
RESEARCH ARTICLE

Sam2bam: High-Performance Framework for

NGS Data Preprocessing Tools

Takeshi Ogasawara1*, Yinhe Cheng2, Tzy-Hwa Kathy Tzeng3

1 IBM Research—Tokyo, Tokyo, Japan, 2 IBM Systems, Austin, TX, United States of America, 3 IBM

Systems, Poughkeepsie, NY, United States of America

* takeshi@jp.ibm.com

Abstract

This paper introduces a high-throughput software tool framework called sam2bam that

enables users to significantly speed up pre-processing for next-generation sequencing

data. The sam2bam is especially efficient on single-node multi-core large-memory systems.

It can reduce the runtime of data pre-processing in marking duplicate reads on a single node

system by 156–186x compared with de facto standard tools. The sam2bam consists of par-

allel software components that can fully utilize multiple processors, available memory, high-

bandwidth storage, and hardware compression accelerators, if available. The sam2bam

provides file format conversion between well-known genome file formats, from SAM to

BAM, as a basic feature. Additional features such as analyzing, filtering, and converting

input data are provided by using plug-in tools, e.g., duplicate marking, which can be

attached to sam2bam at runtime. We demonstrated that sam2bam could significantly

reduce the runtime of next generation sequencing (NGS) data pre-processing from about

two hours to about one minute for a whole-exome data set on a 16-core single-node system

using up to 130 GB of memory. The sam2bam could reduce the runtime of NGS data pre-

processing from about 20 hours to about nine minutes for a whole-genome sequencing data

set on the same system using up to 711 GB of memory.

Introduction

The rapid advance of sequencing technology and its falling cost are driving the use of next-

generation sequencing (NGS) in a great variety of domains. The volume of data generated by

NGS was projected to double every five months [1]. It is highly desirable to be able to quickly

process the raw data from a sequencer to the format (e.g. VCF, CNV) that is ready to be inte-

grated with knowledge base and other data sources for further analysis. Typical 50x coverage

of whole genome sequencing (WGS) can easily generate up to 500-GB FASTQ files. The data

processes on modern computers are still very time-consuming for such huge data sets. The

processing time for the Broad’s Genome Analysis Toolkit (GATK) Best Practices pipeline [2]

from reference alignment to variant calling can take up to a day or days to finish [3] for typical

50x coverage of WGS data.

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 1 / 11

a11111

OPENACCESS

Citation: Ogasawara T, Cheng Y, Tzeng T-HK

(2016) Sam2bam: High-Performance Framework

for NGS Data Preprocessing Tools. PLoS ONE

11(11): e0167100. doi:10.1371/journal.

pone.0167100

Editor: Ramanathan Sowdhamini, National Centre

for Biological Sciences, INDIA

Received: July 21, 2016

Accepted: November 9, 2016

Published: November 18, 2016

Copyright: © 2016 Ogasawara et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The funder, IBM, provided support in the

form of salaries for authors TO, YC and TKT, but

did not have any additional role in the study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. The specific roles of

these authors are articulated in the ‘author

contributions’ section.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0167100&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Genome data analysis pipelines involve data pre-processing steps before variant calling,

which are necessary to achieve accurate variant calling. They scan input data, analyze reads,

and filter out reads that can affect accuracy. The pre-processing steps take FASTQ-format [4]

files as input and produce compressed binary files in BAM formats [5], which are widely

accepted as common file formats to represent aligned sequenced data. The calibrated BAM

files are then used in variant discovery to identify sites where the data display variations that

are relative to the reference genome.

The pre-processing steps for SAM parsing, sorting, duplicate marking, and BAM file com-

pression can take tens of hours for a WGS SAM file. Their total runtime dominates the whole

pre-processing workflow (explained in the next sub-section) and is a clear performance bottle-

neck. The purpose of sam2bam is to improve the efficiency of this pre-processing through

fully utilizing available CPUs and memory.

