
RESEARCH ARTICLE

Computational Identification of Tissue-

Specific Splicing Regulatory Elements in

Human Genes from RNA-Seq Data

Eman Badr1*, Mahmoud ElHefnawi2,3, Lenwood S. Heath4

1 Department of Information Technology, Faculty of Computers and Information, Cairo University, Giza,

Egypt, 2 Center of Excellence for Advanced Sciences, Informatics and Systems Department, National

Research Center, Cairo, Egypt, 3 Center for Informatics Science, Nile University, Sheikh Zayed City, Egypt,

4 Department of Computer Science, Virginia Tech, Blacksburg, Virginia, United States of America

* ebadr@cu.edu.eg

Abstract

Alternative splicing is a vital process for regulating gene expression and promoting proteo-

mic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly

regulated by splicing factors that bind to specific sequences called splicing regulatory ele-

ments (SREs). Here, we report a genome-wide analysis to study alternative splicing on mul-

tiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify

differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize

the DEXSeq package along with our previously reported algorithms. Utilizing the publicly

available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differ-

entially used exons across the four tissues. We identified tissue-specific exonic splicing

enhancers that overlap with various previously published experimental and computational

databases. A complicated exonic enhancer regulatory network was revealed, where multi-

ple exonic enhancers were found across multiple tissues while some were found only in spe-

cific tissues. Putative combinatorial exonic enhancers and silencers were discovered as

well, which may be responsible for exon inclusion or exclusion across tissues. Some of the

exonic enhancers are found to be co-occurring with multiple exonic silencers and vice

versa, which demonstrates a complicated relationship between tissue-specific exonic

enhancers and silencers.

Introduction

Alternative splicing (AS) is an essential cellular process in eukaryotes that pre-mRNA usually

undergoes to produce multiple mRNA isoforms of the same gene with likely different func-

tions [1]. In a typical splicing process, introns within the pre-mRNA are removed, and the

exons are joined together to form the mature mRNA [2, 3]. AS supports the joining of different

combinations of exons; said another way, what sequence constitutes an exon is readily rede-

fined. As a consequence, different proteins are produced from the same gene. Recent studies

show that AS occurs in more than 95% of human genes [3, 4]. AS is regulated by specific
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proteins, called splicing factors. They bind to certain short sequences on the pre-mRNA, called

splicing regulatory elements (SREs). Identifying these SREs and their combinatorial effects are

crucial to understanding AS. SREs are classified as enhancers if they promote exon inclusion

and silencers if they inhibit exon inclusion [3, 5, 6]. Accurate splicing is crucial, as it is believed

that mutations either in the core splicing signals or in the SREs contribute to approximately

50% of human genetic diseases [4, 7, 8].

Alternative splicing plays a key role in generating tissue-specific proteins [3, 9]. Tissue-spe-

cific alternative splicing is regulated by a combination of tissue-specific and ubiquitously

expressed RNA-binding factors [10]. They interact with the splicing regulatory elements to

affect the spliceosome assembly (splicing machinery) and consequently the transcribed iso-

forms. There are several splicing factors that activate or repress splicing in different contexts

[10]. Skipping exons is one of the notable alternative splicing events between different tissues

that results in different proteins. Wang, et al. [10] suggested that having this switch-like regula-

tion between tissues requires additional splicing regulatory elements to be present. Most work

in mammalian systems revealed that AS decisions are often made by a combinatorial action of

general and tissue-specific regulators [11]. Even simple tissue-specific decisions can involve

additional layers of complexity, where regulatory elements cooperate or compete with each

other [12].

Several studies have identified tissue-specific regulatory elements. Mouse RNA-Seq data for

three tissues (brain, liver and skeletal muscle) were utilized to calculate the expression level of

each isoform of genes for a set of predefined cassette exons [3]. The authors identified 456

putative enhancers and silencers. Among these, 45 were common to all tissues.

Kim et al. [13] utilized a distribution-based quantitative association rule mining to find

exonic and intronic sequence motifs in 10 mouse tissues. Combinatorial cis-regulatory motifs

were also discovered. The author identified statistically significant associations between

sequence motifs and tissue-specific exon skipping rates. Ninety-seven interesting association

rules were identified, of which three contain multiple 7-mers.

Focusing on human tissues, a varying effect regression model on splicing elements

(VERSE) was developed to predict genome-wide intronic SREs [14], where RNA-Seq data for

16 human tissues was used. Approximately half of the SREs (55.68%) were found to be signifi-

cant only in one tissue.

Castle, et al. [15] designed microarrays monitoring exons and exon-exon junctions in

17,939 human genes. For the regulatory elements, they extracted sequences in eight neighbor-

hoods around regulated exons where 135 motifs were identified.

