterbalance the increased MMP-9 to slow the rod death. Increased expression levels

of MMP-9 are associated in several pathological conditions such as neuronal cell death in glau-

coma [3, 11, 72], cerebral ischemia [8], diabetic retinopathy [4], injured peripheral nerves [73],

and retinal degeneration [5, 11] including RP [10]. Up-regulated MMP-9 in these various dis-

eases may lead to significant cell death by degrading ECM, thereby interfering with integrin-

mediated survival signaling [5, 7, 8, 72, 74, 75]. Inhibition of MMP-9 is also known to prevent

cell death [5, 11, 12]. Therefore, it is likely that SB-3CT modulates both apoptotic and non-

apoptotic pathways [76] by interfering with MMP-9 activity in ECM.

Alternatively, SB-3CT treatment may slow rod death progression by disrupting the cluster-

form of rod death in the S334ter retina (Fig 4) [31, 32]. These dramatic changes in rod cell

death distribution may also due to an imbalance in the levels of MMPs and TIMPs in RP that

potentially modify the intercellular and cell-ECM interactions [72]. Thus, in our study, SB-

3CT treatment may have modified further intercellular and surviving rod-ECM interactions

resulting in a rearrangement of rod patterns. The cluster patterns of cell death suggest an

inductive mechanism of cell death [33–35]. For example, if the cluster-form of rod death was

caused by transmission of toxic substances via gap junctions connecting the adjacent cells, dis-

rupting the cluster-form of cell death with SB-3CT will prevent the detrimental effects on

neighboring cells [34, 77]. Thus, SB-3CT may be a potential therapeutic agent to slow progres-

sion of human forms of inherited RP if we can control the spreading effect with SB-3CT.

Rearrangement of cones with SB-3CT

What are the possible mechanisms that may contribute to the underlying modulation of cell

rearrangement with SB-3CT? Our hypothesis is that SB-3CT actively and efficiently inhibits

MMP-9, which then induces cell rearrangement. Our results demonstrate that SB-3CT dra-

matically changes the cone mosaic in S334ter retinas (Fig 5). We predict that further
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remodeling of cone distribution modified the ECM proteins (i.e., laminin) essential for cell

movement [78, 79]. Laminin in the ECM is an MMP-9 degradation target [80]. In support of

this, application of SB-3CT blocks this function of MMP-9, thereby supporting cell movement

[72, 80, 81].

Conclusion

We have clearly demonstrated that SB-3CT treatment disrupts the clustering pattern associ-

ated with rod death and produces robust preservation of rod photoreceptors. Our study pro-

vides novel insights into how SB-3CT works in the animal model of RP. Our findings have

potential therapeutic implications and may provide a future treatment with SB-3CT, which

could simultaneously promote photoreceptor survival and maintain homogeneous distribu-

tion of cone photoreceptors.

Supporting Information

S1 Fig. Example of P43 SB-3CT-treated S334ter nuclei position map. Legend: Nuclei posi-

tions map was constructed by marking the location of cell bodies using white dots. Applying

white dot allowed identification of the position of each M-opsin positive cell in the retinal

area. Also, using these images, Voronoi domain and the coefficient of clustering was mea-

sured.

(DOCX)

S2 Fig. TUNEL staining in SB-3CT-treated normal retina. Legend: TUNEL staining in

25ug/ml SB-3CT treated groups after 3 days (A) and after 1 week (B) post-injection. There

were no TUNEL positive cells in either time-point. P, postnatal; D, days; wk, week; N, normal;

ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner

plexiform layer; GCL, ganglion cell layer. Scale bar = 50 um.

(DOCX)

S3 Fig. Reduction of MMP-9 and MMP-2 activities in a later stage of S334ter retina. In the

gelatin zymography, SB-3CT attenuated the level of pro-MMP-9 (92 kDa), active MMP-9 (82

kDa), pro-MMP-2 (72 kDa) and active MMP-2 (63 kDa) in P15 S334ter. In P30, P45, and P60,

no activity of MMP-9 and MMP-2 was observed in both saline (-) and SB-3CT (+) treated reti-

nas. Recombinant mouse MMP-9 and recombinant mouse/rat MMP-2 were applied to the gel

and transferred to the membrane as positive controls.

(DOCX)

S1 Table. Quantification of MMP-9 and MMP-2 expression in normal vs S334ter retina by

immunoblot analysis. Legend: Immunoblot analysis shows up regulation of MMP-9 in the

S334ter rat retina, compared to normal retina. Beta actin was used as loading control to obtain

relative MMP-9 and MMP-2 expression.

(DOCX)

S2 Table. The mean density of rods in saline–treated and SB-3CT-treated S334ter retinas.

Legend: The mean rod density was measured from the 1x1 mm2 sampling areas (for details,

see methods) of saline-treated S334ter and SB-3CT-treated S334ter retinas.

(DOCX)

S3 Table. The coefficient of clustering of TUNEL positive cells in P18 saline–treated and

P18 SB-3CT-treated S334ter retinas. Legend: The mean coefficient of clustering was mea-

sured in all groups (Fig 4).

(DOCX)
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S4 Table. The coefficient of clustering of M-opsin cones in P43 saline–treated and SB-

3CT-treated S334ter retinas. Legend: The mean coefficient of clustering was measured in all

groups (Fig 5).

(DOCX)

S5 Table. Cone coordinates of P43 SB-3CT S334ter retinas. Legend: The x and y are the

coordinates of cones extracted from white-dot images. All the cone mosaic analyses are based

on the coordinates.

(XLSX)
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