The overall architecture of the tools should be redesigned so that computer resources are

fully utilized to significantly reduce the runtime of such data pre-processing steps (e.g., by

100x). Current major software tools are single- or partially multi-threaded. Partially multi-

threaded tools usually have to wait for data generated from single-threaded components

because every component (single- or multi-threaded) is executed one by one. Therefore, they

can not fully utilize multiple CPUs that are available at all times. Single-threaded components

become bottlenecks in performance on multi-CPU systems. For example, let us assume that

80% of the runtime is executed by multi-threads and the remaining time is executed by a single

thread. Speed-up for such tools by using multiple CPUs is limited to 5x even if hundreds of

CPUs are available on the system.

The sam2bam simultaneously executes functional components (e.g., file I/O, SAM parsing,

and data compression) to achieve further speed-ups on such many-CPU systems, instead of

executing the components one-by-one in a large loop. The components are combined as a

pipeline. In addition, most steps are multi-threaded. An appropriate number of CPUs are allo-

cated to each component so that no components become a bottleneck in the pipeline. The

sam2bam can achieve more than 100x speed-up on a single node system with these redesigned

frameworks for NGS data pre-processing.

Pre-processing Steps for Variant Discovery

Pre-processing steps are necessary to prepare data for analysis to maximize the accuracy of var-

iant discovery. Pre-procesing is also recommended in GATK Best Practices [6]. Pre-processing

starts with FASTQ-format files and ends in a calibrated BAM file. Pre-processing for the DNA

data usually involves five steps.

1. Mapping sequence reads to reference genome This step is usually done by BWA mem [7]

or other reference alignment tools and SAM files are generated.

2. Sorting sequence reads based on coordinates This step is usually done by Picard SortSam

or samtools sort. Some tools that are used in the following steps, such as when the Picard

MarkDuplicates tool requires the sorted input files.

3. Marking duplicate alignments This step is commonly done by the Picard MarkDuplicates

tool to remove the alignments of duplicate reads.

4. Performing local realignment around indels This is usually done by GATK RealignerTar-

getCreator and IndelRealigner tools to reduce artifacts produced in regions around the

indels.

Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 2 / 11

Competing Interests: This commercial affiliation

does not alter our adherence to PLOS ONE policies

on sharing data and materials.



5. Recalibrating the base quality score This step is usually done by GATK BaseRecalibrator

and PrintReads tools to improve the accuracy of base quality scores that the variant calling

step relies on.

Preprocessing is very time-cosuming that usually requires tens of hours for a WGS dataset

and hours for a whole exome (WEX) dataset. The sorting and duplicate marking steps took

most of the runtime for the five steps of preprocessing, which usually range from 60–70% of

the total pre-processing time, depending on the tools that were used and the test case size.

Therefore, the sorting and duplicate marking steps were identified as a bottleneck in the over-

all pre-processing steps, and sam2bam was focused on improving the performance of these

two steps by redesigning the framework to take advantage of multiple CPU cores, large-capac-

ity memory, and hardware accelerators that are available on modern computers.

Design and Implementation

The main design goal of sam2bam was to provide a high-throughput framework to process

genome files at a rate of gigabytes per second (GB/s). The framework consists of a data pipeline

that converts the data format from SAM to BAM as outlined in Figs 1 and 2. Data format con-

version is divided into multiple steps. Many of these steps are multi-threaded, while a few steps

that order the data stream are single-threaded. More CPUs are allocated for more complex steps

so that such steps are not bottlenecks in performance. Each step continuously processes data by

using CPUs as long as the data are driven from the previous step. While sam2bam provides a

data processing pipeline, it uses the samtools/high-throughput sequencing library (HTSLIB) [5]

for the data structures and utility functions to handle the SAM and BAM data formats.

Plug-in Codes

Plug-in codes that analyze, filter, and modify data can be attached to sam2bam at runtime. We

can develop the plug-in codes and run them on the high-throughput framework. There are

three types of plug-in codes.