Brudno, et al. [16] identified intronic regulatory elements that are brain-specific, while, in

[17], the identified regulatory elements were muscle-specific. In [8], a probabilistic approach

was utilized and several intronic regulatory elements in different human tissues were

identified.

Wang, et al. [18] developed a linear regression model to estimate the effect of various splic-

ing factors on exon inclusion between two tissues, and, hence, the binding sites of these splic-

ing factors are predicted. They applied their model on data from liver and heart tissues and

predicted 15 motifs that contribute to exon skipping events. The work was extended to 11

human tissues in [9].

Wang, et al. [10], analyzed 10 human tissues. A high frequency of tissue-specific regulation

was observed for each of various alternative splicing event types, including over 60% of the

analyzed skipped exons.

Ke and Chasin [19] utilized a hypergeometric test to discover sequence pairs that are over-

represented in intronic regions flanking human exons. They identified more than 60,000
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5-mer sequence pairs with p� 10−4. They showed that some pairs are associated with tissue-

specific genes.

Taking into consideration the combinatorial effect of SREs, a biophysical principals based

regression model for the regulation of AS was developed in [20]. It captures both the main

effects of individual SREs and the combinatorial effects of SRE pairs. Overall, 619 different

SREs and 196 SRE pairs were detected from different tissues. Their model was limited to the

interaction of at most two SREs.

As discussed above, most of the human tissue-specific studies focus on identifying individ-

ual SREs in intronic regions [8, 14, 16, 17]. Wang, et al. [9, 18] identified SREs in both intronic

and exonic regions. However, the focus was only on individual regulatory elements as well.

There are other studies that identify individual SREs in both exonic and intronic regions [21–

28], which we use for comparing our results. However, the focus in these studies was not on

tissue-specific SREs. For more detailed review about these approaches, please refer to our pre-

vious paper [21].

The tissue-specific studies that focus on the combinatorial SRE effect were [19, 20]. In [20],

out of 196 identified SRE pairs, only two pairs have both SREs in the exonic region. In [19],

the identified pairs reside in the intronic regions.

In this work, we performed genome-wide analysis to study alternative splicing on multiple

tissues (brain, heart, liver, and muscle). The RNA-Seq data set from the Human BodyMap

project [29] was utilized. We used DEXSeq [30] to identify differential exons across tissues.

Then, we applied our algorithms, GenSRE [21] and CoSREM [31], to identify both individual

and combinatorial exonic regulatory elements responsible for exons that exist in one tissue but

not in other tissues. Putative tissue-specific exonic enhancers were discovered and a compli-

cated exonic enhancer regulatory network was revealed. Multiple exonic enhancers were

found across multiple tissues, while some were found only in specific tissues. Putative combi-

natorial exonic enhancers and silencers were discovered as well that may be responsible for

exon inclusion or exclusion across tissues. This is, to our knowledge, the first analysis to focus

only on discovering exonic regulatory elements (individual and combinatorial) across tissues.

Materials and Methods

Data

RNA-Seq data from the Human BodyMap 2.0 project is utilized [29]. This data originates

from 16 different human tissues. It contains 50 bp paired-end reads, 75 bp single-end reads,

and 100 bp single-end reads. We focus on four tissues, namely, brain, heart, liver, and muscle.

All the samples provided for tissues of interest have been utilized.

For comparing our results with previously published results, several databases are utilized.

SpliceAid-F [22] is a recent comprehensive database that includes all the experimentally veri-

fied splicing factors and their binding sites. It contains 71 splicing factors and 655 binding sites

for human. We also used AEdb [23], which is a database for alternative exons and their proper-

ties from various species; it is the manually curated component of the Alternative Splicing

Database (ASD). The exon data in AEdb have been experimentally verified.

In addition, we compared our putative exonic splicing enhancers (ESEs) with five other

computational data sets. The RESCUE-ESE [24] data set contains 238 6-mers for human

exons. Another data set is PESE [25], where 2096 8-mers were identified. The third data set is

from [26] and contains 4- and 5-mers as potential ESEs. In the data set from [27], the authors

concentrated on 5-mer putative ESEs.

For exonic splicing silencers (ESSs), we compared our results with FAS-ESS [28], and PESS

[25]. The FAS-ESS data set contains 130 10-mer sequences that were identified utilizing the
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mini-gene approach. PESS is another data set where the authors compared the frequencies of

8-mers (allowing one mismatch) in constitutively spliced non-coding exons with those in

pseudo-exons and the 50 untranslated regions (UTRs) of intronless genes.