• Filter The filter plug-in code can be inserted as an additional step of the pipeline (Fig 3). It

analyzes input data and determines if the data meet the criteria that the plug-in has. For

example, with a filter plug-in that only includes read alignments that overlap a given region

of the reference genome, the BAM file that is produced only includes alignments that overlap

the specified region.

• Accelerator The accelerator plug-in code improves the target pipeline step by using hardware

accelerators, such as field-programmable gate arrays (FPGAs). Compression acceleration is

currently supported in sam2bam. It produces a compressed BAM file using the standard

compression library (or zlib) [8]. If sam2bam detects an accelerator, it automatically off-

loads compression to hardware while carrying out compression with software (Fig 4). An

accelerator that provides the same application programming interface (API) as zlib can be

enabled by using the accelerator plug-in.

• Analyzer The analyzer plug-in code analyzes a set of read alignments and modifies them. If

the analyzer plug-in code is attached to sam2bam, the latter runs the first half of the pipeline

that parses data in the SAM format and pools the alignment information in the system. How

the alignment information is pooled will be explained in the next subsection (Pipeline Con-

figuration: items 4 and 5). When all alignment information is pooled in the system, the ana-

lyzer plug-in scans the pooled information, analyzes it, and generates output on the basis of

the analysis (Fig 5). When the analyzer plug-in has completed analysis, the pooled data are

Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 3 / 11



Fig 1. Architecture for sam2bam without analyzer plug-ins. Pipeline is configured with plug-in code that filters out data. Gray boxes indicate steps in

pipeline. Steps that have multiple boxes are multi-threaded. Blue boxes denote files in storage. Light-blue boxes denote data in memory. Light green

boxes denote plug-in code.

doi:10.1371/journal.pone.0167100.g001

Fig 2. Architecture for sam2bam with analyzer plug-ins. Alignment database is created when analyzer plug-ins are enabled. Binary alignments that

are produced by SAM parsing are placed in either main memory or external storage so that they can later be used for generating compressed BAM files by

using second half of pipeline. Alignment database has summarized information on binary alignments that is used by analyzer plug-ins.

doi:10.1371/journal.pone.0167100.g002

Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 4 / 11



transferred to the second half of the pipeline to produce a compressed BAM file. For exam-

ple, with an analyzer plug-in for marking duplicate alignments, the alignments that were

mapped to the same reference region are identified and are marked as duplicates except for

the one that has the highest level of quality.

Pipeline Configuration

The entire process of sam2bam conversion is split into functional stages such as file reading,

SAM line detection, and SAM parsing. The stages run in parallel. Each stage can also process

multiple data blocks in parallel.

Fig 3. Filter plug-ins. Each filter plug-in transfers binary alignments that meet criteria of filter to go to next step. sam2bam can use multiple filter

plug-ins at a time. Each plug-in is executed by multiple threads. In this example, SAM parsing generates three binary alignments. Filter 1 first filters

out Alignment 1, and then Filter 2 filters out Alignment 2.

doi:10.1371/journal.pone.0167100.g003

Fig 4. Accelerator plug-in. Compression threads create uncompressed blocks by copying data at virtual addresses. Compression threads that use

accelerator plug-in transfer blocks to hardware accelerator, while remaining compression threads compress blocks by using software library code.

Compressed blocks are written to BAM file.

doi:10.1371/journal.pone.0167100.g004

Fig 5. Analyzer plug-ins. Analyzer plug-in codes obtain field values of alignments from database and save analysis results in

database. Each analyzer plug-in code can use multiple threads. In this example, three threads execute analyzer plug-in.

doi:10.1371/journal.pone.0167100.g005

Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 5 / 11



1. Reading a SAM file Data blocks (e.g., 64 KB each) are read from a SAM file, which is a

sequence of text lines (called SAM lines). Data blocks do not always end at the boundaries

between SAM lines. This step adjusts the boundaries between the blocks so that the new

blocks end at the SAM line boundaries by scanning each block from the end to the begin-

ning until the first new-line character is found to enable multi-threads to independently

process the blocks in the next step.