Overview of our proposed pipeline

In our pipeline, different tools are utilized to identify tissue-specific exonic regulatory ele-

ments. The first stage (Fig 1) is to identify differential exons. To do that, we utilized DEXSeq

[30]. DEXSeq identifies exons that are differentially used between two tissues. We compare

each tissue of interest with the other three tissues. The output of this stage is three sets of differ-

entially used exons in the tissue of interest but not in the remaining tissues. We then apply

GenSRE [21] separately on the exon sets to identify exonic enhancers. We identify tissue-spe-

cific exonic enhancers by determining the common ESEs across the sets. We also apply CoS-

REM [31] to identify co-occuring exonic enhancers and silencers that may be responsible for

exon inclusion or exclusion across tissues.

Identifying differential exons across tissues

Our main goal is to identify splicing regulatory elements that are tissue-specific. To do that,

we utilized DEXSeq [30] to identify exons that are differentially used between two tissues.

Fig 1. An example of the proposed pipeline applied on the brain tissue.

doi:10.1371/journal.pone.0166978.g001
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Differential exon usage analysis aims at identifying the changes in relative usage of exons

caused by a certain condition [32].

Let Rg = {t1, t2, . . ., tn} be the set of all the transcripts from a specific gene g. Let Xg = {e1,

e2, . . ., em} be the set of all exons that constitute the transcripts of gene g. Let T(e, g) be the

set of all the transcripts from Rg that contain an exon e. Exon usage U(e, g) of exon e is

defined to be

Uðe; gÞ ¼
Tðe; gÞ

n

In DEXSeq, generalized linear models are utilized to model read counts, and the χ2 likeli-

hood ratio test is then used to get an analysis of deviance p-value. The null hypothesis in this

test is that none of the conditions influence exon usage. Rejecting the null hypothesis indicates

that the count of sequencing reads that map to the exon under the test differs significantly

between the different conditions. One of the advantages of this model is accounting for biolog-

ical variability when the data has replicates for different conditions in contrast to other meth-

ods [33].

Before conducting differential exon usage analysis, flattening gene models and counting the

reads were performed. Flattening gene models means aligning the sequencing reads to a refer-

ence genome and accumulating all the reads for each exon in each tissue from all the tran-

scripts that contain this exon. As some of the transcripts may contain only a part of an exon,

the exon counting bins term is used to refer to an exon or a part of an exon [32, 34]. It is notable

that having exons with differential usage does not mean that their corresponding transcripts

are differentially expressed. The output of DEXSeq is a table that contains the differential

counting bins, their genes, their read counts in both tissues, and the p-values to determine

significance.

For each pair of tissues, we applied DEXSeq. We identify differentially used exons by choos-

ing the exons with p-value� 0.05. We further filter these exons by choosing the exons with

log2 fold change� 2 or� −2. To focus on exons that exist in one tissue but not in the other,

we only used exons that have reads in one tissue and no reads at all in the other tissue. The out-

put of this stage is a set of exons in each tissue that are differentially used and present in one

tissue but not the other.

These exons were then retrieved from the ENCODE project [35]. The February, 2009,

human genome assembly (GRCh37/hg19) was used. The complete exonic sequences were

retrieved. The 200 intronic nucleotides upstream and the 200 intronic nucleotides downstream

of each exon were also retrieved.

Identifying tissue-specific enhancers

We utilized a formalism based on de Bruijn graphs that we previously reported [21]. It com-

bines genomic structure, word count enrichment analysis, and experimental evidence to iden-

tify enhancers found in exons [21]. In this model, a six-dimensional de Bruijn graph is

constructed G = (V,E) over the DNA alphabet σ = {A,C,G,T}, and each vertex is associated with

its rank based on LEIsc (log of the enrichment index, scaled) scores from Ke et al. [36]. Then, a

subset U� V is chosen to be the 400 vertices with the highest LEIsc values. An SRE graph GU

is then constructed and its weakly connected components are calculated. The algorithm Gen-

SRE is then applied to each weakly connected component to determine a set of potential

enhancers. Finally, these sequences are submitted to word count enrichment analysis.

Splicing Regulatory Elements and Tissue Specificity
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CoSREM

CoSREM (Combinatorial SRE Miner) is an algorithm for discovering combinatorial SREs that

we reported in [31]. CoSREM is a two-level graph mining algorithm that is applied to the SRE

graphs from [21] to identify co-occurring sets of SREs. The focus is on identifying sets of

exonic splicing regulatory elements whether they are enhancers or silencers. Experimental evi-

dence is incorporated through the SRE graphs to increase the accuracy of the results. The iden-

tified SREs do not have a predefined length, and the algorithm is not limited to identifying

only SRE pairs.