2. Splitting a block into SAM lines SAM lines are extracted from the data blocks transferred

from the previous stage. The data blocks are scanned from the beginning to the end to find

new-line characters, which separate SAM lines. A major effort in this stage is to find these

characters by using a function of the standard C-language library (memchr). The perfor-

mance of the function is optimized by using vector instructions, if they are available [9]. A

scanned data block is transferred to the next pipeline stage, which parses SAM lines with

the positions where SAM lines start.

3. Parsing SAM lines Binary alignment records are created from the SAM lines. The sam2-

bam locates a SAM line in the data block at each line position calculated by the previous

stage, parses the SAM line by using a library function of Samtools (sam_parse1), and cre-

ates a binary alignment record in the data format used in Samtools (bam1_t). The binary

alignment record contains the same contents as the corresponding SAM/BAM alignment.

Each binary record has a global sequence number, which is created on the basis of the block

number and a local number of the record within the block. This global sequence number is

used when analysis tools need to know which record has appeared first in the input file for

a given set of records.

4. Virtualizing binary alignment records The sam2bam supports two modes: all the binary

alignment records are placed in the main memory (memory mode) or in external storage

(storage mode). If there is sufficient memory, it is recommended that the memory mode be

run to obtain the best performance; otherwise, the storage mode can be used. The binary

alignment records are moved to either the main memory or the external storage in this

step. The binary alignment records are managed in the later stages in the virtual space of

sam2bam. A virtual address is assigned to each binary alignment record. A virtual address

can be translated into either a main memory address or an offset of the file in external stor-

age.

If sam2bam is only invoked with plug-ins that access streaming input data but not pooled

information, the input data are transferred from this step to the last step 7. In that case, only

the memory mode is enabled. Moreover, steps 5 and 6 are skipped.

5. Building alignment database Some plug-ins can start analysis after all the input data are

read. An alignment database is built for such plug-ins to provide pooled information on the

alignments in this step. Each database entry is represented by a data record called baminfo,

which is unique to sam2bam. Baminfo is created from each binary alignment record but it

only contains information that can be used by the analyzer plug-ins in step 6. Long string

data in the binary alignment records are not copied into baminfo. The long string data

include reference sequence names, concise idiosyncratic gapped alignment report

(CIGAR), sequences, base qualities, and optional fields. If any analyzer plug-in needs any of

the omitted data in step 6, the plug-in summarizes the data and saves them into baminfo

when baminfo is created.

The baminfo records are arranged in the reference genome position space to construct the

alignment database. The baminfo records can be looked up from the alignment database by

using the mapping positions of clipped sequences. The baminfo records that have the same

Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 6 / 11



mapping position are gathered and are found in the database by using a single lookup. If

there is an analysis that needs the functionality of the baminfo records being looked up by

using an unclipped mapping position, the baminfo records are arranged by using the

unclipped position as well as the clipped position.

6. Analyzing baminfo records The plug-in code undertakes any analysis by using informa-

tion in the alignment database. Duplicate marking is an example of such code. Multi-

threading can accelerate this step by decomposing the input space into sub spaces. For

example, we can split the data set of the alignment database into N�B blocks and allocate B
blocks to each of the N threads.

7. Writing a compressed BAM file This step groups the binary alignment records into 64-KB

blocks (BAM blocks), compresses them, and writes a sequence of the compressed BAM

blocks to a BAM file. This step produces a sorted BAM file if the alignment database is avail-

able. The sam2bam does not require a separate step for sorting. If some plug-ins set up the

alignment database, this step obtains input by scanning the alignment database in the order

of sort keys and writes the alignments to the BAM file in the sort-key order. Therefore, all

the output from sam2bam is automatically sorted. In contrast, if no analyzer plug-ins are

used, the output is not sorted.

There is a dispatcher that splits a sequence of the binary alignment records into 64-KB sub-

sequences by only using their virtual addresses and their sizes. The dispatcher obtains input

data by traversing the alignment database or receiving them from step 4. The dispatcher is

single-threaded to ensure the order of the binary alignment records in each BAM block is

maintained and the order of BAM blocks in the output. It does not construct actual BAM

blocks by copying the data to avoid performance bottlenecks in the dispatcher. It instead

transfers each set of virtual addresses that construct a single BAM block to a thread pool for

compression.