GO enrichment analysis

We utilized the command-line version of Ontologizer [37], with the goal of determining the

enriched GO annotations of the genes that contain the identified enhancers that appears only

in one tissue.

For each tissue, the genes, whose exons were identified as differential exons, are utilized as a

background data set (population set). For each exonic splicing enhancer in a specific tissue,

the exon data set is searched to allocate each splicing enhancer, and the corresponding gene set

is identified to form the study set. GO annotation files gene_ontology_edit.obo and gene_asso-

ciation.goa_human were downloaded. GO enrichment analysis is performed using the Topol-

ogy-Elim algorithm. The Westfall-Young Single Step multiple testing correction procedure is

then applied.

We are interested in the biological process annotations. Therefore, we choose the biological

process category with the minimum adjusted p-value, where we consider only terms with

p� 0.05 to be significant.

Results

Differentially used exons between tissue pairs

In this study, we analyze four tissues from the RNA-Seq data of the Human BodyMap project

[29]. DEXSeq [30] is utilized to identify differentially used exons between pairs of tissues.

Table 1 illustrates a part of the DEXSeq output for each pairwise comparison.

For each tissue pair comparison, DEXSeq produces a list of exons that are differentially

used in one tissue but not in the other tissue. These exons may be whole exons or parts of

exons. Being conservative, we define tissue-unique exons as differentially used exons with

p� 0.05, log2 fold change� 2 or� −2, and exons that have reads in one tissue and zero reads

in the other tissue. We preferred to have a strict set of exons that exist in one tissue against the

other. Table 2 illustrates the number of exons resulting from each pairwise comparison. The

Table 1. An example of DEXSeq output for brain and heart tissues.

ID stat padj brain heart log2 fold count1 count2

chr8_ANK1-:E006 124.56 4.08E-26 4.39 20.56 2.23 5 357

chr10_ABLIM1-:E015 121.81 1.58E-25 3.62 18.91 2.39 1 507

chr10_ACBD7-:E003 7.75 0.04 8.47 0.36 -4.57 415 0

chr10_ADD3+:E015 68.33 3.04E-14 12.16 1.59 -2.94 144 0

chr10_CCSER2+:E006 19.46 0.00027 3.59 15.95 2.15 7 161

chr10_NEBL-:E017 394.064 5.60E-84 3.88 18.06 2.22 1 1601

The ID column lists the gene name and the exon number. The stat column includes the likelihood ratio test (LRT) statistic value. Brain and heart columns

contain the exon usage coefficients for both tissues. The count columns include the actual counts of the mapped reads.

doi:10.1371/journal.pone.0166978.t001
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complete list is listed in S1 File.For example, applying DEXSeq on brain and heart tissues

resulted in 1423 exons that are brain-specific. In the same manner, 857 exons were found to be

heart-specific while having zero reads in brain tissue. It should be noticed that brain tissue has

the largest number of tissue-unique exons, which is consistent with results reported in [13]

that the brain has a large number of tissue-specific alternative spliced exons. We performed 6

pairwise tissue comparisons. Therefore, we have 3 different sets of exons for each tissue with a

total of 12 tissue-unique exon sets for all 4 tissues.

Tissue-specific exonic enhancers

We used a de Bruijn graph based algorithm called GenSRE to identify ESEs in each tissue [21].

Having three exon sets for each tissue, we applied GenSRE on each set separately. Table 3 indi-

cates the number of the identified ESEs in each set. The complete list is listed in S2 File. We

focused on identifying putative exonic enhancers that may play a role in the inclusion of these

exons within these specific tissues. In GenSRE, the exonic flank size is determined to be 50

nucleotides. Therefore, all exons that don’t meet this criterion are excluded. Table 4 contains

the number of exons that were utilized. GenSRE identifies variable length SREs in the exonic

flanking regions. The identified ESEs lengths range from 6 to 15 nucleotides.

To identify tissue-specific ESEs, we extracted the common set of exonic enhancers across

the three exon sets for each tissue. This behavior suggests that these ESEs are tissue-specific as

Table 2. Number of tissue-unique exons that are present in one tissue and excluded in the other

tissue.

Brain Heart Liver Muscle

Brain - 1423 4592 7071

Heart 857 - 3952 6975

Liver 800 839 - 5002

Muscle 623 612 2495 -

The counts are tissue specific to the rows, while the columns show the second tissue in a comparison.

doi:10.1371/journal.pone.0166978.t002

Table 3. Number of identified ESEs in one tissue with respect to the other tissues using GenSRE

algorithm.