If the dispatcher receives the input data from step 4, the binary alignment records in the

physical memory provide their record sizes. Otherwise, the dispatcher traverses baminfo

records in the alignment database to obtain the virtual addresses and record sizes for the

binary alignment records.

Multi-threads are used for compressing BAM blocks to accelerate this step. BAM blocks are

constructed and compressed in parallel. The compression method is gzip, which is widely

used in the real world [5]. If hardware compression accelerators are available in the system,

sam2bam dynamically loads their library codes that can be called via the standard zlib appli-

cation programming interface (API) and it can offload compression to the accelerators.

Results and Discussion

To demonstrate that sam2bam can significantly reduce the runtime in marking duplicate

alignments, we compared the runtime of sam2bam versus Picard [10], which is a widely-used

tool set that is also recommended in GATK best practices [11].

Experimental Environment

Benchmark Data Sets. Two data sets in the SAM format were used to evaluate perfor-

mance. The first was 150x coverage of WEX data, and second was 50x coverage of WGS data.

The WEX data were part of the 1000 Genome Project data [12]. The input SAM file size was

52 GB. The WGS data were part of the Cancer Genome Atlas (TCGA) Benchmark 4 dataset,

i.e., G15512.HCC1954.1 [13]. The input SAM file size was 546 GB. The SAM files that we used

Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 7 / 11



were created by running the Burrows-Wheeler Aligner (BWA) [7] for the FASTQ-format data

converted from the original BAM files.

Sam2bam Configuration. The sam2bam handled the SAM and BAM data formats by

calling the modified code of samtools. The original code for samtools was obtained from its

development repository as of August 2015. Two plug-ins were created for the performance

evaluation: an analyzer plug-in for marking duplicate alignments and a compression accelera-

tor plug-in. The source code for sam2bam and the instructions on how to build sam2bam are

available from a GitHub repository (https://github.com/t-ogasawara/sam-to-bam).

The analyzer plug-in was enabled to mark duplicate alignments. The sam2bam created the

alignment database, as was explained earlier in Section Pipeline Configuration: item 5. The

analyzer plug-in traversed the alignment database by using the unclipped position to find the

candidates of duplicate alignments and find alignments that had the same beginning and end

positions. It also found their pairs by using mate information that is available in the alignment

database. The plug-in further used the same criteria as Picard MarkDuplicates [14] for the can-

didates to select one alignment from duplicates. The duplicates were analyzed in parallel by

assigning the segmented unclipped position regions to threads. This analyzer plug-in was pro-

vided as a pre-built library for POWER8 systems and was installed when sam2bam was built.

The accelerator plug-in enabled the use of a hardware compression card. Part of the multi-

threads for compression offloaded compression tasks to the hardware card instead of perform-

ing compression with software. This accelerator plug-in was also constructed when sam2bam

was built.

Picard Tools. Two Picard tools, SortSam and MarkDuplicates, have been suggested to

mark duplicate alignments on GATK Best Practices [11]. SortSam first takes a SAM file as

input, sorts the alignments, and writes the result to a BAM file. MarkDuplicates then takes the

produced BAM file as the input, marks duplicate alignments, and writes the result to another

BAM file. The BAM files are compressed by default.

We used Picard tools (version 2.1.1) [10] in the BioBuilds package (version 2016-04) [15].

OpenJDK 1.8.0_72-internal was used to run the Picard tools with 21 GB of Java heap memory.

Hardware. The runtime of the target programs and the maximum size of the memory

that was used by the programs during program execution were measured by using a com-

mand, /usr/bin/time. The programs were run on a single node of IBM Power Systems

S822LC [16] that had 16 POWER8-based CPU cores [17], where 128 logical processors were

available (eight logical processors per core) with 1 TB of memory. The machine was attached

to high performance storage, i.e., an IBM Elastic Storage Server (ESS) GL4 via a Mellanox FDR

switch [18]. A hardware card that provided FPGA-based zlib acceleration [19] was attached to

the machine and this could speed up compression of the BAM data. The operating system was

Ubuntu 14.04.1.

The theoretical maximum performance for the storage mode of sam2bam that was

explained in Pipeline Configuration was measured by using the file system in the main mem-

ory (/dev/shm), which simulated an ideal high-performance device (e.g., a solid state drive

(SSD)). Such a device is mandatory to achieve high levels of performance in the storage mode

since sam2bam in the storage mode performs a huge number of I/O operations that are not

always sequential accesses.

Performance Evaluation with Whole Exome Data

The sam2bam demonstrated more than 100 times better performance than Picard and finished

in about one minute in both memory and storage modes while Picard needed more than two

hours (Table 1).

Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 8 / 11

https://github.com/t-ogasawara/sam-to-bam


The sam2bam benefited from multi-threading and pipelining, which was explained in Pipe-

line Configuration. The sam2bam read a SAM file for SAM parsing and parsed it at rates of

1.7-2.0 GB/s. This high level of performance was due to multi-threading and pipelining (we

will discuss performance without them in S1 Text). The runtime of duplicate marking was 5%

of the total runtime.

BAM blocks were compressed at rates of 1.5–1.7 GB/s, including a rate of additional 0.9

GB/s with hardware compression. Such high throughput was achieved by pipelining as well as

multi-threading (we will discuss performance without pipelining in S2 Text).

The performance of the framework on which alignments were analyzed and processed is

critical for high performance tools. The runtime of a Picard tool that converts the file format

from SAM to BAM is 92% that of SortSam and 70% that of MarkDuplicates for Picard (we will

discuss the details in S3 Text).

Performance Evaluation with Whole Genome Sequencing Data

The sam2bam demonstrated 156 times better performance than Picard. The sam2bam finished

in about 9 minutes in the memory mode while Picard needed more than 20 hours (Table 2).

The storage mode was 81% slower than the memory mode for WGS data, while the memory

and storage modes demonstrated similar performance for WEX data. This slowdown was

mainly due to slowdown in BAM block compression in the storage mode (37% of throughput

in the memory mode). We collected system-level profiles to analyze the slowdown in BAM

block compression. The profiles indicated that the computation time in the operating system

was significantly increased by 33 times in the storage mode using the WGS data, but it was

only increased by 151% when using the WEX data. We need to further investigate additional

activities undertaken by the operating system to address the slowdown with the WGS data in

the storage mode.

Table 1. Runtimes and maximum memory sizes for marking duplicates on 52 GB WEX data.

SAM parsing, sorting Duplicate marking Total runtime

Picard 59.4 min (17.5 GB) 86.6 min (22.2 GB) 146.0 min

Sam2bam (memory mode) 1.0 min (130.3 GB) 1.0 min

Sam2bam (storage mode) 1.0 min (105.4 GB) 1.0 min

Sam2bam (memory mode, no HW compression) 1.4 min (129.0 GB) 1.4 min

Sam2bam (storage mode, no HW compression) 1.3 min (103.9 GB) 1.3 min

Although sam2bam was more than 186 times faster than the standard tools, it required more memory than Picard in the memory mode. The sam2bam

reduced the maximum memory size by placing binary alignments in external storage instead of in the main memory in the storage mode. The performance

of sam2bam with data compression by using both software and hardware was 43% better than that of sam2bam with software-only compression. The Java

heap size for Picard was sufficient since the time spent in garbage collection of the Java heap was negligible (about 0.63% of the total runtime).

doi:10.1371/journal.pone.0167100.t001

Table 2. Runtimes and maximum memory sizes for marking duplicates on 546GB WGS data.