Brain Heart Liver Muscle Tissue-specific ESEs

Brain - 449 793 923 205

Heart 250 - 695 877 85

Liver 277 398 - 752 50

Muscle 255 282 567 - 34

Tissue-specific ESEs are the common set between identified ESEs

doi:10.1371/journal.pone.0166978.t003

Table 4. Number of utilized exons in GenSRE.

Brain Heart Liver Muscle

Brain - 930 3132 4796

Heart 573 - 2638 4607

Liver 564 596 - 3404

Muscle 359 417 1634 -

doi:10.1371/journal.pone.0166978.t004
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they repeatedly appeared in one tissue against all the other tissues. Table 3 illustrates the num-

ber of tissue-specific ESEs for brain, heart, liver, and muscle tissues. S1 Table includes the list

of tissue-specific ESEs for all tissues.

We also wanted to assess the accuracy of this pipeline in identifying tissue-specific ESEs.

Therefore, for each tissue, we identified the set of exons that is present in only that tissue. This

is done by finding the intersection between the different exon sets of each tissue. For example,

in the case of the brain tissue, each exon set represents exons that are present in the brain and

not in the heart, liver, and muscle tissues, respectively. The common set of exons between

these three sets represents brain-unique exons (Fig 2).

Then, we searched for tissue-specific ESEs that we previously identified in these unique sets

of exons, to see if they appear in the exonic flanking regions or not. Table 5 illustrates the num-

ber of ESEs that were found for each tissue. For example, out of 205 exonic enhancers that we

Fig 2. Brain-unique exons. Each circle represents the number of brain-specific exons that resulted from

brain pairwise comparisons with other tissues (heart, liver, and muscle). The intersection represents brain-

unique exons against all other tissues.

doi:10.1371/journal.pone.0166978.g002

Table 5. A comparison table to identify the occurrence of tissue-specific ESEs in tissue-unique exon

sets.

Unique exons Tissue-specific ESEs ESEs found in unique exons

Brain 173 205 174

Heart 23 85 19

Liver 32 50 19

Muscle 21 34 13

Exons that are present in one tissue but not in all the other tissues.

doi:10.1371/journal.pone.0166978.t005
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identify as brain-specific ESEs, we found 173 ESEs in the brain-unique exons, which represents

about 85% of all the identified ESEs. It is notable that, for instance, as indicated in Table 5 for

the heart tissue, although there are 85 ESEs identified as heart-unique, the number of heart-

specific exons is only 23 exons. In these 23 exons, we found 19 ESEs, which is about 83% cover-

age for the exons. This result suggests that our approach can be utilized to identify tissue-spe-

cific ESEs.

Comparison with SRE databases

We compared our results with databases from [22–27]. We extracted only exonic enhancers

and silencers to compare our results with. We applied the same approach we used in [21].

We first compared our results with exonic binding sites from SpliceAid-F [22]. SpliceAid-F

contains 330 different binding sited for human, 59 of them are exonic enhancers. Since our

predicted ESEs are of variable length, as are SpliceAid-F binding sites, we calculated the over-

lap between the two sets by finding whether each sequence in the first list is entirely contained

in at least one sequence in the second list or vice versa.

Another database is AEdb [23], where we considered only the 64 human enhancers.

In addition, we compared our ESE list with three other computational data sets, such as the

RESCUE-ESE [24] data set, the PESE [25] data set, and the data set from [26]. The data set

from [26] contains only 4- and 5-mers as potential enhancers. As a result, we could only test if

sequences in our list include any of its sequences. This also applies to the data set from [27].

Table 6 summarizes the overlapping results. Overall, about 61.8% of the predicted ESEs can be

matched to one of the previously published databases.

Tissue-specific ESE regulatory network

To understand the complex relationship among the identified exonic enhancers found in mul-

tiple tissues, we constructed a regulatory network (Fig 3). It is a bipartite graph with two types

of nodes: the circular nodes represent ESEs and the rectangular ones represent tissues. The

size of any node type is proportional to its degree (number of incident edges). It is clear that

there are ESEs that are specific to one tissue and others that may regulate more than one. That

is in accordance with the suggestion in [11] that AS decisions are often made by a combinato-

rial action of general and tissue-specific regulators.

Focusing on the ESEs that are involved in multiple tissues (Fig 4), we noticed a hierarchical

relationship, where some ESEs regulate two tissues (10% of all ESEs). A smaller number regu-

late 3 tissues (1%), and only one ESE is found in all four tissues. The other 89% of the SREs are

tissue-specific where brain-specific exonic enhancers represent 64% of all the identified ESEs.

These results are consistent with the conclusions from [13], that brain tissue exhibits a very

Table 6. Number of overlapped exonic enhancers with previously published data sets.

Data set SpliceAid-F (69) AEdb (64) RESCUE-ESE (238) PESE (2060) Fedrove (42) Zhang (42) Total

Brain(205) 35 23 36 130 11 5 126 (61.5%)

Heart(85) 11 8 12 47 12 1 50 (59%)

Liver(50) 8 3 10 28 6 2 30 (60%)

Muscle(34) 9 6 6 22 3 3 25 (73.5%)

The numbers between brackets are the number of exonic enhancers in each database. The last column indicates the total number of identified ESEs from

all previously published databases.

doi:10.1371/journal.pone.0166978.t006
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large number of tissue-specific SREs and a limited number of general ones. However, in [13],

the focus was on intronic SREs.

Tissue-specific combinatorial SREs

Identifying individual cis-regulatory elements does not suffice to explain tissue-specific or con-

dition-specific AS. For instance, in the case of exon skipping events, if an exon has both

enhancer and silencer elements in proximity and in case of having an SR splicing factor with

great affinity (SR factors are proteins that bind to enhancers and play various roles in spliceo-

some assembly [38]), the SR protein will bind to the enhancer and stimulate exon inclusion.

This is through recruiting other spliceosome proteins, such as U1 and U2, to the core splicing

signals. Consequently, the spliceosome machinery is assembled, and the exon is included.

On the other hand, if an inhibitory splicing factor such as hnRNP A1, which acts as a splic-

ing repressor, is also present, it may inhibit the exon inclusion by binding to the silencer

sequence and recruiting the binding of other inhibitory factors. These factors extend to the

exon boundary and prohibit the binding of the SR protein. As a result, the exon will be skipped

[11, 38].

Fig 3. Tissue-specific ESE regulatory network. The circular nodes represent ESEs, and the rectangular

ones represent tissues. An edge indicates an ESE contained in a tissue. The node size indicates the node

degree.

doi:10.1371/journal.pone.0166978.g003
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We utilized our graph mining algorithm CoSREM [31] to identify co-occurring exonic

enhancers (ESEs) and silencers (ESSs) that may cause exon inclusion in one tissue and its

exclusion in another tissue. To do that, the identified exon set for each tissue was utilized.

Table 7 illustrates the number of exons used for each tissue and the number of identified com-

binatorial exonic enhancers and silencers.

The actual combinatorial SRE sets are given in S3 File. We notice that these SRE sets appear

in most of the specified exons. For example, in the brain tissue, the 366 combinatorial SRE sets

appeared in 8753 out of 8858 exons, which may explain the inclusion of these exons in the

brain tissue and their exclusion in the other tissues. Although the number of combinatorial

enhancers and silencers in the brain tissue was quite large, the number of unique enhancers

and silencers was surprisingly small. There are 63 unique ESSs and 30 unique ESEs, of which

26 are identified by GenSRE in the previous section as brain-specific ESEs. Table 8 illustrates

the number of ESEs that were identified and verified previously.

Table 9 illustrates the number of ESEs and ESSs identified as a part of combinatorial SREs

for all the tissues.

Fig 4. Enhancer regulatory network that focuses on enhancers that are involved in multiple tissues. The

node size and color are proportional to its degree.

doi:10.1371/journal.pone.0166978.g004

Table 7. Number of exons used in CoSREM and the resulted combinatorial SREs.

No. of exons Combinatorial SREs

Brain 8858 366

Heart 7818 283

Liver 4564 51

Muscle 2410 45

doi:10.1371/journal.pone.0166978.t007
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To understand the relationship between these ESEs and ESSs, we constructed a regulatory

network for exonic enhancers and silencers in the brain tissue (Fig 5). The red nodes represent

ESEs, and the blue ones represent ESSs. The node size is proportional to node degree. The net-

work illustrates the many-to-many relationship between the exonic enhancers and silencers.

In other words, one ESE can co-occur with multiple ESSs and vice versa.

Table 8. The number of overlapped ESEs with our previously identified sets by GenSRE algorithm.

Brain(30) Heart(14) Liver(5) Muscle(9)

No. of verified ESEs 26 9 4 1

The numbers in parentheses are the numbers of ESEs discovered as a part of a combinatorial set.

doi:10.1371/journal.pone.0166978.t008

Table 9. Number of ESEs and ESSs identified as a part of combinatorial SREs.