SAM parsing, sorting Duplicate marking Total runtime

Picard 631.9 min (18.6 GB) 707.5 min (22.4 GB) 1339.4 min

Sam2bam (memory mode) 8.6 min (710.7 GB) 8.6 min

Sam2bam (storage mode) 15.6 min (232.9 GB) 15.6 min

Sam2bam (memory mode, no HW compression) 16.2 min (709.1 GB) 16.2 min

Sam2bam (storage mode, no HW compression) 21.7 min (231.3 GB) 21.7 min

doi:10.1371/journal.pone.0167100.t002

Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 9 / 11



Accuracy of Duplicate Marking

The accuracy of duplicate marking for sam2bam could be evaluated by measuring the number

of alignments that Picard MarkDuplicates marked but sam2bam did not and also by measur-

ing the number of alignments that sam2bam marked but PicardMarkDuplicates did not. Out-

puts were compared between Picard MarkDuplicates and sam2bam (we will discuss how we

compared the outputs in S4 Text) to evaluate the accuracy of duplicate marking. If sam2bam

and Picard MarkDuplicates marked the same sets of alignments, sam2bam could be consid-

ered to be accurate and could be used as a fast alternative to Picard MarkDuplicates.

We tested and verified that duplicate marking by sam2bam was accurate, based on the

experimental results obtained from WEX and WGS data sets. There were 16 million duplicate

alignments for the WEX data set and 188 million for the WGS data set. These alignments were

the same between sam2bam and Picard MarkDuplicates when making the comparison

explained in S4 Text.

Supporting Information

S1 Text. Advantage of multi-threaded and pipelined SAM parsing.

(PDF)

S2 Text. Evaluation of performance of multi-threaded and pipelined generation of com-

pressed BAM file.

(PDF)

S3 Text. Discussion on performance of file format conversion framework.

(PDF)

S4 Text. Methodology of comparing marked duplicates between tools.

(PDF)

Author Contributions

Conceptualization: TO.

Investigation: TO YC.

Methodology: TO YC.

Resources: TO YC TKT.

Software: TO.

Supervision: TO.

Validation: TO YC TKT.

Visualization: TO.

Writing – original draft: TO.

Writing – review & editing: TO YC TKT.

References
1. Baker M. Next-generation sequencing: adjusting to data overload. Nat Methods. 2010; 7(7):495–9. doi:

10.1038/nmeth0710-495

Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 10 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167100.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167100.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167100.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0167100.s004
http://dx.doi.org/10.1038/nmeth0710-495


2. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From

FastQ data to high-confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr

Protoc Bioinformatics. 2013; 11(1110):11.10.1–11.10.33. doi: 10.1002/0471250953.bi1110s43 PMID:

25431634

3. Prabhakaran A, Shifaw B, Naik M, Narvaez P, Van der Auwera G, Powley G, et al. Infrastructure for

GATK Best Practices Pipeline Deployment;. Available: http://www.intel.com/content/dam/www/public/

us/en/documents/white-papers/deploying-gatk-best-practices-paper.pdf.

4. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for sequences with

quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Research. 2010; 38(6):1767–

1771. doi: 10.1093/nar/gkp1137 PMID: 20015970

5. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. doi: 10.1093/bioinformatics/btp352 PMID:

19505943

6. GATK Best Practices—Pre-processing;. Available: https://www.broadinstitute.org/gatk/guide/bp_step.

php?p=1.

7. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformat-

ics. 2009; 25(14):1754–1760. doi: 10.1093/bioinformatics/btp324 PMID: 19451168

8. The SAM/BAM format specification working group. Sequence Alignment/Map Format Specification;

2015. Available: http://github.com/samtools/sam-spec.

9. Optimization of GLIBC’s memcpy, memmove and memchr functions. IBM developerWorks;. Available:

https://www.ibm.com/developerworks/community/wikis/home/wiki/W51a7ffcf4dfd_4b40_9d82_

446ebc23c550/page/Porting%20Story%20%231.

10. Picard;. Available: http://broadinstitute.github.io/picard/.

11. (howto) Map and mark duplicates;. Available: http://gatkforums.broadinstitute.org/gatk/discussion/

2799/howto-map-and-mark-duplicates.