No. of ESEs No. of ESSs

Brain 30 63

Heart 55 55

Liver 15 24

Muscle 26 28

doi:10.1371/journal.pone.0166978.t009

Fig 5. A regulatory network for combinatorial SREs identified in the brain tissue. The red nodes represent ESEs, and the blue ones

represent ESSs. The node size is proportional to node degree.

doi:10.1371/journal.pone.0166978.g005
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We wanted to assess the accuracy of the discovered ESSs. Our ESSs are compared with

other data sets as illustrated in Table 10 such as SpliceAid-F [22], AEdb [23], FAS-ESS [28],

and PESS [25],

Discussion

We propose a graph-based computational approach to identify exonic SREs that contribute to

exon skipping events across tissues. We utilized DEXSeq [30] to identify differential exons

across tissues, and then we applied GenSRE [21] and CoSREM [31] algorithms to identify both

individual and combinatorial SREs that are tissue-specific. We utilized Ontologizer [37] to

assess the significance of our predicted tissue-specific ESEs and whether they are involved in

tissue-specific biological processes. Therefore, for each tissue, we determined the enriched GO

annotations of the genes that contain the identified ESEs. We focused on identifying signifi-

cant biological processes with adjusted p-value� 0.05. We identified several brain-related pro-

cesses, as illustrated in Table 11. We also identified some heart-related processes such as

“regulation of cardiac muscle contraction by regulation of the release of sequestered calcium

ion” with p-value 0.00295. Other biological processes were identified as liver and muscle-

related such as “digestive tract morphogenesis”, and “regulation of muscle system process”

with p-values 0.00202, and 0.00253, respectively. S4 File includes the complete list of the

enriched GO annotations for the four tissues of interest. We applied the same analysis to iden-

tify the enriched GO annotations of the genes that contain combinatorial SREs. Various func-

tionally related biological processes to the tissue of interest are recognized. The complete list of

the enriched GO annotations of the four tissues is included in S5 File.

Table 10. The number of overlapped ESSs with previously published data sets.

Data set SpliceAid-F 59 AEdb 24 FAS 130 PESS 1091

Brain(63) 17 6 3 36

Heart(56) 16 5 3 37

Liver(24) 9 3 0 15

Muscle(28) 11 3 1 16

doi:10.1371/journal.pone.0166978.t010

Table 11. Examples of biological processes that are brain and nervous system-related.

Enhancer element ID Annotation p-value Pop. count Study total Study count

CGGAAGA GO:0042428 serotonin metabolic process 0.00027 3 49 2

TCGGAT GO:0021553 olfactory nerve development 0.00028 2 86 2

AATCGA GO:0048708 astrocyte differentiation 0.0003 13 54 3

ATGACGA GO:0060291 long-term synaptic potentiation 0.00031 5 29 2

CGTCGT GO:0001505 regulation of neurotransmitter levels 0.00036 30 59 4

GGAGAC GO:0046928 regulation of neurotransmitter secretion 0.00049 4 257 3

GAGAGC GO:0021983 pituitary gland development 0.0007 9 262 4

CGTCGAC GO:0090210 regulation of establishment of blood-brain barrier 0.00216 1 11 1

ATGACG GO:0007212 dopamine receptor signaling pathway 0.00248 5 82 2

TTCGGAT GO:0007269 neurotransmitter secretion 0.00384 20 24 2

ACCGGGA GO:0007269 neurotransmitter secretion 0.00718 20 33 2

They resulted of GO enrichment analysis of gene sets that contain putative brain-specific ESEs identified by our approach. Population total is the total

number of genes in the population set. In this case, we have 5096 genes in the population set. Pop. count is The number of genes in the population set that

are annotated to the GO term in question. Study total is the number of genes in the study set. Study count is the number of genes in the study set that are

annotated to the GO term in question.

doi:10.1371/journal.pone.0166978.t011
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We also identified tissue-specific combinatorial SREs. These are sets of co-occuring exonic

enhancer and silencer elements in each tissue. As our focus here is exons that are differentially

used in one tissue with respect to other tissues, identified combinatorial SREs may play a role

in exon inclusion in one tissue and its exclusion in another tissue. Mayeda et al. [39] showed in
vitro that having different ratios of SF2/ASF to hnRNP A1 splicing factors promotes exon skip-

ping or inclusion by binding to different enhancers or silencers. In other words, it was shown

that the ratio of SF2/ASF to hnRNP Al can affect whether the internal exon is included or

excluded. An excess of SF2/ASF promotes exon inclusion, while hnRNP Al excess promotes

exon exclusion.

Therefore, we investigated this hypothesis by incorporating the splicing factor information.

We identified splicing factor proteins (enhancer factors and inhibitor factors) from SpliceAid-

F [22] that bind to SREs in our combinatorial SRE sets. We then calculated the expression lev-

els for these splicing factors from the RNA-Seq data (Fig 6). The actual expression levels in

FPKM is in S2 Table. Then, for each combinatorial SRE set, we calculated the ratio between

Fig 6. Relative expression levels for several splicing factors across the tissues from the RNA-Seq data. Relative expression level for a splicing

factor in a specific tissue is calculated by dividing its expression level value over the sum of all expression level values for this splicing factor across the

tissues. This shows the different abundances of splicing factors across tissues.

doi:10.1371/journal.pone.0166978.g006
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the expression levels of its splicing factors, if any. Table 12 provides an example from the com-

binatorial SREs identified in the brain tissue. We focused on results where the ratio� 1 in one

tissue and� 1 in at least another tissue, which suggests that these splicing factors and their

binding sites may play a role in regulating exon inclusion or exclusion between the tissues.

An interesting result involved the splicing factors FMRP and hnRnpLL where the FMRP to

hnRNPLL expression level ratio was (� 1.83) in brain tissue while it was (� 0.52) in muscle tis-

sue as illustrated in Table 12. More interestingly, These splicing factors were associated with

multiple SRE sets. We identified multiple co-occuring exonic enhancer and silencer elements

that all are potential binding sites to these splicing factors in the brain tissue. For example, one

ESS identified as a potential binding site to hnRNPLL protein is CAGCCA. It co-occurs with

different exonic enhancer elements (AAGAGA,AAGGAA,CAAGGA,GAGAGC,GTGGAG,

AGAGGA). All ESEs were identified as binding sites to FMRP splicing factor. Other ESSs ele-

ments were identified as well as binding sites to hnRNPLL such as CCACCA, CCAGCA. All the

identified binding sites include CA dinucleotide repeats, which is known to be preferentially

recognized by hnRNPLL [40]. This suggests the hypothesis that these two splicing factors may

have an antagonistic behavior that results in some exons being included in the brain tissue and

excluded in the muscle tissue. Although this hypothesis needs further experimental validation,

our approach can highlight interesting results for more experimental testing.

Conclusion

In summery, we report a genome-wide analysis to study alternative splicing on multiple tis-

sues. That includes brain, heart, liver, and muscle tissues. Our proposed pipeline identifies dif-

ferentially used exons across tissues and hence tissue-specific exonic SREs. Both individual

and combinatorial SREs are identified which may be the reason for exon inclusion or exclusion

across different tissues. Our approach helps understand the relationship between different

types of exonic SREs. It yields interesting results that can open new directions to study alterna-

tive splicing and how it may influence tissue specificity.

Supporting Information

S1 File. It contains 6 tables. Each table contains a list of genomic coordinates of significant

differential exons for each pairwise comparison between tissue pairs.

(XLSX)

Table 12. Identifying splicing factors that binds to combinatorial SREs in the brain tissue.

Combinatorial SRE set Enhancer factor Inhibitor factor Brain ratio Heart ratio Liver ratio Muscle ratio

CAAGGA, CAGCCA FMRP hnRNPLL 1.831381681 1.484036726 1.899282779 0.521982767

TGTGGA, CCAGCA SRp55 hnRNPLL 1.706009449 2.279634755 7.114715878 0.846707243

TGTGGA, CAGCCA SRp55 hnRNPLL 1.706009449 2.279634755 7.114715878 0.846707243

TGTGGA, TCCTTT SRp55 DAZAP1 1.162119086 0.935388956 1.786036684 0.356244555

GAAGGC, AGGCAG 9G8 non - - - -

AGAAGAT, TTAGAA 9G8 non - - - -

GAAGGA, GGGAGG HTra2beta1 hnRNP F 0.113064576 0.131103394 0.053528796 0.09326604

TTCTTC, TCCTTT non hnRNPA2B1 - - - -

GAGGAT, GGGAGG SF2/ASF hnRNPA1 0.064157386 0.086308919 0.183388318 0.052519222

GAGGAT, GGGAGG SF2/ASF hnRNPF 0.697677691 0.761178655 0.350434389 0.316325285

The ratio columns contain the ration between the expression level of the enhancer factor and the inhibitor factor in the specified tissue. The cells with ‘non’

indicates that we could not identify an associated splicing factor and hence no ratios are provided.

doi:10.1371/journal.pone.0166978.t012
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S2 File. It contains putative enhancers and its associated information for each pairwise

comparison between tissue pairs.

(XLSX)

S1 Table. It includes the complete list of tissue-specific enhancers for all four tissues.

(XLSX)

S3 File. The file includes the complete list of combinatorial enhancers and silencers for the

four tissues.

(XLSX)

S4 File. It includes the complete list of enriched GO annotations of genes with putative tis-

sue-specific enhancers for all tissues.

(XLSX)

S5 File. It includes the complete list of enriched GO annotations of genes with putative tis-

sue-specific combinatorial SREs for all tissues.

(XLSX)

S2 Table. It includes the expression levels for all splicing factors of interest.

(XLSX)
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