12. NA12878 exome alignment;. Available: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/

NA12878/exome_alignment/NA12878.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam.

13. The Cancer Genome Atlas (TCGA) Benchmark 4 dataset;. Available: https://cghub.ucsc.edu/datasets/

benchmark_download.html.

14. Overview of the dedup function of bamUtil;. Available: http://genome.sph.umich.edu/wiki/BamUtil:

_dedup.

15. BioBuilds.org;. Available: https://biobuilds.org/downloads/.

16. IBM Power Systems S822LC technical overview and introduction;. Available: http://www.redbooks.ibm.

com/redpapers/pdfs/redp5283.pdf.

17. Sinharoy B, Van Norstrand JA, Eickemeyer RJ, Le HQ, Leenstra J, Nguyen DQ, et al. IBM POWER8

processor core microarchitecture. IBM Journal of Research and Development. 2015; 59(1):2:1–2:21.

doi: 10.1147/JRD.2014.2376112

18. Introducing the Elastic Storage Server for Power;. Available: http://www.ibm.com/support/

knowledgecenter/SSYSP8_4.0.0/com.ibm.ess.v4r0.deploy.doc/bl8dep_intro.htm.

19. A hardware accelerated version of zLib based compression/decompression RFC1950/RFC1951/

RFC1952 with help of an FPGA based PCIe card;. Available: https://github.com/ibm-genwqe/genwqe-

user.

Sam2bam: High-Performance Framework for NGS Data Preprocessing Tools

PLOS ONE | DOI:10.1371/journal.pone.0167100 November 18, 2016 11 / 11

http://dx.doi.org/10.1002/0471250953.bi1110s43
http://www.ncbi.nlm.nih.gov/pubmed/25431634
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/deploying-gatk-best-practices-paper.pdf.
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/deploying-gatk-best-practices-paper.pdf.
http://dx.doi.org/10.1093/nar/gkp1137
http://www.ncbi.nlm.nih.gov/pubmed/20015970
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://www.broadinstitute.org/gatk/guide/bp&lowline;step.php?p=1
https://www.broadinstitute.org/gatk/guide/bp&lowline;step.php?p=1
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://github.com/samtools/sam-spec
https://www.ibm.com/developerworks/community/wikis/home/wiki/W51a7ffcf4dfd&lowline;4b40&lowline;9d82&lowline;446ebc23c550/page/Porting%20Story%20%231
https://www.ibm.com/developerworks/community/wikis/home/wiki/W51a7ffcf4dfd&lowline;4b40&lowline;9d82&lowline;446ebc23c550/page/Porting%20Story%20%231
http://broadinstitute.github.io/picard/
http://gatkforums.broadinstitute.org/gatk/discussion/2799/howto-map-and-mark-duplicates
http://gatkforums.broadinstitute.org/gatk/discussion/2799/howto-map-and-mark-duplicates
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/exome&lowline;alignment/NA12878.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/exome&lowline;alignment/NA12878.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam
https://cghub.ucsc.edu/datasets/benchmark&lowline;download.html
https://cghub.ucsc.edu/datasets/benchmark&lowline;download.html
http://genome.sph.umich.edu/wiki/BamUtil:&lowline;dedup
http://genome.sph.umich.edu/wiki/BamUtil:&lowline;dedup
https://biobuilds.org/downloads/
http://www.redbooks.ibm.com/redpapers/pdfs/redp5283.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5283.pdf
http://dx.doi.org/10.1147/JRD.2014.2376112
http://www.ibm.com/support/knowledgecenter/SSYSP8&lowline;4.0.0/com.ibm.ess.v4r0.deploy.doc/bl8dep&lowline;intro.htm
http://www.ibm.com/support/knowledgecenter/SSYSP8&lowline;4.0.0/com.ibm.ess.v4r0.deploy.doc/bl8dep&lowline;intro.htm
https://github.com/ibm-genwqe/genwqe-user
https://github.com/ibm-genwqe/genwqe-user

